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1 Introduction
We introduce a new approach to the study of dynamic (or

continuous) packet routing, where packets are being contin-
uously injected into a network. Our objective is to study
what happens to packet routing under continuous injection
as a function of network load, for various queueing policies.
Our approach is based on the adversarial generation of pack-
ets, so that the results are more robust in that they do not
hinge upon particular probabilistic assumptions.

In suggesting a new approach to studying a classical phe-
nomenon, it is important to give careful consideration to all
the relevant previous work in packet routing, queueing the-
ory and probabilistic analysis. We give a more detailed ac-
count of previous work in Appendix A, to permit comparison
with our work. Here we summarize the salient features of
prior work in order to motivate our model. Most prior work
on packet routing has been in the static model in which there
is a fixed initial set of packet routing requests; when these
packets are delivered, the problem is considered solved and
the analysis stops there. Static packet routing is a basic prob-
lem in the context of parallel computation models, but for the
setting of communications networks it is essential to study
the case of continuous injection of packets. While it is pos-
sible to try modelling such continuous problems statically,
by delaying the entry of packets using synchronization bar-
riers, a much more natural approach is to analyze standard
(local–control) routing algorithms in this fully dynamic set-
ting. Nearly all previous work in this regard has used proba-
bilistic models for the generation (and sometimes, delivery)
of packets. Such work can broadly be classified into:
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1. Queueing-theoretic approaches, where packets are gen-
erated by a Poisson injection process; frequently, each
packet is assumed to have a random destination. A
common assumption in queueing theory is that the time
for a packet to pass through a server (i.e., an edge) is ex-
ponentially distributed whereas for packet routing this
time is a constant. This apparently slight difference
poses a world of subtle difficulties in adapting queueing
theory to continuous packet routing.

2. Probabilistic analyses in which a Poisson or Bernoulli
process generates packets bound for random destina-
tions; the passage time through an edge is a constant as
in packet routing (see [9], for example). The resulting
analyses are technically difficult, and yield results that
are specific to particular networks and queueing disci-
plines; moreover, as in queueing-theoretic approaches,
they rely heavily on the underlying probabilistic as-
sumptions which determine the injection process.

We present our new model in the following section. In
contrast to the two classes above, we concentrate on constant
service times and adversarial packet generation and choice
of destination. Section 2 summarizes our results. We see that
even in such a worst-case setting we are able to obtain strong
results for a variety of networks and queueing policies.

1.1 The New Model

A network is a directed graph. Time proceeds in discrete
steps. A packet is an atomic entity that resides at a node at
the end of any step. A packet must travel along a path in
the network from its source to its destination, both of which
are nodes. When the packet reaches its destination, we say
that it is absorbed. During each step, a packet may be sent
from its current node along one of the outgoing edges from
that node. At most one packet may travel along any edge of
the network in a step. Any packets that wish to travel along
an edge e at a particular time step but are not sent wait in
a queue for edge e. The delay of a packet is the number of
steps which the packet spends waiting in queues.

At each step, an adversary generates a set of requests. In
this paper a request is a set of paths, each path specifying the
route followed by a packet. We say that the adversary injects
a set of packets when it generates a set of requested paths.
We restrict ourselves to the case in which the path traversed



by each packet is fixed at the time of injection, so as to be
able to focus on the queueing aspects of the problem.

Clearly an unrestricted adversary can flood the network
with packets, demanding more bandwidth than available.
One approach is to restrict the set of paths generated by the
adversary at each step to be a path packing — the paths re-
quested at a step must be edge-disjoint. A more stringent re-
striction might stipulate that at most one packet be injected
at each step. In general, we have a collection of allowed
requests; at each step, the adversary must pick one request
(= set of paths) from this collection. In this paper, we will
concentrate on the cases of path packings and single path
requests.

Our model permits an adversary that can demand network
bandwidth up to a prescribed load factor, or injection rate.
For ε > 0, we say that an adversary as above injects at rate
1 − ε if it generates requests subject to the following addi-
tional restriction: during any r consecutive steps, the adver-
sary can make at most dr(1−ε)e requests. As a special case,
we say that an adversary injects at rate 1 if the adversary
makes one request per step. For path packing requests, our
notion of injection rate is an intuitive measure of the fraction
of network bandwidth demanded by the adversary.

We also consider stochastic adversaries. A stochastic ad-
versary is also specified by a request collection and a rate;
now, however, the adversary has a probability distribution
over the power set of its request collection, and at each step
draws a set of requests from this distribution. We say that a
stochastic adversary injects at rate 1−ε if the expected num-
ber of requests injected at any step is at most 1− ε. We also
define the variance of the adversary to be the variance of the
number of requests injected per step. Note that this model is
very general; as a special case it clearly subsumes the case
of a fixed input distribution at each network node, and it al-
lows the adversary to adaptively modify the distribution at
each time step. To differentiate stochastic adversaries from
those in the previous paragraph, we will call the adversaries
defined above deterministic adversaries.

