The Optimization Complexity of Constraint Satisfaction Problems

Sanjeev Khanna Madhu Sudan'

Abstract

In 1978, Schaefer [12] considered a subclass of languages in NP and proved a “dichotomy
theorem” for this class. The subclass considered were problems expressible as “constraint
satisfaction problems”, and the “dichotomy theorem” showed that every language in this class
iseither in B, or is NP-hard. This result is in sharp contrast to a result of Ladner [9], which
shows that such a dichotomy does not hold for NP, unless NP=P.

We consider optimization version of the dichotomy question and show an anal og of Schae-
fer’s result for this case. More specifically, we consider optimization version of “constraint
satisfaction problems” and show that every optimization problem inthisclassis either solvable
exactly in P, or isMAX SNP-hard, and hence not approximable to within some constant factor
in polynomial time, unless NP=P. This result does not follow directly from Schaefer’s result.
In particular, the set of problems that turn out to be hard in this case, is quite different from
the set of languages which are shown hard by Schaefer’s result. A similar result has been
independently shown by Creignou [4] using quite different techniques.

*sanj eev@ heory. st anf ord. edu. Department of Computer Science, Stanford University, Stanford, CA 94305. Sup-
ported by a Schlumberger Foundation Fellowship, an OTL grant, and NSF Grant CCR-9357849.
"madhu@at son. i bm com 1BM ThomasJ. Watson Research Center, PO. Box 218, Yorktown Heights, NY 10598.



1 Introduction

The deepening connection between the existence of probabilisticaly checkable proofs and optimization
problems aong with efforts to unify the syntactic and computational views of approximation, has resulted
in a significant improvement in our understanding of the approximability of optimization problems and
in identifying the structure of canonical hard problems. The recent chain of work has both resolved the
approximability of alarge number of important combinatorial problems and has helped identify natural
complete problems for the approximation classes. At this juncture it seems reasonable to ask if we can
characterize which optimization problems are easy and which ones hard; and to ask if there are any
characteristic features of hard problemsthat can beisolated.

Of course, no complete characterization is possible: Rice's theorem allows one to disguise an opti-
mization problem so cleverly that it would be undecidable to determine if a given problem is NP-hard or
polynomial time solvable. Even if the problem is presented in its simplest form — it may be the case that
the answer need not be “easy" or “NP-hard” — thisis established by a theorem of Ladner [9].

In the presence of such barriers one is forced to weaken on€'s goals and focus one's attention onto
a restricted subclass of NPO (optimization problems within NP) in the hope that some features of hard
problems can beisolated from this subclass. Our choice of the appropriate restriction comes from the work
of Schaefer [12] who carried out an analogous investigation in the case of decision problems. Schaefer
considered a restriction of NP that he called “satisfiability problems” and successfully characterized every
problem in this (infinite) class as being easy (polynomial time decidable) or hard (NP-hard). He refers to
this as a “dichotomy theorem”, since it partitions the class of problems studied into two polynomial time
equivalent classes. A further study aong these lines— looking for other dichotomic classes within NP —
was carried out more recently by Feder and Vardi [5]. They suggest several promising classes which may
show such a dichotomy.

The works of Schaefer and Feder and Vardi motivates our class of optimization problems which we
refer to as “constraint satisfaction problems’. These are problems obtained from Schaefer’s class of
decision problemsin a natural fashion and are a subset of the problemsin the class MAX SNP. Recall that
MAX SNP is the class of optimization problems defined by Papadimitriou and Yannakakis [10] based on
syntactic prescriptions. All problemsin this class are known to be approximable to within some constant
factor, and the complete problems in the class are known to be non-approximable in polynomial time to
within some constant factor, unless NP=P [3].

In what follows we describe this class formally and present our main result.

1.1 De€finitionsand Main Result

We start with the definition of a constraint.

Definition 1 [Constraint] A constraint is a function f : {0,1}* — {0,1}. We say f is satisfied by an
assignment s € {0, 1}% if f(s) = 1. Werefer to k as the arity of the constraint f. A constraint with no
satisfying assignmentsis called unsatisfiable.

Often we apply a constraint f of arity & to a subset of & variables from alarger set. 1n such cases we
think of f asaconstraint on the larger set of variables.

Definition 2 [Constraint Application] Givenn booleanvariables X1, ..., X,, andaconstraint f of arity &,
andindicesiy, ..., € {1,...,n},thepair (f, (i1, ..., 1)) isreferred to asan application of the constraint
ftoXq,...,X,. Anassignment X; = s; for i € {1,...,n} and s; € {0, 1} satisfies the application if
f(sigsevvsi,) =1

*In the terminology of Feder and Vardi, these should really be referred to as constraint satisfaction problems over a boolean
domain. We drop the suffix in the interest of readability.




Definition 3 [Constraint Set] Aconstraint set 7 = { f1, ..., f;} isafinite collection of constraints.

Definition 4 [Constraint Satisfaction Problem (CSP(F))] Given a constraint set 7, the constraint satisfac-
tion problem CSP(F) is defined as follows :

INPUT : A collection of m constraint applications of the form {(f;, (¢2(J), - - -, #,(;))) } 721, On boolean
variables X1, X, ..., X;, where f; € F and k; isthearity of f;.

OBJECTIVE : Find a boolean assignment to X;’s so as to maximize the number of applications of the
constraints f1, . . ., f,, that are satisfied by the assignment.

Notice that the above definition gives anew optimization problem for every family 7. Schaefer’s class
of decision problems SAT(F) can be described in terms of the above as: The members of SAT(F) are dl
the instances of CSP(F) whose optimum equals the number of applied constraints (i.e., al constraints are
satisfiable). Schaefer’s dichotomy theorem essentially shows that the only families F for which SAT(F) is
in R isif al constraintsin F are either satisfied by the all zeroes assignment, the all ones assignment or all
constraints are linear constraints over GF(2) or al constraints are Horn clauses.

