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tWe present a linear-programming based method for�nding \gadgets", i.e., 
ombinatorial stru
tures redu
-ing 
onstraints of one optimization problems to 
on-straints of another. A key step in this method is asimple observation whi
h limits the sear
h spa
e to a�nite one. Using this new method we present a numberof new, 
omputer-
onstru
ted gadgets for several dif-ferent redu
tions. This method also answers a questionposed by [1℄ on how to prove the optimality of gadgets| we show how LP duality gives su
h proofs.The new gadgets improve hardness results forMAX CUT and MAX DICUT, showing that approx-imating these problems to within fa
tors of 60=61 and44=45 respe
tively is NP-hard (improving upon the pre-vious hardness of 71=72 for both problems [1℄). We alsouse the gadgets to obtain an improved approximationalgorithm for MAX 3SAT whi
h guarantees an approx-imation ratio of :801. This improves upon the previousbest bound (impli
it in [6, 3℄) of :7704.1 Introdu
tionA \gadget" is a �nite 
ombinatorial stru
ture whi
htranslates 
onstraints of one optimization problem intoa set of 
onstraints of a se
ond optimization problem.A typi
al example is in the redu
tion from 3SAT toMAX 2SAT [4℄ in whi
h a 
lause Ck = X1 _ X2 _ X3is repla
ed by ten 
lausesX1; X2; X3; :X1 _ :X2; :X2 _ :X3; :X3 _ :X1;Y k; :X1 _ :Y k; :X2 _ :Y k; :X3 _ :Y k:� Dipartimento di S
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If 
lause Ck is satis�ed, then 7 of the 10 new 
lauses aresatis�ed by setting Y k appropriately; otherwise only 6of the 10 are satis�able. Use of the supers
ript Y k isonly to indi
ate that ea
h 
lause Ck gets its own \aux-iliary variables"; hen
eforth we will only 
onsider one
lause (or one \
onstraint") at a time, so we'll dispensewith the supers
ripts. We will re-visit the 3SAT-to-2SAT redu
tion in Lemma 6.4.Starting with the work of Karp, gadgets have playeda fundamental role in showing the hardness of opti-mization problems. They are the 
ore of any redu
tionbetween 
ombinatorial problems, and they retain thisrole in the spate of new results on non-approximabilityof optimization problems.Despite their importan
e, the 
onstru
tion of gad-gets has always been a \bla
k art", with no knownuniform methods. In fa
t, until re
ently no one hadeven proposed a 
on
rete de�nition of a gadget; Bellare,Goldrei
h and Sudan [1℄ �nally did so, with a view toquantifying the role of gadgets in non-approximabilityresults. Their de�nition is a

ompanied by a seem-ingly natural \
ost" measure for a gadget. The more\
ostly" the gadget, the weaker the redu
tion. How-ever, �nding a gadget for a given redu
tion remainedan ad ho
 task. Additionally, it remained hard to provethat a gadget's 
ost was optimal.This paper addresses the two issues raised above. Weshow that for a large 
lass of redu
tions, the spa
e ofpotential gadgets that need to be 
onsidered is a
tu-ally �nite. This is not entirely trivial, and the proofdepends on properties of the problem that is being re-du
ed to. However, the method is very general, anden
ompasses a large number of problems. An imme-diate 
onsequen
e of the �niteness of the spa
e is theexisten
e of a sear
h pro
edure to �nd an optimal gad-get. But a naive sear
h would be impra
ti
ally slow,and sear
h-based proofs of the optimality (or the non-existen
e) of a gadget would be monstrously large.As the next step, we show how to express the sear
h1



for a gadget as a linear program (LP) whose 
on-straints guarantee that the potential gadget is indeedvalid, and whose obje
tive fun
tion is the 
ost of thegadget. Central to this step is the idea of work-ing with weighted versions of optimization problemsrather than unweighted ones. (The latter would yieldan integer program (IP) while the former yields anLP). This seemingly helps only in showing hardnessof weighted optimization problems, but a new resultdue to Cres
enzi, Silvestri and Trevisan [2℄ shows thatfor a large 
lass of optimization problems (in
ludingall the ones 
onsidered in this paper), the weightedversions are exa
tly as hard with respe
t to approx-imation as the unweighted ones. Therefore, workingwith the weighted version is as good as working withthe unweighted one.The LP representation has many bene�ts. First, weare able to sear
h for mu
h more 
ompli
ated gadgetsthan is feasible manually. Se
ond, we 
an use the the-ory of LP duality to present short(er) proofs of opti-mality of gadgets and non-existen
e of gadgets. Last,we 
an solve relaxed or 
onstrained versions of the LPto obtain upper and lower bounds on the 
ost of a gad-get, whi
h 
an be signi�
antly qui
ker than solving thea
tual LP. Being 
areful in the relaxing/
onstrainingpro
ess (and with a bit of lu
k) we 
an often get thebounds to mat
h, thereby produ
ing optimal gadgetswith even greater eÆ
ien
y!Armed with this tool for �nding gadgets (and anRS/6000, OSL, and often APL21), we examine someof the known gadgets and 
onstru
t many new ones.[1℄ presented gadgets redu
ing the 
omputation of averi�er to several problems, in
luding MAX 3SAT,MAX 2SAT, and MAX CUT. We examine these inturn and show that the gadgets in [1℄ for MAX 3SATand MAX 2SAT were optimal, but their MAX CUTgadget was not. We improve on the eÆ
ien
y of thelast, thereby improving on the fa
tor to whi
h ap-proximating MAX CUT 
an be shown to be NP-hard.We also 
onstru
t a new gadget for the MAX DICUTproblem, thereby strengthening its hardness. Our �-nal result, obtained by plugging our gadget into theproof of [1℄, shows that approximating MAX CUT towithin a fa
tor of 60=61 is NP-hard, as is approximat-ing MAX DICUT to within a fa
tor of 44=45. (Forboth problems, the previous best hardness fa
tor was71=72 [1℄.)21respe
tively, an IBM Ris
System/6000 workstation, the IBMOptimization Subroutine Library, whi
h in
ludes a linear pro-gramming pa
kage, and (not that we're partisan) IBM's APL2programming language2Note that approximation ratios in this paper for maximiza-