A queueing policy specifies, for each edge e and each time
step, which packet (amongst those waiting) is to be moved
along edge e. A greedy policy always specifies some packet
to move along edge e if there are packets waiting to use edge
e. In this paper we restrict ourselves to deterministic greedy
policies Q.

Our main goal will be to prove the stability of a given
queueing policy on various networks and against various ad-
versaries. We will say that a given queueing policy is stable,
on a fixed network, against a fixed deterministic adversary,
if there is a constant C (which may depend on the network
size) such that the number of packets in the system at all
times is bounded by C. We say that the policy is stable
against a stochastic adversary if the probability of having
more than k packets in the system goes to zero as k goes to
infinity.

2 Results
It is tempting to conjecture that for every graph G, every

greedy queueing discipline is stable for a deterministic ad-
versary under injection rate ρ < 1 (or even ρ = 1). Our first
result shows this does hold for a large class of graphs.

(1) If G is a tree or a DAG, then every greedy queue-
ing discipline is stable for every deterministic adversary with
rate at most 1 on path packings.

Unfortunately this result does not extend to the case of
graphs with directed cycles, as our next result shows.

(2) Let G be a directed cycle on n ≥ 3 nodes. Then for
the greedy queueing disciplines FIFO and longest-in-system
(LIS), there exist deterministic adversaries with rate 1 on
single paths for which these policies are unstable.

Interestingly, the result is not universal over all greedy
queueing disciplines, as indicated by the next result.

(3) If G is a directed cycle, then for every adversary with
injection rate at most 1 on path packings, the Furthest-to-Go
(FTG) policy is stable.

For the LIS discipline, which fails at rate 1, we identify
the exact threshold at which it is stable by showing

(4) IfG is a directed cycle, then for every ε > 0 and every
adversary with injection rate at most 1− ε on path packings,
the LIS policy is stable.

We also show that any greedy discipline is stable on the
directed cycle for a smaller injection rate of single paths.

(5) Let P be an arbitrary greedy queueing discipline, and
G the directed cycle. Then P is stable against any adversary
with injection rate at most 1

2 − ε on single paths.
Given this sensitivity to both the queueing discipline and

the underlying network our next focus is whether there exists
a queueing discipline which is stable for all networks. We
show that LIS has this property, against an adversary that
can inject single shortest paths.

(6) Let G be an arbitrary directed graph and ε > 0. Then
LIS is stable against any deterministic adversary with rate
1− ε whose request set consists of single shortest paths.

All our results for injection rates bounded away from 1
also hold for stochastic adversaries of bounded variance. In
particular, results (4), (5), and (6) extend as they are, and
results (1) and (3) extend for the case of injection rate at
most 1− ε.

The results above show that for stochastic adversaries of
bounded variance, a number of general statements can be
made based on rate alone. Indeed, it becomes natural to
consider whether some form of the following question might
hold in the affirmative: Is every greedy queueing discipline
on every graph G stable against every stochastic adversary
of bounded variance injecting path packings at rate 1 − ε?
Awerbuch and Leighton [2] have recently reported a nega-
tive resolution to this question, at this level of generality; see
Section 6 for more details.

In addition to providing a good technique for obtaining
stability results, the adversarial model (at least in the deter-



ministic case) is able to distinguish between different queue-
ing disciplines. This sensitivity to the queueing discipline
is not unnatural, yet prior queueing theoretic results do not
seem to highlight this. Perhaps this is a consequence of
the “Poisson arrival and exponential service time” models,
which intuitively tend to make packets within queues indis-
tinguishable from each other. A different reason explaining
the sensitivity of our model to the queueing discipline may
be the fact that it is the “determinism” of the adversary which
allows for it.

While we have restricted ourselves to constant service
times throughout this investigation, it is clear that the adver-
sarial injection model can be applied to the case of queueing
networks with servers having general service time distribu-
tion. It seems plausible that many of the results presented
here could be extended to such models.

The remainder of the paper is structured as follows. Sec-
tion 3 discusses our results for the ring. Sections 4 and 5
discuss our results for trees, DAGs, meshes, and general net-
works. We conclude in Section 6. A brief overview of pre-
vious work can be found in Appendix A.

3 The Ring
Throughout this section, our underlying graph G will be

the n-node cycle, with vertices numbered 0, . . . , n − 1. As
noted above and in Appendix A, even this case is quite non-
trivial, both from the point of view of classical queueing the-
ory and within our setting. In the first part of this section, we
will consider arbitrary greedy protocols, and prove result (5)
and its stochastic counterpart. We next show that the ring is
not stable under all greedy disciplines at rate 1 (result (2)).
We then show the stability of two specific queueing disci-
plines, LIS and FTG, by proving results (3) and (4) at the
end of the section.

3.1 Arbitrary Greedy Protocols

First, we consider a deterministic adversary.
Theorem 1 Let G denote the n-node cycle, P an arbi-

trary greedy protocol, and A an arbitrary deterministic ad-
versary that injects single paths at rate 1

2 − ε, for some
ε > 0. Then P is stable, and there are never more than
O(ε−1(n+ ε−1)) packets in the system.