Our main result asserts that a dichotomy holds for CSP(F) as well. However the characterization of
the easy functions and the hard ones is quite different. (In particular, many more constraint sets 7 are hard
now.) In order to describe our result fully we need some more definitions.

Definition 5 Given a constraint set 7, the constraint set 7' is the set of constraints f in F which are
satisfiable.

It is easy to see that for any constraint set 7, an instance of CSP(F) can be mapped to an instance
of CSP(F”), such that the objective function value is preserved on each input assignment. Hence our
characterizations will essentially be characterizations of CSP(F”).

Definition 6 [:-valid function] For i € {0, 1}, afunction f of arity k iscalled i-valid if it is satisfied by the
assignment i~

Definition 7 [Minterm] Givenafunction fonvariablezy, ..., z;, acollectionof literalsz,,, . . ., z;,, T, . . ., T5,,
iscalled amintermof f if it satisfiesthe following properties:
1. Anyassignment s = sy, ..., s;, Which satisfiess;,;, = ---=s;, = lands;, = ---=s;,, = Osatisfies
f.

2. The collection is minimal with respect to property (1).

Definition 8 [Positive and Negative Minterms] A mintermof f which consists only of unnegated variables
is called a positive minterm. A minterm which consists only of negated variables is called a negative
minterm.

Definition 9 [2-Monotone Function] A function f is called 2-monotoneif it has at most two mintermssuch
that at most one of them is positive and at most one is negative.

The main result of this paper is as stated bel ow.

Theorem 1 The problem CSP(F) isalways either in Por isMAX SNP-hard. Furthermore, itisinPif and
only if one of the following conditionsistrue:

1. Every f € F'is0O-valid.



2. BEvery f € F'isl-valid.

3. Bvery f € F’is2-monotone.

Thistheorem follows from Lemmas 1,2,3 and 15. A second result that follows easily as a consequence
of Schaefer’s result and our notion of approximation preserving reductionsis the following:

Theorem 2 For every constraint set F either SAT(F) is easy to decide, or there existse = ¢+ > 0 such
that it is NP-hard to distinguish satisfiableinstances of SAT(F), frominstances where 1 — ¢ fraction of the
constraintsare not satisfiable.

Schaefer’s result characterizes which function families are easy to decide and which ones are hard; the
result is described in the Appendix A for sake of completeness.

Discussion Themainfeature of Theorem 1isthat thefamily of constraint setswhichlead to hard problems
issignificantly larger than in Schaefer’s case. Thisis not surprising given that problems such as 2SAT and
Linear systems over GF(2) are easy problems for the decision version and the maximization versions are
known to be hard, even to approximate[10, 2]. Nevertheless, the set of problemsthat are showntobeeasy is
extremely small. CSP(F) for F whichisO-valid or 1-validisreally atrivial problem; leaving only the class
of 2-monotone functions as somewhat interesting. But the class of functions with such properties seemsto
be really small and maximum flow or s-t min cut appear to be the only natural optimization problemswith
this property. Thus, wefeel, that the correct way to interpret Theorem 1isto think of it as saying that every
constraint satisfaction problemis either solvable by a maximum flow computation or it isMAX SNP-hard.

Another interesting feature of the aboveresult isthat the dichotomy holdsfor two different properties—
the complexity and the approximability — simultaneously. Easy problems are easy to compute exactly and
the hard ones are hard to even approximate. The middle regime — problemsthat are easy to approximate
but hard to compute exactly — are ruled out. This may be somewhat surprising initially, but becomes
inevitable once the form of approximation preserving reductions we use here becomes clear. Essentialy all
reductions we use are exactly those that might be used for exact optimization problems. In fact the ease
with which these reductions apply is the reason why Theorem 2 falls out easily from this paper.

The technical aspects of the proof of the dichotomy theorem may be of some independent interest. In
order to prove such a theorem, one needs to find succinct characterizations of what makes a function, say
2-monotone, aswell asasuccinct proof when afunction isnot 2-monotone. We find such a characterization,
in Lemma 9, which turns out to be useful in establishing Theorem 1.

One technical nit-picky point that we face in this study is the role of constants and repetitionsin CSP.
In particular, if f € F, should f|,,=0 given by f|,,=o(z2,...,2x) = f(0,z2,..., ;) aso be considered
amember of the constraint set? Similarly should f/(z1, 22) = f(21,...,21,22,...,22) be considered a
member of the constraint set. Allowing for these repetitions and constants makes the analysis much easier;
however they may change the complexion of the problems significantly. For instance given a set of linear
equalitiesof theform )", z; = O, itistrivid tofind an assignment which satisfiesal| the equations— namely
the all 0's assignment. However once one is alowed to fix some variables to the constant 1, the problem
no longer remains easy. In this paper initialy we assume we can use constants and repetitions to make our
analysissimpler. Later we remove the assumptions— and Theorem 1 and Theorem 2 is shown without the
use of any constants or repetition. In fact, in the process we remove a minor irritant from Schaefer’s proof
which actually needed to use repetitions.

Related Work Theorem 1 was independently discovered by Creignou [4]. Here we clarify the main
points of difference between this paper and that of [4]. In [4], the “easy" problems are characterized by a



graph-theoretic representation (thisis possiblesince the functionsinvolvedin the easy side can be expressed
as CNF formulas such that each clause is implicative, that is of the form (z — y) = (-2 V y)) and the
proof uses graph-theoretic ideas. Our result are stated and established via techniques in the more general
context of constraint satisfaction. The proof might be adapted to problems over other domains (larger than
the boolean one), whereas it seems unlikely that one could extend the proof of [4] in such away.