Obtaining better redu
tions between problems 
analso yield improved approximation algorithms for someproblems (if the redu
tion goes the right way!). Weillustrate the point by 
onstru
ting a gadget redu
-ing MAX 3SAT to MAX 2SAT. Using this new re-du
tion in 
ombination with a te
hnique of Goemansand Williamson [5, 6℄ and the state-of-the-art :931-approximation algorithm for MAX 2SAT due to Feigeand Goemans [3℄ (whi
h improves upon the previous(famous) :878-approximation algorithm of [6℄), we ob-tain a :801-approximation algorithm for MAX 3SAT.The best result that 
ould be obtained previously, by
ombining the te
hnique of [5, 6℄ and the bound of [3℄,was :7704. (This is not mentioned expli
itly anywherebut why would we lie. See also the :769-approximationalgorithm in the paper of Ono, Hirata, and Asano [8℄.)Finally, our redu
tions have impli
ations for proba-bilisti
ally 
he
kable proof systems. Let PCP
;s[log; q℄be the 
lass of languages that admit membership proofsthat 
an be 
he
ked by a probabilisti
 veri�er thatuses a logarithmi
 number of random bits, reads atmost q bits of the proof, a

epts 
orre
t proofs withprobability at least 
, and a

epts strings not in thelanguage with probability at most s. We show: �rst,that there exist 
onstants 
 and s, 
=s > 34=33, su
hthat NP � PCP
;s[log; 2℄; and se
ond, for all 
; s with
=s > 2:7214, PCP
;s[log; 3℄ � P. The best previouslyknown bounds for these results were 74/73 [1℄ and 4 [9℄respe
tively.All the gadgets we use are 
omputer 
onstru
ted. Inthe �nal se
tion, we present an example of a \lowerbound" on the performan
e of a gadget; the boundis not 
omputer 
onstru
ted (and 
annot be, by thenature of the problem), but it still relies on de�ning anLP whi
h des
ribes the optimal gadget, and extra
tinga lower bound from the LP's dual.Organization of this paper The next se
tion intro-du
es pre
ise de�nitions whi
h formalize the pre
edingoutline. Se
tion 3 presents the �niteness proof and theLP-based sear
h strategy. Se
tion 4 
ontains negative(non-approximability) results and the gadgets used toderive them. Se
tion 5 brie
y des
ribes our 
omputersystem for generating gadgets. Se
tion 6 presents thepositive result for approximating MAX 3SAT. Se
-tion 7 presents an example of a proof of the optimalityof a gadget.tion problems are less than 1, and represent the weight of thesolution a
hievable by a polynomial time algorithm, divided bythe weight of the optimal solution. This is the re
ipro
al ofthe fa
tors mentioned in [1℄ and exa
tly the fa
tors as stated in[10, 5, 6, 3℄.2



2 De�nitionsWe begin with some de�nitions we will need beforegiving the de�nition of a gadget from [1℄.De�nition 2.1 A (k-ary) 
onstraint fun
tion is aboolean fun
tion f : f0; 1gk ! f0; 1g.When it is applied to variables X1; : : : ; Xk (see the fol-lowing de�nitions) the fun
tion f is thought of as im-posing the 
onstraint f(X1; : : : ; Xk) = 1. In the open-ing example, the redu
tion from 3SAT to MAX 2SAT,f is the 
onstraint X1 _X2 _X3.De�nition 2.2 A 
onstraint family F is a �nite 
ol-le
tion of 
onstraint fun
tions. The arity of F is themaximum number of arguments of the fun
tions in F .In the redu
tion from 3SAT to MAX 2SAT, F 
on-tains the three binary (2-ary) 
onstraint fun
tionsf00(a1; a2) = a1_a2, f10(a1; a2) = :a1_a2, andf11(a1; a2) = :a1_:a2, and the two unary (1-ary) 
on-straint fun
tions f0(a1) = a1 and f1(a1) = :a1. Howthese are applied is formalized in the next de�nition.De�nition 2.3 A 
onstraint C over a variable setX1; : : : ; Xn is a pair C = (f; (i1; : : : ; ik)) where f :f0; 1gk ! f0; 1g is a 
onstraint fun
tion and ij 2 [n℄for j 2 [k℄. Variable Xj is said to o

ur in C ifj 2 fi1; : : : ; ikg. The 
onstraint C is said to be satis-�ed by an assignment ~a = a1; : : : ; an to X1; : : : ; Xn ifC(a1; : : : ; an) def= f(ai1 ; : : : ; aik) = 1. We say that 
on-straint C is from F if f 2 F .So in the opening example, the �rst 
onstraint :X1
ould be des
ribed as (f1; (1)), while (if we give Y theindex 4), the last 
lause :X3 _ :Y is the 
onstraint(f11; (3; 4)).We 
an now formally de�ne a gadget.De�nition 2.4 [Gadget [1℄℄ For � 2 R+, a 
onstraintfun
tion f : f0; 1gk ! f0; 1g, and a 
onstraint family F :an �-gadget (or \gadget with performan
e �") redu
ingf to F is a �nite 
olle
tion of real weights wj � 0, andasso
iated 
onstraints Cj from F over primary variablesX1; : : : ; Xk and auxiliary variables Y1; : : : ; Yn, with theproperty that, for boolean assignments ~a to X1; : : : ; Xkand ~b to Y1; : : : ; Yn, the following are satis�ed:(8~a : f(~a) = 1) (8~b) : Xj wjCj(~a;~b) � �; (1)(8~a : f(~a) = 1) (9~b) : Xj wjCj(~a;~b) = �; (2)(8~a : f(~a) = 0) (8~b) : Xj wjCj(~a;~b) � �� 1:(3)