Additionally, technical aspects of the proof given here may be of someindependentinterest. Particularly,
the notion of a-implementation defined here gives a clear way to translate al the hardness results shown
here into hardness of approximation results. Also, thefact that we do not need to use repetition of variables
in functions, to obtain hardness results is another technical improvement on previous results, including that
of [12].

Rest of thispaper  Sections 2 and 3 are devoted to proving Theorem 1. In Section 4 we show how to prove
Theorem 2. Finaly, in Section 5, we show how to eliminate the replication assumption from Schaefer’s
proof.

2 Polynomial Time Solvability
From this section onwards we omit the notation 7’ and assume we have a constraint 7 such that 7 = F'.
Lemmal The problemCSP(F) isin Pif each f; € F is0-valid.

Proof: Set each variable to zero; this satisfies al the constraints. [ ]
Lemma2 The problemCSP(F) isin Pif each f; € F is 1-valid.

Proof: Set each variable to one; this satisfies all the constraints. [ ]
Lemma 3 The problem CSP(F) isin Pif each f; isa 2-monotone function.

Proof: We reduce the problem of finding the maximum number of satisfiable constraintsto the problem
of finding the minimum number of unsatisfied constraints. This problem, in turn, reduces to the problem
of finding s-¢ min-cut in directed graphs. 2-monotone constraints have the following possible forms : (a)
Ty Tipenniy,, (0) T5p Thp. Ty, AN (C) @iy 24y, + Ty Ty Ty, Where p, g > 1

Construct a directed graph ¢ with two special nodes F’ and 7" and a vertex z; corresponding to each
variablein theinput instance. Let oo denote an integer larger than the total number of constraints. Now we
proceed as follows for each of the above classes of constraints :

e For aconstraint C' of the form (@), create a new node e and add an edge from each x; to e of cost
oo and aunit cost edgefromeqs to T'.

e For aconstraint C' of the form (b), create anew node ez and add an edge of cost co from ¢ to each
x; and an edge from F' to ez of unit cost.

e Finally, for aconstraint C' of theform (c), we create two nodese and ez and connect ec toz;,, 4, . . .
and connect ec to z;,, z,, . . . as described above and replace the unit cost edgesfrom £ and to 7" by
aunit cost edge from e toec.



Using the correspondence between cuts and assignments which places vertices corresponding to true
variables on the T' side of the cut, we find that the cost of a minimum cut separating 7' from F', equasthe
minimum number of constraints that can be left unsatisfied. [ ]

The next lemma shows that s-t min-cut problem with polynomialy bounded integral weightsis in
CSP(F) for some 2-monotone constraint set . Since the previouslemmashows how to solve CSP(F) for
any 2-monotone constraint set F by reduction to s-t min-cut problem, it seems that s-t min-cut problemis
the hardest (and perhaps the only) interesting problem in CSP(F).

Lemma4 The s-t min-cut problem with polynomially bounded integral weights isin CSP(F) for some
2-monotone constraint set 7.

Proof: Let F beafamily of three functions { f1, f2, f3} suchthat f1(X) = X, fo(X,Y) = X + Y and
faY)=Y.

Now given an instance ¢ = (V, ) to s-t min-cut problem, we construct an instance of CSP(F) on
variables X1, X, ..., X,, where X; correspondsto thevertex z; € V :

e For each edgee = (s, ) with weight w., we have w, copies of the constraint f1(.X).
e For each edgee = (z, ¢) with weight w., we have w, copies of the constraint f3(.X).

e For esch edge e = (z,y) with weight w. and such that =,y ¢ {s,t}, we have w. copies of the
constraint f2(X,Y).

Givenasolutionto thisinstance of CSP(F'), weconstruct an s-t cut by placing the vertices corresponding
tothefalsevariables onthe s-side of the cut and theremaining onthe¢-side of thecut. It iseasy to verify that
an edge e contributes to the cut iff its corresponding constraint is unsatisfied. Hence the optimal CSP(F)
solution and the optimal s-¢ min-cut solution coincides. |

3 Proof of MAX SNP-Hardness

In this section we prove that a constraint set which is not entirely O-valid or entirely 1-valid or entirely
2-monotone givesa MAX SNP-hard problem. The main MAX SNP-hard problem which we reduce to any
of these new onesistheMAX CUT problem shown to be MAX SNP hard by Papadimitriou and Yannakakis
[10]. Initially we consider the case where we are essentialy alowed to repeat variables and set some
variablesto true or false. Thisprovidesarelatively painless proof that if afunction isnot 2-monotone, then
it provides a MAX SNP hard problem. We then use the availability of functions that are not O-valid or
1-valid toimplement constraintswhich force variablesto be 1 and O respectively, aswell astoforcevariables
to beequa. Thiseventually allows us to use the hardness lemma. We first start with some notation.

3.1 Notation

Given an assignment s to an underlying set of variables, /() denotes the set of positions corresponding
to variables set to zero and O(s) denotes the set of positions corresponding to variables set to one. More
formaly, given an assignment s = s1s2...s, t0 X1, Xo,..., X,,, where s; € {0,1}, we have Z(s) =
{i | sy =0}andO(s) = {i | s; = 1}. The notation s[0 — x| denotes the set of all assignments s’ such
that O(s) C O(s") and similarly, s[1 — ] denotes the set of al assignments s’ such that 7 (s) C Z(s').

Definition 10 [Unary Functions] The functions7'(X) = X and F'(X) = X arecalled unary functions.



Definition 11 [XOR and REP Functions] The function f(.X,Y) = X ¢ Y iscalled the XOR function and
its complement function, namely X = Y, iscalled the REP function.