The gadget is stri
t if, in addition,(8~a : f(~a) = 0) (9~b) : Xj wjCj(~a;~b) = �� 1:(4)We say that the fun
tion ~b = ~b(~a) is a witness for thegadget if equation (2) (and, for a stri
t gadget, equa-tion (4)) is satis�ed by ~b(~a). For a given witness fun
tion~b, the fun
tion bi(~a) = ~b(~a)i.To show that the introdu
tory example is a stri
t 7-gadget, one witness (it is not unique) is the fun
tion~b(a1; a2; a3) = a1 ^ a2 ^ a3. It is straightforward toverify that this satis�es 7 
lauses if one, two, or allthree of a1; a2; and a3 are 1, and satis�es 6 
lauses ifa1 = a2 = a3 = 0; it is a separate step to verify thatno satisfying assignment gives a value ex
eeding 7, andno unsatisfying assignment gives a value ex
eeding 6.We observe that be
ause the weights may all be re-s
aled, what is signi�
ant is the ratio of the right-handsides of equations (1{4). A \strong" gadget is onewith a small �; in parti
ular, if �0 > �, any �-gadgetis also automati
ally (after re-s
aling) an �0-gadget.(But stri
tness is not maintained.) In the extreme, a1-gadget would do a perfe
t redu
tion.Be
ause of the natural asso
iation between a gadgetand the 
orresponding fun
tionPwjCj , a gadget maybe thought of as an instan
e of a \(weighted) 
onstraintsatisfa
tion problem".De�nition 2.5 For a fun
tion family F , MAX F is theoptimization problem whose instan
es 
onsist of m 
on-straints from F , on n variables, and whose obje
tive is to�nd an assignment to the variables whi
h maximizes thenumber of satis�ed 
onstraints.Viewed as a 
onstraint satisfa
tion problem, a gadgethas the property that when restri
ted to any satisfyingassignment ~a to X1; : : : ; Xk its maximum is exa
tly �,and when restri
ted to any unsatisfying assignment itsmaximum is at most �� 1 (exa
tly �� 1 if the gadgetis stri
t).For 
onvenien
e we now give a 
omprehensive listof all the 
onstraints and 
onstraint families used inthis paper. We motivate these 
lasses brie
y after thede�nitions.De�nition 2.6� Parity 
he
k is the 
onstraint family PC = fPC0;PC1g, where, for i 2 f0; 1g, PCi is de�ned as fol-lows: PCi(a; b; 
) = 8<: 1 if a� b� 
 = i0 otherwise.3



� Respe
t of monomial basis 
he
k is the 
onstraintfamily RMBC = fRMBCij ji; j 2 f0; 1gg, whereRMBCij(a; b; 
; d) = 8>>><>>>: 1 if a = 0 and b = 
� i1 if a = 1 and b = d� j0 otherwise.RMBC00 may be thought of as the test (
; d)[a℄ ?= b,RMBC01 as the test (
;:d)[a℄ ?= b, RMBC10 asthe test (:
; d)[a℄ ?= b and RMBC11 as the test(
; d)[a℄ ?= :b.� For any k � 1, Exa
tly-k-SAT is the 
onstraint fam-ily EkSAT = ff : f0; 1gk ! f0; 1g : jf~a : f(~a) =0gj = 1g, that is, the set of k-ary disjun
tive 
on-straints.� For any k � 1, k-SAT is the 
onstraint family kSAT= Sl2[k℄ ElSAT.� SAT is the 
onstraint family SAT = Sl�1 ElSAT� 3-Conjun
tive SAT is the 
onstraint family 3ConjSAT= ff000; f100; f110; f111g, where:1. f000(a; b; 
) = a ^ b ^ 
.2. f001(a; b; 
) = a ^ b ^ :
3. f011(a; b; 
) = a ^ :b ^ :
4. f111(a; b; 
) = :a ^ :b ^ :
� CUT is the 
onstraint fun
tion CUT : f0; 1g2 !f0; 1g with CUT(a; b) = a� b.� DICUT is the 
onstraint fun
tion DICUT : f0; 1g2! f0; 1g with DICUT(a; b) = :a ^ b.� 2CSP is the 
onstraint family 
onsisting of all 16 bi-nary fun
tions, i.e. 2CSP = ff : f0; 1g2 ! f0; 1gg.Table 1 summarizes the gadgets found in this pa-per. The gadget redu
es a fun
tion f (
alled sour
e)to a family F (
alled target). The above list of 
on-straint families in
ludes both sour
es and targets ofredu
tions.Our interest in the fun
tion families PC and RMBC
omes from the following theorem of [1℄.Theorem 2.7 [1℄ For any family F , if there exists an�1-gadget redu
ing every fun
tion in PC to F and an�2-gadget redu
ing every fun
tion in RMBC to F , thenfor any 
 > 0, MAX F is hard to approximate to within1� :15:6�1+:4�2 + 
.

Thus using CUT, DICUT, 2CSP, EkSAT and kSATas the target of redu
tions shows the hardness of MAXCUT, MAX DICUT, MAX 2CSP, MAX EkSAT andMAX kSAT respe
tively, and minimizing the value of� in the gadgets gives better hardness results.We also use 2SAT as a target to obtain new approx-imation algorithms for the sour
e (by a redu
tion toMAX 2SAT and using the algorithm of [3℄ to approxi-mate this problem). The two families redu
ed to 2SATin this way are 3SAT and 3ConjSAT.3 The Basi
 Pro
edureIn this se
tion we shall illustrate our te
hnique by 
on-stru
ting a gadget redu
ing PC0 to 2SAT.The key aspe
t of making the gadget sear
h spa
es�nite is to limit the number of auxiliary variables, byshowing that dupli
ates (in a sense to be 
lari�ed) 
anbe eliminated by means of proper substitutions.Let f be a k-ary fun
tion with s satisfying assign-ments ~a(1); : : : ;~a(s). For a gadget � with n auxiliaryvariables redu
ing f to a family F , an extended witnessof � is a s � (n + k) matrix (
ij) su
h that 
ij = a(i)jfor j � k, and 
ij = bj�k(~a(i)) otherwise, where ~b is awitness of �.Lemma 3.1 If an �-gadget � redu
ing f to an r-aryfamily F has an extended witness with r+1 equal 
olumns,and at least one 
olumn 
orresponds to an auxiliary vari-able, then there is an �-gadget �0 using one fewer auxiliaryvariable. If � is stri
t, so is �0.Proof : Let (
ij) be the extended witness 
laimed inthe hypothesis, let i1; : : : ; ir; ir+1 be indi
es of equal
olumns of (
ij), and assume without loss of general-ity that ir+1 > k. We wish to show that we 
an ob-tain a new �-gadget by repla
ing o

urren
es of Xir+1with some other Xij . For any 
onstraint C of �, de�nered(C) as follows. If Xir+1 does not o

ur in C, thenred(C) = C. Otherwise, sin
e at most r variables o

urin C, it follows that Xih does not o

ur in C for someh 2 [k℄. Then, we de�ne red(C) as the 
onstraint ob-tained from C by repla
ing the o

urren
e of Xir+1 byan o

urren
e of Xih . If � = (C1; : : : ; Cm; w1; : : : ; wm),then de�ne a new gadget �0 = (red(C1); : : : ; red(Cm);w1; : : : ; wm). Correspondingly, let ~b0(~a) be identi
alto b(~a) but with bir+1 eliminated. �0 has n � 1 auxil-iary variables (Xir+1 never o

urs in �0). By 
onstru
-tion, �0(~a;~b0(~a)) � �(~a;~b(~a)), so �0 satis�es the gadget-de�ning equation (2). (Similarly, for stri
t gadgets �,4



sour
e f �! target F our � was3SAT �! 2SAT 3.5 73ConjSAT �! 2SAT(y) 4PC �! 3SAT 4 4PC �! 2SAT 11 11PC �! 2CSP 5 11PC0 �! CUT(z) 8 10PC0 �! DICUT 6.5PC1 �! CUT(z) 9 9PC1 �! DICUT 6.5RMBC �! 2CSP 5 11RMBC �! 3SAT 4 4RMBC �! 2SAT 11 11RMBC00 �! CUT(z) 8 11RMBC00 �! DICUT 6RMBC01 �! CUT(z) 8 12RMBC01 �! DICUT 6.5RMBC10 �! CUT(z) 9 12RMBC10 �! DICUT 6.5RMBC11 �! CUT(z) 9 12RMBC11 �! DICUT 7Table 1: All gadgets des
ribed are provably optimal,and stri
t. The sole ex
eption (y) is the best possiblestri
t gadget; there is a non-stri
t 3-gadget. All previ-ous results quoted are interpretations of the results in[1℄, ex
ept the gadget redu
ing 3SAT to 2SAT, whi
his due to [4℄, and the gadget redu
ing PC to 3SAT,whi
h is folklore. The gadgets marked with (z) are notstri
tly redu
tions to CUT; see Se
tion 4.1.�0 satis�es (4)). Also, the range of the universal quan-ti�
ation for �0 is smaller than that for �, therefore �0satis�es inequalities (1) and (3). 2De�nition 3.2 For a 
onstraint f , 
all two variables aj0and aj distin
t if there exists an assignment ~a, satisfy-ing f , for whi
h aj0 6= aj .Corollary 3.3 Suppose f is a 
onstraint on k variables,

with s satisfying assignments and k0 distin
t variables. Ifthere is an �-gadget redu
ing f to an r-ary family F ,then there is an �-gadget with at most r2s � k0 auxiliaryvariables.If there is a stri
t �-gadget redu
ing f to F , then thereis a stri
t �-gadget with at most r22k � k auxiliary vari-ables.Proof : In the �rst 
ase, the domain of the witnessfun
tion b is fa : f(a) = 1g, a set of 
ardinality s,so an extended witness has s rows, and the number ofdistin
t 
olumns is at most 2s. If there are more thanr+1 equal 
olumns, and not all of them 
orrespond toprimary variables, then we 
an eliminate one auxiliaryvariable as per the pre
eding lemma; thus no more thanr2s � k0 auxiliary variables are required.For stri
t gadgets the proof is identi
al, ex
ept thatthe domain of the witness fun
tion b is fa 2 f0; 1gkg.Here the k primary variables are all distin
t, sin
e thedomain 
onsidered is that of all assignments. 2Note that further redu
tions in the number of auxil-iary variables are often possible. In the proof of Lemma3.1 we used substitutions whenever there were r + 1equal 
olumns. Indeed, for 
onstraint families like 3SATwe 
an make substitutions whenever there are two equal
olumns, sin
e there is the possibility to repla
e an (il-legal) 
onstraint like (X1_X1_X3) by a legal 
onstraint(X1_X3). In general this is possible if the target of theredu
tion is a family with a property that we name byanalogy with the terminology for matroids:De�nition 3.4 A 
onstraint family F is hereditary iffor any fi(X1; : : : ; Xni) 2 F , and any two indi
es j; j0 2[ni℄, the fun
tion fi when restri
ted to Xj � Xj0 and
onsidered as a fun
tion of ni � 1 variables, is identi
al(up to the order of the arguments) to some other fun
tionfi0 2 F [f0; 1g, where ni0 = ni� 1 (and 0 and 1 denotethe 
onstant fun
tions).Lemma 3.5 If an �-gadget � redu
ing f to a hereditaryfamily F has a witness fun
tion for whi
h two auxiliaryvariables are identi
al (i.e. bj0(�) � bj(�)), or if an auxil-iary variable is identi
al to a primary variable (bj0 (~a) � aj)then there is an �-gadget �0 using one fewer auxiliary vari-able. If � is stri
t, so is �0.Proof : Similar to the proof of Lemma 3.1, ex
ept weuse the hereditary property to ensure that the result ofsubstitution is a gadget. 2If the 
onstraint family allows the 
omplementationof any variable (as for example 2SAT but not CUT orDICUT), then the number of auxiliary variables may5