Definition 12 [C'-closed Function] A function f iscalled C'-closed (or complementation-closed) if for all
assignments s, f(s) = f(s).

Definition 13 [v-Consistent Set] A set V' of positionsis v-consistent for a constraint f iff every assignment
with all variables occupying the positionsin V' set to value v is a satisfying assignment for f.

3.2 a-Implementationsand MAX SNP-Hard Functions

We next describe the primary form of a reduction which we use to give the hardness results. As pointed
out by Papadimitriou and Yannakakis, in order to get hardness of approximation results, the reductions used
need to satisfy certain approximation preserving features. Here we show how to implement agiven function
f using afamily of other functions F, so as to be useful in approximation preserving reductions.

Definition 14 [«-Implementation] An instance of CSP(F) over a set of variables X = {X1, X, vy Xp}
andY = {¥1,Y>, ..., Y, } iscalled an a-implementation of a boolean function f()?), where « isa positive
integer, iff the following conditions are satisfied:

(a) no assignment of valuesto X and Y can satisfy more than « constraints,

(b) for any assignment of values to X such that f(X) istrue, there exists an assignment of values to Y
such that precisely o constraints are satisfied,

(c) for any assignment of values to X such that f(X) is false, no assignment of values to ¥ can satisfy
morethan (o — 1) constraints, and finally

(d) for any assignment to X which does not satisfy f, there always exists an assignment to Y such that
precisely (v — 1) constraintsare satisfied.

We refer to the set X asthe function variables and the set Y asthe auxiliary variables.

Thus a function f 1-implements itself. We will say that CSP(F) implements function f if it o -
implements f for some constant «.;. The following lemma shows that the a-implementations of functions
compose together. The criteria for “implementation” given above are somewhat more stringent than used
normally. While properties (1)-(3) are perhaps seen elsewhere, property (4) is somewhat more strict, but
turns out to be critical in composing implementations together.

Lemma5 [Composition Lemma] If CSP(F) can o -implement a function f, and CSP(F,) can «,-
implement afunctiong € F;, then CSP({ ¥\ {¢}) UF,) can a-implement the function f for some constant
.

Proof: Let 5 be the number of occurrences of a constraint involving the function ¢ in the CSP(F)
instance a1-implementing f, then clearly, by replacing each occurrence of ¢ by its ao-implementation, we
obtainaCSP({ ¥ \ {¢}) U F;) instance which a-implements f for o = a1 + (a2 — 1). [ |

The MAX SNP-hardness of MAX CUT implies that CSP({XOR}) is MAX SNP-hard and hence the
below :

Lemma6 If CSP(F) can implement the XOR function, then CSP(F) isMAX SNP-hard.



Lemma 7 CSP({f,T, F'}) can implement the XOR function if f is either the function X + Y or XY or
X+Y.

Proof: If f = X +Y, thentheinstance { f(X,Y), f(X,Y), F(X), F(Y)} is a3-implementation of
X @Y;if f= XY, thentheinstance { f(X,Y), f(Y, X)} isal-implementationof X @ Y; andfinaly, if
f=X+Y, then{f(X,Y), f(X,Y),T(X),T(Y)}isa3-implementationof X ¢ Y. [ |

Lemma8 CSP({f,T, I'}) can implement the REP function if f isthefunction X + Y.

Proof: Theinstance{f(X,Y), f(X,Y), F'(X),T(Y)} isa3-implementation of the function REP. ®

3.3 Characterizing 2-Monotone Functions

In order to prove the hardness of a constraint which is not 2-monotone, we require to identify some
characteristics of such constraints. The following gives a characterization, which turns out to be useful.

Lemma 9 [Characterization Lemma] A function f isa 2-monotone function if and only if all the following
conditions are satisfied:
(a) for every satisfying assignment s of f, either s[1 — ] or s|0 — ] isa set of satisfying assignments,
(b) if V1 is 1-consistent and V5 is 1-consistent for f, then V3 N V5, is 1-consistent, and
(c) if V1 isO-consistent and V5 is0-consistent for f, then V1 N V> is0-consistent.

Proof: We use the fact that afunction can be expressed in DNF form as the sum of its minterms. For a
2-monotone function thisimpliesthat we can expressit as a sum of two terms. Every satisfying assignment
must satisfy one of the two terms and this gives Property (a). Properties (b) and (c) are obtained from the
fact that the function has at most one positive and one negative minterm.

Conversdly, if afunctionisnot 2-monotone, then it either has a minterm which isnot monotonepositive
or negative or it has more than one positive (or negative) minterm. In the former case, the function will
violate Property (a), and in the latter one of Properties (b) or (c). |

Observe that a 2-monotone function is aways either O-valid or 1-valid or both.

3.4 MAX SNP-hardnessof Non 2-Monotone Functions

We now use the characterization from the previous subsection to show that if one is alowed to “force’
constantsor “repetition” of variables, then the presence of hon-2-monotone constraint gives hard problems.
Rather than using the ahility to force constants and repetitions as a binding requirement, we use them as
additional constraintsto be counted as part of the objective function. Thisis helpful later, when we try to
remove the use of these constraints.

Lemma 10 [Hardness Lemma] For any function f which is not 2-monotone, CSP({ f, 7', I', REP}) can
implement the function XOR.

Proof: We provethisby using the Characterization Lemmafor 2-monotonefunctions. Let & denotethe
arity of f. If fisnot 2-monotone, it must violate one of the three conditions (a), (b) and (c) stated in the
Characterization Lemma.