be approximately halved: we need only 
onsider wit-ness fun
tions whose value is 1 at least as often as itis 0.De�nition 3.6 A family F is 
omplementation-
losedif it is hereditary and, for any fi(X1; : : : ; Xni) 2 F , andany index j 2 [ni℄, the fun
tion f 0i given by f 0i(X1; : : : ; Xni)= fi(X1; : : : ; Xj�1;:Xj ; Xj+1; : : : ; Xni) is 
ontained inF .Noti
e that for a 
omplementation-
losed family F ,the hereditary property implies that if fi(X1; : : : ; Xni)is 
ontained in F then so is the fun
tion fi restri
ted toXj � :Xj0 for any two distin
t indi
es j; j0 2 [ni℄. Thisguarantees that we 
an make substitutions even if two
olumns in the (extended) witness are 
omplements ofea
h other. To sum up, we have the following result.Lemma 3.7 Suppose f is a 
onstraint on k variables,with s satisfying assignments and k0 � k variables distin
teven under 
omplementation. If there is an �-gadget re-du
ing f to a hereditary (respe
tively, 
omplementation-
losed) 
onstraint family F , then there is an �-gadgetwith at most 2s � k0 (respe
tively, 2s�1 � k0) auxiliaryvariables.In some 
ases (e.g. 2SAT but not CUT), there is alsono need to 
onsider witness fun
tions whi
h are iden-ti
ally 0 or identi
ally 1. (Clauses in whi
h their 
or-responding auxiliary variables appear 
an be repla
edby shorter 
lauses eliminating those variables.)The previous dis
ussion means that if we are look-ing for an �-gadget redu
ing PC0 to 2SAT with theminimum value of �, then we 
an restri
t our sear
hto gadgets over at most 7 variables. Over 7 variables,2 �7+4 ��72� 2SAT 
onstraints 
an be de�ned; 
all themC1; : : : ; C98. A gadget over 7 variables 
an thus beidenti�ed with the ve
tor (w1; : : : ; w98) of the weightsof the 
onstraints. Sin
e in [1℄ it is shown that an 11-gadget exists redu
ing PC0 to 2SAT, it follows that inan optimum gadget no 
onstraint will have a weightlarger than 11. If we were allowed only integer weightsover the 
onstraints, then an optimum gadget 
ouldbe found by exhaustive sear
h over a spa
e of 1298elements. Allowing real weights over the 
onstraintsmakes the sear
h spa
e in�nite, yet we 
an use lin-ear programming to �nd an optimum gadget quite ef-�
iently. Consider the following linear program with64 + 4 + 64 = 132 
onstraints over 99 variables:

minimize � (LP1)subje
t to(8~a : PC0(~a) = 1) (8~b) : Pj wjCj(~a;~b) � �(8~a : PC0(~a) = 1) : Pj wjCj(~a;~b(~a)) = �(8~a : PC0(~a) = 0) (8~b) : Pj wjCj(~a;~b) � �� 1� � 0(8j 2 [98℄) : wj � 0:In general, any \dupli
ated" variables 
an be elimi-nated from an �-gadget to give a \simpli�ed" �0-gadget(�0 � �), and the �0-gadget 
an be asso
iated with its(�xed-length) ve
tor of weights.Theorem 3.8 The weight ve
tor asso
iated with anysimpli�ed �-gadget provides a feasible solution to the as-so
iated LP, and 
onversely any feasible solution to the LPis a weight ve
tor whi
h des
ribes an �-gadget. An opti-mal LP solution yields an optimal �-gadget (one where �is as small as possible).In parti
ular, (LP1) has optimal solution � = 11,proving the optimality of the [1℄ gadget.In the remaining se
tions we give appli
ations ofsome gadgets and then report their best possible gad-gets. All gadgets are 
omputer-
onstru
ted unless oth-erwise noted. Most gadgets are omitted for brevity.4 Improved Negative Results4.1 MAX CUTWe begin by showing an improved hardness result forthe MAX CUT problem. It is not diÆ
ult to see thatno gadget per De�nition 2.4 
an redu
e any memberof PC to CUT: For any setting of the variables whi
hsatis�es equation (2), the 
omplementary setting hasthe opposite parity (so that it must be subje
t to in-equality (3)), but the values of all the CUT 
onstraintsare un
hanged (so the gadget's value is still �, violat-ing (3)). Following [1℄, we generalize the de�nition:De�nition 4.1 A gadget with auxiliary 
onstant 0 is agadget as previously de�ned, ex
ept that (1{4) are onlyrequired to hold when Y1 = 0.To get a hardness result for MAX CUT, we �rst needthe following lemma, whi
h is a very minor modi�
a-tion of a lemma in [1℄.6



0

x1

x2

x3Figure 1: 8-gadget redu
ing PC0 to CUT. Every edgehas weight .5. The auxiliary variable whi
h is always 0is labelled 0.Lemma 4.2 [1℄ For the 
onstraint family CUT, if thereexists an �1-gadget with 
onstant 0 redu
ing every fun
-tion in PC to CUT and an �2-gadget with 
onstant 0redu
ing every fun
tion in RMBC to CUT, then for any
 > 0, MAX CUT is NP-hard to approximate to within1� :15:6�1+:4�2 + 
.Noti
e that the CUT 
onstraint family is hereditary,sin
e identifying the two variables in a CUT 
onstraintyields the 
onstant fun
tion 0. Thus by Lemma 3.7,if there is an �-gadget with 
onstant 0 redu
ing PC0to CUT, then there is an �-gadget with at most 13auxiliary variables (16 variables in all). Only �162 � =120 CUT 
onstraints are possible on 16 variables. Sin
ewe only need to 
onsider the 
ases when Y1 = 0, we 
an
onstru
t a linear program as above with 216�1 + 4 =32; 772 
onstraints to �nd the optimal �-gadget with
onstant 0 redu
ing PC0 to CUT. A linear programof the same size 
an similarly be 
onstru
ted to �nd agadget with 
onstant 0 redu
ing PC1 to CUT.Lemma 4.3 There exists an 8-gadget with 
onstant 0redu
ing PC0 to CUT, and it is optimal and stri
t. Thereexists a 9-gadget redu
ing PC1 to CUT, and it is optimaland stri
t.The PC0 gadget is shown in Figure 1. It turns outthat we 
annot apply exa
tly the te
hnique above to�nd an optimal gadget that redu
es RMBC00 to CUT.Sin
e there are 8 satisfying assignments to the 4 vari-ables of the RMBC00 
onstraint, by Lemma 3.7, wewould need to 
onsider 28�4 = 252 auxiliary variables,leading to a linear program with 2252 + 8 
onstraints,whi
h is somewhat beyond the 
apa
ity of 
urrent 
om-puters.

To over
ome this diÆ
ulty, we observe that for theRMBC00 fun
tion when a1 = 0, the value of a4 is irrel-evant, and when a1 = 1, the value of a3 is irrelevant.Thus we 
onsider only restri
ted witness fun
tions forwhi
h~b(0; a2; a3; 0) = ~b(0; a2; a3; 1) and~b(1; a2; 0; a4) =~b(1; a2; 1; a4). It is not a priori obvious that a gadgetwith a witness fun
tion of this form exists, but we as-sume for the moment that su
h a gadget does exist.Following the proof of Lemma 3.7, we note that the sizeof the domain of a restri
ted witness fun
tion is now 4(instead of 8). Thus if an �-gadget with 
onstant 0 andthe restri
ted witness fun
tion exists, an �-gadget with
onstant 0 and at most 24 auxiliary variables exists.Noting that we 
an identify auxiliary variables identi-
al to a1 or a2, we 
an 
onsider gadgets with at most14 auxiliary variables. We 
an then 
reate a linear pro-gram with �182 � = 153 variables and 218�1+8 = 131; 080
onstraints. The result of the linear program is the fol-lowing.Lemma 4.4 There exist 8-gadgets with 
onstant 0 re-du
ing RMBC00 and RMBC01 to CUT. There exist 9-gadgets redu
ing RMBC10 and RMBC11 with 
onstant0 to CUT. All are optimal and stri
t.Noti
e that sin
e we used a restri
ted witness fun
-tion, the linear program does not prove that the gad-gets are optimal. In order to prove the optimality ofour gadget we ran a di�erent linear program. Thistime we pi
k only a subset of the 
onstraints arisingfrom part (2) of the de�nition of a gadget. We restri
tour attention to only four of the a

epting 
on�gura-tions. For the 
ase of RMBC00, these were 0100, 1001,1010 and 0111. It is 
lear that sin
e the linear programarising from this has fewer 
onstraints, its solution pro-vides a lower bound on the performan
e of the gadgetredu
ing RMBC00 to CUT with 
onstant 0. Lu
kily,it turns out that the lower bound obtained in this wayequaled the performan
e of the gadget, thus providinga proof of optimality. In fa
t, this \under-
onstrained"LP also produ
ed a valid gadget (more lu
k!), so therestri
ted-witness-fun
tion tri
k was not needed afterall.3The two lemmas imply the following theorem.Theorem 4.5 For every 
 > 0, MAX CUT is hard toapproximate to within 59=60 + 
 � :983. In parti
ular,MAX CUT is hard to approximate to within 60=61.3The optimum obje
tive fun
tion value of a LP is of 
ourseunique but in general the 
orresponding primal (and dual) solu-tions are not unique. We have observed most or all of our LP'sprodu
ing di�erent solutions | di�erent optimal gadgets. Forthis lower-bounding LP, it is possible that a di�erent solutionwould not happen to produ
e a gadget.7
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Figure 2: 8-gadget redu
ing PC0 to DICUT. Edgeshave weight 1 ex
ept when marked otherwise.4.2 MAX DICUTAn analysis similar to that above leads to linear pro-grams generating gadgets redu
ing members of PC andRMBC to DICUT. The only di�eren
e is that in this
ase we do not need gadgets with a 
onstant.Lemma 4.6 There exist 6:5-gadgets redu
ing PC0 andPC1 to DICUT, and they are optimal and stri
t.The PC0 gadget is shown in Figure 2.Lemma 4.7 There exists a 6-gadget redu
ing RMBC00to DICUT, 6:5-gadgets redu
ing RMBC01 and RMBC10to DICUT and a 7-gadget redu
ing RMBC11 to DICUT.All are optimal and stri
t.Theorem 4.8 For every 
 > 0, MAX DICUT is hardto approximate to within 131=134 + 
 � :978. In par-ti
ular, MAX DICUT is hard to approximate to within44=45.4.3 MAX 2-CSPLemma 4.9 There exist 5-gadgets redu
ing PC0 andPC1 to 2CSP, and they are optimal and stri
t.Lemma 4.10 There exist 5-gadgets redu
ing every 
on-straint fun
tion in the family RMBC to 2CSP. All areoptimal and stri
t.Theorem 4.11 For every 
 > 0, MAX 2CSP is hard toapproximate to within :97+ 
. In parti
ular, MAX 2CSPis hard to approximate to within 33=34.MAX 2CSP 
an be approximated within .859 [3℄.The above theorem has impli
ations for probabilisti-
ally 
he
kable proofs. Using the well-known redu
-tion from 
onstraint satisfa
tion problems to proba-bilisti
ally 
he
kable proofs, Theorem 4.11 implies that


onstants 
 and s exist su
h that NP � PCP
;s[log; 2℄and 
=s > 34=33. The previously known gap betweenthe 
ompleteness and soundness a
hievable reading twobits was 74=73 [1℄.5 Interlude: MethodologyDespite the seeming variety, all gadgets in this paperwere 
omputed by a single APL2 program (
alling OSLto solve the 
onstru
ted LP). The sour
e fun
tion f isspe
i�ed expli
itly, by a small program. Capitalizingon regularities of the problems of interest, the targetfamily F is spe
i�ed by an underlying fun
tion (e.g. dis-jun
tion) applied within all 
lauses of spe
i�ed lengthand symmetries (ordered or unordered; variable 
om-plementation permitted or prohibited).Sele
ted assignments are spe
i�ed expli
itly. Theyde�ne the extended witness fun
tion, from whi
h du-pli
ates (under the spe
i�ed symmetries) are removed.The witness fun
tion is equivalent to the auxiliary vari-ables' identities. Re-iterating previous points, sele
tingof all a