Suppose f violates the property (a) above. Then for some satisfying assignment s, there exist two
assignments sg and s1 such that Z(s) C Z(sg) and O(s) C O(s1), but f(so) = f(s1) = 0. Without loss
of generality, we assumethat s = 0717, sg = 07119~ and s; = 0P~*19+%, Thus we have the following
Situation :



f0
p—a a b q—b
—N— = N N
s 00..0 00..0 11..1 11.1 1
so 00..0 00..0 00...0 11.1 0
s; 00.0 11..1 11..1 11.1 0
s 00..0 11..1 00..0 11.1 _

Observe that both « and b are non-zero. We consider the CSP({ f, 7', F, REP}) instance with the
following set of constraints on variables X, X», ..., X :

e congtraints F'(X;) for1 < i < (p — a),

e constraints REP(X,_,4+1, Xp_q4i) for 2 < i < g,
e constraints REP( X, 41, X,4;) for2 < i <,

e congtraints7'(X;) for (p4+a+b+1) <i<k,and

e theconstraint f( X1, Xo, ..., Xx).

Itis now easy to verify that for « = (k — 1), thisinstance a-implements the function X,_, 11 & X,4+1
if f(s2) = Land X,_,+1X,+1, otherwise. The claim now followsimmediately from Lemma?7.

Next suppose f violates the property (b) above. Then there exists an unsatisfying assignment s such
that s setsall variablesin V1N V> to 1, and at least one variablein each of V1 \ (V1N V) and Vo \ (Vin Va)
to befalse. Consider one such unsatisfying assignment s. Without loss of generality, we have the following
situation :

V1
V2
Vi\O(s) Vinv, V2\O(s)
—— —— —N—
s 00..0 11..1 11..1 11..1 00..0 00...011...1
S—— S~ N S S S N
p q r s t U v

We consider the CSP({ f, 7T, I', REP}) instance with the following set of constraints on variables
X1, X0, oo, X1

e constraintsREP(.X 1, X;) for2 < < p,

e congtraints7'(X;) for (p4+1) <i< (p+q+r+s),

o constraints REP( X, 4 g4y 4 5+1s Xptgtrsts) fOr2 < <,

e constraints F'(X;)for (p+qg+r+s+t+1) <i<(p+qg+r+s+t+u),

e constraints7'(X;) for (p+qg+r+s+t+u) <i<(p+q¢+r+s+t+u+v),andfinaly

e theconstraint f( X1, Xo,..., X)) wherek = (p+q+r+s+t+u+v).

Itisnow easy to verify that for o« = (k — 1), thisinstance a-implementsthefunction X1+ X, 4,44 s4+1-
Again, the claim now followsimmediately from Lemma?.
Finally, the casein which f violatesthe property (¢) above, can be handled in an analogous manner. |



3.5 Implementing the REP Function

We now start on the goal of removing the use of the unary and replication constraints above. In order to do
so we use the fact that we have available to us functions which are not O-valid and not 1-valid. It turns out
that the case in which the same function is not O-valid and not 1-valid and further has the property that its
behavior is closed under complementation (i.e., f(s) = f(s)) is somewhat specid. We start by analyzing
this case first.

Lemma 11 [Replication Lemma)] Let f be a non-trivial function which is C'-closed and is neither O-valid
nor 1-valid. Then an instance of CSP({ f}) can implement the REP function.

Proof: Let & denote the arity of f and let kg and %1 respectively denote the maximum number of
O'sand 1's in any satisfying assignment for f; clearly ko = k1. Now let Sx = {X1, Xo, ..., Xo;} and
Sy = {VY1, Y2, ..., Yo} betwo digoint sets of 2k variables each. We begin by creating an instance Z of
CSP({f}) asfollows. For each satisfying assignment s, there are (°%) (,%*,) constraintsin Z such that every
i-variable subset of Sx appearsin place of 0'sin Sx and every (k — ¢) variable subset of Sy appearsin
place of 1'sin the assignment s, where : denotes the number of 0’sin s.

Clearly, any solutionwhich assignsidentical valuesto all variablesin Sx and the complementary value
to all variablesin Sy, satisfiesall the constraintsinZ. Let 7 and O respectively denote the set of variables
set to zero and one respectively. We claim that any solution which satisfies all the constraints must satisfy
gther 7 = Sy or 7 = Sy.

To see this, assume without loss of generality that |Sx N Z| > k. Thisimpliesthat |Sy N O| > k
or else there exists a constraint in 7 with al its input variables set to zero and is hence unsatisfied. This
in turn implies that no variable in Sx can take value one; otherwise, there exists a constraint with k1 + 1
of itsinputs set to one, and is unsatisfied therefore. Finally, we can now conclude that no variable in Sy
takes value zero; otherwise, there exists a constraint with kg 4+ 1 of itsinputs set to zero and is unsatisfied
therefore. Thus, Z = Sx. Analogously, we could have started with the assumptionthat |Sx N O] > & and
established 7 = Sy . Hence an assignment satisfies all the constraintsin Z iff it satisfies either the condition
7 = Sx orthecondition 7 = Sy.

We now augment the instance Z of CSP({ f}) as follows. Consider a least hamming weight satisfying
assignment s for f. Without loss of generality, we assumethat s = 10°1%. Clearly then, s’ = 0*+119 isnot
asatisfying assignment. Since f isC'-closed, we have the following situation :

f0
P q
—N—
s 0 00..0 11..1 0
s 1 00..0 11.1 1
s 0 11..1 00..0 1
s 1 11..1 00...0 0

Consider the constraints f (X, X1, Xo, ..., X}, Y1, Yo, ..., Y,) and f(Y, X1, X0, ..., X}, Y1, Yo, ..., Y)). If
X = 1, thentosatisfy theconstraint f(.X, X1, Xo, ..., X,, Y1, Y2, ..., Y;),wemusthave Z = Sx. Otherwise,
wehave X = Oand thento satisfy theconstraint f( X, X1, Xo, ..., X,, Y1, Y2, ..., Y,) wemust have Z = Sy-.
In either case, the only way we can also satisfy the constraint f,(Y, X1, Xo, ..., X,, Y1, Y2, ..., Y,) isby
assigning Y an identical value. Thusthese set of constraints a-implementsthe function X = Y where o is
simply the total number of constraints; all constraints can be satisfied iff X = Y and otherwise, there exists
an assignment to variables in Sx and Sy such that precisely o — 1 constraints are satisfied.
[ |



3.6 Implementing the Unary Functions

If the function(s) whichis (are) not 0-valid and 1-valid is (are) not closed under complementation, then they
can be used to get rid of the unary constraints. Thisis shown in the next lemma.

Lemma 12 [Unary Lemma] Let fo and f1 be two non-trivial functions, possibly identical, which are not
0-valid and 1-valid respectively. Then if neither fo nor f1 is C-closed, an instance of CSP({ fo, f1}) can
implement both the unary functions7°(.) and F'(.).

Proof: We will only sketch the implementation of function 7°(.); the analysis for the function F'(.) is
identical. Now suppose neither f, is C'-closed, v € {0,1}. We begin by considering an instance each of
CSP({ fo}) and CSP({ f1}), say Zo and Z; respectively. Both of these instances are constructed in a manner
identical to theinstance 74 above. Now we argue that any solution which satisfies all the constraintsin 7
and Z;, must set al variablesin Sy to 0 and al variablesin Sy to 1.

So we have two functions fy and f1 such that neither is C'-closed. Suppose |Sx N O] > k, then we
must have |Sy N O| > k. To seethis, consider a satisfying assignment s such that fo(s) = 0; there must
exist such an assignment since fy isnot C'-closed. Now if |Sy N Z| > k, then clearly at least one constraint
corresponding to s is unsatisfied - the one in which the positionsin O(s) are occupied by the variables
in (Sy N Z) and the positionsin Z(s) are occupied by the varigbles in (Sx N O). Thus we must have
|Sy N O| > k. Butif we have both |Sx N O| > k and |Sy N O| > k, then there is at |east one unsatisfied
constraint inthe instance Z; since f1 isnot 1-valid. Thus this case cannot arise.

So we now consider the case |Sx N Z| > k. Then for constraintsin Zy to be satisfied, we must once
again have | Sy N O| > k; else thereis a constraint with all its inputs set to zero and is hence unsatisfied.
This can now be used to conclude that Sy N Z = ¢ as follows. Consider a satisfying assignment with
smallest number of ones - this number is positive since fp isnot O-valid. If we consider al the constraints
corresponding to this assignment with inputsfrom Sy and Sx N Z only, itiseasy to see that there will be at
least one unsatisfied constraint if Sy N 7 # ¢. Hence each variablein Sy isset tooneinthiscase. Finaly,
using the constraints on the function f1 which isnot 1-valid, it is easy to concludethat infact 7 = Sy .

Now let s = 1071¢ be aleast hamming weight satisfying assignment for fo; p, ¢ may be zero but s
contains at least asingle one as fp isnot 0-valid. Then the constraint fo(X, X1, X2, ..., X, Y1, Y2, ..., Y))
can be satisfied iff X = 1. Thusall the constraintsin 7g and 7, are satisfied along with above constraint
iff X = 1 and otherwise, we can still satisfy al the constraints in 7o and 71. Hence this is indeed an
implementation of the function 7'(.). The function F'(.) can be implemented in an anal ogous manner.

[ |

3.7 REPHepsImplement MAX SNP-Hard Functions

Lemma 13 Suppose f isa non-trivial function which is neither 0-valid nor 1-valid. Then CSP({ f, REP})
implements the X OR function.

Proof: Without loss of generality, assume s = 0717 is a satisfying assignment for f. We consider two
disoint set of variables Sy = {X1, Xp,..., X,;} and Sy = {Y1,Y>.....Y,}. Consider the CSP({ f, REP})
instance which consists of constraints REP( X1, X;) for 7 € [2..p], constraints REP(Y1,Y;) for j € [2..q]
and the constraint f( X1, Xo, ..., X,, Y1, Y2, ..., Y,). Itisnow easy to verify that thisyieldsa (p + ¢ — 1)-
implementation of the function X; ¢ Y1 if s = 107 is a satisfying assignment, and of the function X;Y;
otherwise. Now an application of the Composition Lemmayields the lemma. |

Corollary 1 Suppose f isa non-trivial function which is neither 0-valid nor 1-valid. Then CSP({ f, REP})
iISMAX SNP-hard.

Proof: Immediately followsfrom Lemma 6 and Lemma 13 above. |

10



3.8 Unary FunctionsHelp Implement either REP or MAX SNP-Hard Functions

Lemma 14 Let f be a function which is not 2-monotone. Then CSP({ f, T', I'}) can implement either the
XOR or the REP function.

Proof: Since f isnhot 2-monotoneand non-trivia, it must be sensitiveto at least two variables. Consider
the boolean %-cube with each vertex s labeled by the function value f(s); where £ is the arity of function
f. Let V; denote the set of vertices labeled ¢, i € {0,1}. If |V;| < |Vi_,|, we claim that it must be the
case that there exists avertex in V; which has at least two neighborsin Vi _;. Thisisreadily seen using the
expansion properties of the k-cube; any set .S of at most 2~ vertices must have expansion factor at least
one. Furthermore, the expansion factor is precisely one only when the set .S induces aboolean (% — 1)-cube.
But thelater case can’'t arise sinceit would imply that f isasinglevariablefunction. Hence there must exist
avertex s € V; which hastwo neighborsin V_;.