epting assignments will produ
e a gadget, se-le
ting of all assignments will produ
e a stri
t gadget,and sele
ting a subset of these assignments will pro-du
e a lower bound and | with lu
k | a valid gadget.Use of a \don't-
are" state (in lieu of 0 or 1) in sele
tedassignments guarantees a gadget (if the LP is feasible),but not optimality. To illustrate, the most 
omplexgadget spe
i�
ation was that for the redu
tion fromRMBC00 to CUT, whose input was(; 0)('BU'; 0) RMBC00 MAKE 6= (00*0)(011*)(10*0)(11*1):Evaluating all assignments to the primary and aux-iliary variables de�nes the inequality 
onstraints of theLP, while witness assignments de�ne the equality 
on-straints. After the LP is 
onstru
ted and solved, anindependent veri�
ation step 
on�rms the gadget's va-lidity, performan
e, and stri
tness.Complete run times for the hardest gadgets des
ribedin this paper were in the range of a half hour on anRS/6000 workstation, with memory usage of 500MBor so. The easiest half-dozen gadgets 
an be run on aThinkPad in se
onds.6 Improved Positive ResultsIn this se
tion we show that we 
an use gadgets toimprove approximation algorithms. In parti
ular, welook at MAX 3SAT, and a variation, MAX 3ConjSAT,in whi
h ea
h 
lause is a 
onjun
tion (rather than a dis-jun
tion) of three literals. An improved approximation8



algorithm for the latter problem leads to improved re-sults for probabilisti
ally 
he
kable proofs in whi
h theveri�er examines only 3 bits. Both of the improvedapproximation algorithms rely on stri
t gadgets redu
-ing the problem to MAX 2SAT. We begin with somenotation.De�nition 6.1 A (�1; �2)-approximation algorithm forMAX 2SAT is an algorithm whi
h re
eives as input aninstan
e with unary 
lauses of total weight m1 and binary
lauses of total weight m2, and two reals u1 � m1 andu2 � m2, and produ
es reals s1 � u1 and s2 � u2 andan assignment satisfying 
lauses of total weight at least�1s1 + �2s2. If there exists an optimum solution thatsatis�es unary 
lauses of weight no more than u1 andbinary 
lauses of weight no more than u2, then there isthe guarantee that no assignment satis�es 
lauses of totalweight more than s1 + s2.That is, supplied with a pair of \upper bounds" u1; u2,a (�1; �2)-approximation algorithm produ
es a singleupper bound of s1 + s2, along with an assignment re-spe
ting a lower bound of �1s1 + �2s2.Lemma 6.2 [3℄ There exists a polynomial-time (:976;:931) approximation algorithm for MAX 2SAT.6.1 MAX 3SATIn this se
tion we show how to derive an improved ap-proximation algorithm for MAX 3SAT. By restri
tingte
hniques in [6℄ from MAX SAT to MAX 3SAT andusing a :931-approximation algorithm for MAX 2SATdue to Feige and Goemans [3℄, one 
an obtain a :7704-approximation algorithm for MAX 3SAT. The basi
idea of [6℄ is to redu
e ea
h 
lause of length 3 to thethree possible sub
lauses of length 2, give ea
h newlength-2 
lause one-third the original weight, and thenapply an approximation algorithm for MAX 2SAT. Thisapproximation algorithm is then \balan
ed" with an-other approximation algorithm for MAX 3SAT to ob-tain the result. Here we show that by using a stri
tgadget to redu
e 3SAT to MAX 2SAT, a good (�1; �2)-approximation algorithm for MAX 2SAT leads to a:801-approximation algorithm for MAX 3SAT.Lemma 6.3 If for every f 2 E3SAT there exists a stri
t�-gadget redu
ing f to 2SAT, there exists a (�1; �2)-approximation algorithm for MAX 2SAT, and � � 1 +(�1��2)2(1��2) , then there exists a �-approximation algorithm forMAX 3SAT with� = 12 + (�1 � 1=2)(3=8)(� � 1)(1� �2) + (�1 � �2) + (3=8) :

Lemma 6.4 For every fun
tion f 2 E3SAT, there existsa stri
t (and optimal) 3:5-gadget redu
ing f to 2SAT.Combining Lemmas 6.2, 6.3 and 6.4 we get a :801-approximation algorithm.Theorem 6.5 MAX 3SAT has a polynomial-time :801-approximation algorithm.6.2 MAX 3-CONJ SATWe now turn to the MAX 3ConjSAT problem.Lemma 6.6 If for every f 2 3ConjSAT there exists astri
t (�1+�2)-gadget redu
ing f to 2SAT 
omposed of�1 length-1 
lauses and �2 length-2 
lauses, and there ex-ists a (�1; �2)-approximation algorithm for MAX 2SAT,then there exists a �-approximation algorithm for MAX3ConjSAT with� = 18�118 + (1� �1)(�1 � �2) + (1� �2)(�1 + �2 � 1)provided �1 + �2 > 1 + 1=8(1� �2).The proof is similar to that of Lemma 6.3 and omit-ted here.Lemma 6.7 For any f 2 3ConjSAT there exists a stri
t(and optimal) 4-gadget redu
ing f to 2SAT. The gadgetis 
omposed of one length-1 
lause and three length-2
lauses.Theorem 6.8 MAX 3ConjSAT has a polynomial-time.367-approximation algorithm.It is shown by Trevisan [9℄ that the above theoremhas 
onsequen
es for PCP
;s[log; 3℄. This is be
ause the
omputation of the veri�er in su
h a proof system 
anbe des
ribed by a de
ision tree of depth 3, for every
hoi
e of random string. Further, there is a 1-gadgetredu
ing every fun
tion whi
h 
an be 
omputed by ade
ision tree of depth k to kConjSAT. Thus we getthe following 
orollary for PCP systems using 3 bits ofqueries.Corollary 6.9 PCP
;s[log; 3℄ � P provided that 
=s >2:7214.The previous best trade-o� between 
ompleteness andsoundness for polynomial-time PCP 
lasses was 
=s > 4[9℄.9