Let s; and s; be these two neighbors of s, differing in the i “ and the j  bit position respectively.
Without loss of generality, we may assumethat + = 1and j = 2. Consider now theinput instance which has
aconstraint of theform f(X1, X», Y1, Y2, ..., Yi—2) and constraints of theform 7'(Y;) for each Y; appearing
inO(s) N O(s1) NO(s2) and of theform F'(Y;) for each Y; appearingin Z(s) N Z(s1) N Z(s2). It isnow
easy to verify that this set of constraintsimplements one of the functions X1 + X, X1 @& Xp, X1 + Xp,
X1+ Xoor X1 ¢ Xo. Theformer threeimplement X1 ¢ X, whilethe later two implement the constraint
X1 = Xo. |

Thefollowing is a straightforward corollary.

Corollary 2 Let f beafunction which isnot 2-monotone. Then CSP({ f, 7', I'}) isSMAX SNP-hard.

Proof: If CSP({f,T,F}) can implement the REP function, then the corollary follows using the
Composition Lemma, the Hardness Lemma and the Lemmas 6 and 8. Otherwise, it followsfrom Lemma?.
[ |

Lemma 15 If F isa constraint set such that there exist (1) fo € F whichisnot O-valid, (2) f1 € F which
isnot 1-validand (3) f2 € F which isnot 2-monotone. The CSP(F) is MAX SNP-hard.

Proof: If either fo or f; is C'-closed then using the Replication Lemma, we can implement the REP
function and using the Composition Lemmaalong with Lemma13 allowsto concludethat CSP({ fo, f1, f2})
implements XOR function.

If neither fo nor f1 is C'-closed, then using the Unary Lemma, CSP({ fo, f1, f2}) can implement the
unary functions7’(.) and F'(.), and then using the Composition Lemmaa ong with Lemma14, we conclude
that CSP({ fo, f1, f2}) implements either the XOR function or the REP function. In the latter case, we can
use Lemma 13 to conclude that CSP({ fo, f1, f2}) can implement the XOR function.

In either of the two situations above, we may conclude using Lemma 6 that CSP({ fo, f1, f2}) is
MAX SNP-hard. [ |

4 Hardnessat Gap Location 1

It is possible to use a notion closely related to «-implementation to conclude from Schaefer’s dichotomy
theorem and show that in the cases where SAT(F) in NP-hard to decide, it is actually hard to distinguish
satisfiable instances from instances which are not satisfiable in a constant fraction of the constraints. This
istermed hardness at gap location 1 by Petrank [11] who highlightsthe usefulness of such hardness results
in other reductions.

11



An important characteristic of o« implementation of a function f isthat if we are given an assignment
to the function variables which does not satisfy f, it can dways be extended to the auxiliary variables
such that precisely (v — 1) constraints are satisfied. This is a useful feature in establishing the hardness
results for problems such as MAX 2-SAT which do not have hardness gaps located at 1. However, when
dealing with problems with hardness gaps located at 1, such as MAX 3-SAT, it suffices to use a somewhat
different notion of a-implementations, called weak «-implementations’. A weak a-implementation satisfies
the condition (a)-(c) of the a-implementations and the condition (d) is replaced by the constraint that the
CSP(F) instance implementing it has precisely o constraints. Clearly, weak «-implementations can be
composed together and they preserve hardness gaps located at 1.

Itisnot difficult to verify that Schaefer’s proof isin fact based on wesk «-implementations of functions,
and hence one may directly conclude from his proof that his class of NP-hard satisfiability problemsare all
infact MAX SNP-hard. Thisyields Theorem 2.

5 Strengthening Schaefer’s Dichotomy Theorem

Schaefer’s proof of NP-hardness in his dichotomy theorem relies on the ability to replicate variables within
aconstraint application. We observethat to do so, it sufficesto create aweak implementation of the function
REP. Since given aweak implementation, we can replace any p replicated copies of avariable X by p new
variables X1, X, ..., X, and add constraints of the form REP(X1, X7), REP(X1, X3), ..., REP(X1, X,).
We now show how to create a weak implementation of the REP function; we need a definition :

Definition 15 [Weskly Positive and Weakly Negative Functions] A function is called weskly positive
(weakly negative) if it may be expressed as a CNF formula such that each clause has at most one negated
(unnegated) variable.

Now Lemmas 11 and 12 show that CSP({ fo, f1, f2}), where fyisnot O-valid and f1 isnot 1-vaid, can
be used to create either aweak implementation of the function REP or aweak implementation of both unary
functionsT and F'. In thelatter case, we can show the following lemma.

Lemma 16 If f isnot weakly negativethen CSP({ f, T, F'}) can weak implement either the function z & v,
or thefunctionz + y. Smilarly, if f isnot weakly positivethen CSP({ f, T", I'}) can weak implement either
the function = @ v, or the function z + y.

Proof: We only prove the first part - the second part follows by symmetry. We know that f has a
maxterm S with at least two positiveliterals. We consider the function f’ whichis f existentialy quantified
over thevariablesnotin S. Let 21 and z, be thetwo positiveliteralsin S. Set al other variablesin S to the
value which does not make S true. Then the assignment 21 = 22 = 0isanon-satisfying assignment. The
assignmentsz1 = 0 # 2 and z1 # 0 = 22 must be satisfying assignments ny the definition of maxterm.
Whilethe assignment 21 = z2 = 1 may go either way. Depending on thiswe get either the function = ¢ y
orz 4 y. |

Corollary 3 If f is not weakly positive and f3 is not weakly negative, then CSP({ f2, f3, T, I'}) weak
implements (at gap 1) the XOR function.

Since the SAT(F) problems that we need to establish as NP-hard in Schaefer’'s theorem satisfy the
conditionthat there exists fo, f1, f2, f3 € F suchthat fpisnot O-vaidand f1 isnot 1-valid, f> isnot weakly
positive and f3 is not weakly negative, we conclude that we can weak implement the XOR function. This,
in turn, can be used to create a weak implementation of the function REP(z, y) by using the constraints
{z @ z,y @ =} for someauxiliary variable z. Thus replication can be eliminated from Schaefer’s proof.

TThe name weak «-implementation is slightly misleading because this notion is simultaneously both weaker and stricter than
the notion of a-implementations.

12



6 Conclusions

We initiated a study of the structure of a subclass of NPO and established an approximation dichotomy
theorem for this class — in the process, giving a simple characterization to distinguish "easy" problems
from the "hard" problems. Our dichotomy theorem strongly used the syntactic structure of problemsin this
classto identify a sharp division between the "easy" versus "hard" problems. We fedl that it further stresses
the role of syntactic prescriptions in the study of approximability. This was the fundamental insight on
which the class MAX SNP was defined by Papadimitriou and Yannakakis [10]. Recent work of Khanna,
Motwani, Sudan and Vazirani [7] aso stresses this relationship, where they used syntactically defined
classesto identify a structured core of hard problemsfor approximation classes such as APX, log-APX and
poly-APX.

A natural question arising from this work is that of identifying larger classes which exhibit such
dichotomieswith respect to approximability. The syntactic optimization class MAX SNP containsour class
of constraint satisfaction problems as a subclass. An interesting feature of this classisthat every problem
in this class is approximable to within a constant factor and there exist problems in this class which are
MAX SNP-hard. Is it then the case that every problem in this class is either in P or MAX SNP-hard ?
Feder and Vardi [5] recently initiated a systematic investigation to find the largest subclass of NP which
exhibits a dichotomy for the decision version of the problems. Their efforts identify a subclass of SNP
(the decision class underlying MAX SNP), called MM SNP - monotone, monadic SNP with no inequalities.
This subclass contains constraint satisfaction problems over arbitrary domains and hence strictly contains
Schaefer’s class. They provide strong evidence that this class may in fact exhibit a P versus NP-hard
dichotomy. We suspect that it is probably the case that the optimization anal og of the classMM SNP exhibits
aPversus MAX SNP-hard dichotomy.

In arecent related work, Khanna, Sudan and Williamson [8] have studied the optimization complexity
of finding an assignment with maximum number of ones such that it satisfies every constraint in a given
SAT(F) problem. This class contains many natural optimization problems such as MAX CUT and MAX
CLIQUE asitsmembers. Surprisingly, this class exhibits an approximation hierarchy with essentialy five
levels. It contains problems which are in P or MAX SNP-hard or »°-hard and and yet does not have any
intermediate approximation classes sandwiched in between.

13



Acknowledgments

We would like to thank Tomas Feder for providing us with a timely copy of the full version of [5]. We
would liketo thank David Karger and David Williamson for their valuable comments.

References

[1]

[2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]
[12]

S. ARORA AND S. SAFRA. Probabilistic checking of proofs: A new characterization of NP. Proceedings
of the 33rd Symposium on Foundations of Computer Science, |EEE, 1992.

S. ARORA, L. BABAI, J. STERN AND Z. SWEEDYK. The Hardness of Approximate Optimain Lattices,
Codes, and Systems of Linear Equations. Proceedings of the 34th Symposium on Foundations of
Computer Science, IEEE, 1993.

S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY. Proof verification and theintractabil -
ity of approximation problems. Proceedings of the 33rd Symposium on Foundations of Computer
Science, |IEEE, 1992.

N. CReIGNoU. A Dichotomy Theorem for Maximum Generalized Satisfiability Problems. To appear
in JCSS, December 1995.

T. FEDER AND M. VARDI. Monotone monadic SNP and constraint satisfaction. Proceedings of the25th
Annua Symposium on Theory of Computing, ACM, 1993.

U. FEIGE, S. GOLDWASSER, L. LOVASZ, S. SAFRA, AND M. SZEGEDY. Approximating clique is amost
NP-complete. Proceedings of the32nd Symposium on Foundations of Computer Science, |EEE, 1991.

S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI. On Syntactic versus Computational Views
of Approximation. Proceedings of the 35th Symposium on Foundations of Computer Science, |EEE,
1994

S. KHANNA, M. SUDAN, AND D.P. WILLIAMSON. A Trichotomy Theorem for a Class of Structure
Optimization Problems. In preparation.

R. LADNER. On the structure of polynomial time reducibility. Journal of the ACM, 22:1, pp. 155171,
1975.

C. PAPADIMITRIOU AND M. YANNAKAKIS. Optimization, approximation and complexity classes. Jour-
nal of Computer and System Sciences, 43, pp. 425440, 1991.

E. PETRANK. The Hardness of Approximation: Gap Location. Computational Complexity, v. 4, 1994.

T. SCHAEFER. The complexity of satisfiability problems Proceedings of the 10th Annual Symposium
on Theory of Computing, ACM, 1978.



Appendix

A Schaefer’s Theorem
We state Schaefer’s dichotomy theorem in this section.

Definition 16 [Affine] Afunctionissaid to be affine if it may be expressed as a system of linear equations
of theform S , z; = 0and Y%, 2; = 1 (i.e. it evaluates to one iff the input variables satisfy the given
equation system); the addition operation being modulo 2.

Schaefer’s dichotomy theorem may be stated as follows. Let F be afinite set of boolean functions.
Then SAT(F) is aways either in P or NP-hard. Furthermore, itisin P if and only if one of the following
conditionsistrue:

1. Every f € FisO-valid.
. Every f € Fisl-vdid.
. Every f € F isweskly positive.

2
3
4. Every f € F isweakly negative.
5. BEvery f € Fisdffine.

6

. Every f € Fisbijunctive (i.e. expressible asa CNF formulawith at most 2 literals per clause).