7 A Lower Bound from DualityAll the 
omputer-
onstru
ted gadgets referred to inthe pre
eding se
tions 
ome with automati
 proofs ofoptimality: the LP formulation guarantees optimalitymathemati
ally, and the equality of the obje
tive val-ues 
omputed for the LP and its dual assures optimal-ity in pra
ti
e. Here we mention one instan
e wherewe 
an use duality to provide lower bounds on the � ofa gadget even though su
h a lower bound 
an not be
onstru
ted on a 
omputer, sin
e the target family isin�nite.Theorem 7.1 If � is an �-gadget redu
ing any memberof PC to SAT, then � � 4.Proof : A feasible solution to any LP's dual is alower bound for the LP. The linear program that �ndsthe best gadget redu
ing PC0 to SAT is similar to(LP1), the only di�eren
e being that a larger num-ber of 
lauses are 
onsidered, namely, N =P7i=1 �7i�2i.The dual program is then:maximize X~a;~b:PC0(~a)=0 y~a;~b (DUAL2)subje
t to1 +P~a:PC0(~a)=1 y~a;~b(~a) � P~a;~b y~a;~b8j 2 [N ℄ :P~a:PC0(~a)=1 ŷ~a;~b(~a)Cj(~a;~b(~a)) � P~a;~b y~a;~bCj(~a;~b)(8~a) (8~b) : y~a;~b � 0(8~a : PC0(~a) = 1) : ŷ~a;~b(~a) � 0:Consider now the following assignment of values tothe variables of (DUAL2) (unspe
i�ed values are zero):(8~a : PC0(~a) = 1) ŷ~a;~b(~a) = 34(8~a : PC0(~a) = 1)(8~a0 : d(~a;~a0) = 1) y~a0;~b(~a) = 13where d is the Hamming distan
e between binary se-quen
es. It is possible to show that this is a feasiblesolution for (DUAL2) and it is immediate to verify thatits 
ost is 4. 2Note: In a re
ent breakthrough result, Hastad [7℄ hasshown that MAX PC is hard to approximate to within1=2 + 
, for any 
 > 0. The results translate to asurprising threshold of 7=8+ 
 for the approximabilityof MAX E3SAT. Using the gadgets 
onstru
ted here,he 
an also translate this into improved hardness re-sults of 16=17 + 
 and 12=13 + 
 for MAX CUT andMAX DICUT respe
tively.
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Gadgets, Approximation, and Linear Programming[Errata℄Lu
a Trevisan Gregory B. SorkinMadhu Sudan David P. WilliamsonWe apologize for two errors in the FOCS pro
eedingsversion of our paper [2℄.The �rst error was typographi
al. In the introdu
-tory example illustrating a redu
tion from 3SAT toMAX 2SAT, the 10 
lauses repla
ing Ck = X1_X2_X3should beX1; X2; X3; :X1 _:X2; :X2 _:X3; :X3 _:X1Y k; X1 _ :Y k; X2 _ :Y k; X3 _ :Y k:The se
ond error was in Lemma 3.1 and, as a 
onse-quen
e, Corollary 3.3. However, the further results ofthe paper all depend on the more spe
i�
 Lemma 3.5,whi
h is 
orre
t, so our prin
ipal 
laims are una�e
ted.Lemma 3.1 
laimed that for any gadget redu
ing a
onstraint f to a 
onstraint family F , there exists anequivalent gadget with at most K auxiliary variables,where K = Kf;F is a �nite bound. The error waspointed out by Karlo� and Zwi
k [1℄, who provide a
ounterexample in whi
h no �nite gadget a
hieves op-timality.Sin
e the proof of Lemma 3.5 referred to that ofLemma 3.1, we give here a self-
ontained proof.Lemma 3.5 If an �-gadget � redu
ing f to a hereditaryfamily F has a witness fun
tion for whi
h two auxiliaryvariables are identi
al (i.e. bj0(�) � bj(�)), or if an auxil-iary variable is identi
al to a primary variable (bj0(~a) � aj)then there is an �0-gadget �0 using one fewer auxiliaryvariable, and with �0 � �. If � is stri
t, so is �0.Proof : We de�ne a new gadget �0 obtained from �by repla
ing ea
h o

urren
e of Xj0 by Xj and arguethat �0 is an �0-gadget redu
ing f to F for some �0 � �.For any 
onstraint C of �, de�ne red(C) as follows.If Xj0 does not o

ur in C, then red(C) = C. Oth-erwise, we tentatively de�ne red(C) as the 
onstraintobtained from C by repla
ing the o

urren
e of Xj0 byan o

urren
e of Xj . If C did not originally involveXj ,then red(C) is a valid 
onstraint from F . If C did in-volve Xj already, then red(C) 
ontains two o

uren
es

of Xj , whi
h is not allowed by our de�nition. However,the hereditary property of F yields either an equivalent
onstraint C 0 2 F or else the 
onstant fun
tion 0 or 1.In this 
ase we reset red(C) to C 0 or the appropriate
onstant.If � = (C1; : : : ; Cm; w1; : : : ; wm), then de�ne a newgadget �0 = (red(C1); : : : ; red(Cm); w1; : : : ; wm). Cor-respondingly, let ~b0(~a) be identi
al to b(~a) but with bj0eliminated. �0 has one fewer auxiliary variable (Xj0never o

urs in �0).By 
onstru
tion, �0(~a;~b0(~a)) � �(~a;~b(~a)), so �0 sat-is�es the gadget-de�ning equation (2). (Similarly, forstri
t gadgets �, �0 satis�es (4)). Also, the range of theuniversal quanti�
ation for �0 is smaller than that for�, therefore �0 satis�es inequalities (1) and (3). If 
on-stants are produ
ed, subtra
ting them from both sidesof the gadget-de�ning inequalities (1{4) produ
es an(��w)-gadget, where w is the total weight on 
lausesrepla
ed by 1's. 2A
knowledgementsWe thank Howard Karlo� and Uri Zwi
k for bringingboth errors to our attention.Referen
es[1℄ H. Karlo� and U. Zwi
k. Personal 
ommuni
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. of the 37th Annual IEEESymposium on Foundations of Computer S
ien
e,1996.


	focs-print.pdf
	errata