Proof: We proceed by defining an appropriate potential
function and showing that it decreases once the number of
packets in the system is large enough. Since the adversary
injects at rate 1

2 − ε, we can fix an r so that r
2r+1 ≥

1
2 − ε

and conclude that no more than r packets will be injected in
each consecutive interval of 2r + 1 time steps.

We define the length `v of a node v to be 1 if it is empty,
and otherwise the number of packets it contains. To define
our potential function, we need to impose an artificial “or-
der” on the packets in each queue; let us do this using some
arbitrary lexicographic order on the packets. Given this, we

define the weight wp of a packet p to be the sum of the
lengths of all nodes lying strictly between it and its desti-
nation, plus the number of packets ahead of it in the order at
its current node. Finally, for technical reasons, we also add
to each packet weight an initial “overhead” of 2r+ 1, which
it “claims” when it is absorbed. Our potential Φ is the sum
of all weights of all packets.

We can picture an interval of 2r+1 consecutive time steps
composed of a sequence of single time steps, as follows.

(1) A may inject 0 or more packets.
(2) Packets move for one step according to the protocol P

and are absorbed (if they reach their destination).
It will turn out to make the analysis easier if we break step

(2) into the following two parts — it is clear that the step–
by–step behavior of the system is left unchanged:

(2a) A re–arranges the order of each queue arbitrarily.
(2b) Packets move according to the FIFO discipline (the

packet at the head of each queue leaves and enters the back
of the queue at which it arrives); packets reaching their des-
tination are absorbed.

Let I be an interval of 2r + 1 consecutive time steps. We
now analyze the net change in Φ over steps of type (1), (2a),
and (2b) in the interval I . Suppose there are currently k
packets in the system.

During I , at most r packets are injected in steps of the
form (1). The weight of each is at most (k+ r+ n) + (2r+
1), the latter term coming from our definition of “overhead.”
Also, the injection of p can increase the weight of every other
packet by at most 1 (including others that were just injected).
Thus Φ increases by at most

r(k + 3r + n+ 1) + r(k + r) = 2rk + rn+ 4r2 + r. (1)

during I due to steps of type (1).
Now consider steps of type (2a). We claim that Φ doesn’t

change here. Namely, consider a given queue, and imagine
that the adversary re-arranges it by a sequence of consecutive
transpositions. Each transposition increase the weight of one
packet by exactly one, and decreases the weight of another
by exactly one; so there is no change.

In each step of type (2b), we claim that the weight of each
unabsorbed packet decreases by at least 1. Consider an un-
absorbed packet x. The weight of x is equal to the number
of packets between x and its destination dest(x), plus the
number of empty queues between x and dest(x). Let Q de-
note the queue just in front of dest(x). Now the set of empty
queues between x and dest(x) can be partitioned into con-
tiguous intervals, and on the movement phase, each interval
shrinks at its back (as the full queue bordering it sends a
packet forward) and may grow at its front (if the full queue
bordering it in front has only one packet). Thus, the number
of empty queues does not increase. Similarly, the number of
packets between x and dest(x) does not increase, so we just
have to argue that one of these two terms decreases. Con-
sider the following two cases.



(a) Q is non-empty. Then a packet in Q will pass across
dest(x), and decrease the number of packets between x and
dest(x).

(b) Q is empty. Then the interval of empty queues be-
tween x and dest(x) that contains Q diminishes by 1, and
so the number of empty queues between x and dest(x) di-
minishes by 1.

Note that absorption can’t increase the length of a node
and so does not increase Φ.

Thus, we have shown that in steps in I of type (2b), any
packet that moves the full 2r + 1 times will decrease its
weight by 2r + 1. But any packet that does not move the
full 2r + 1 times must have been absorbed during this time
step, so its weight goes down by 2r + 1 as well. Thus Φ
goes down by at least k(2r + 1) = 2rk + k. Adding this to
equation (1), we see that the potential drops by at least

k − rn− 4r2 − r. (2)

This will be positive once k is Ω(ε−1(n + ε−1)); and it is
not hard to argue from Equation (2) that k will never exceed
O(nε−1 + ε−2). 2

We note that this result (as well as our other results for
deterministic adversaries of rate ρ < 1) hold in the following
stronger model: for a parameter T , the adversary can make
at most bρT c requests over any interval of T steps. The
proof above carries through directly, using T in place of the
number 2r+1; the resulting bound on the number of packets
in the system is O(ε−1(n+ T )).

It is now remarkably easy to obtain essentially the same
bound for a stochastic adversary — recall the class of such
adversaries includes, as very basic special cases, the stan-
dard probabilistic models from queueing theory.

Theorem 2 Let G denote the n-node cycle, P an arbi-
trary greedy protocol, and S an arbitrary stochastic adver-
sary that injects paths at rate 1

2 − ε and variance bounded
by θ. Then P is stable against S.

Proof: As in the previous proof, we break a single time
step into steps (1), (2a), and (2b). Now, since we are in the
stochastic model, the adversary A performs a single “injec-
tion” in step (1), and packets then move only once.

We use the same potential function Φ as before, except
that we do not add an “overhead” term to the weight of each
packet. Consider the expected change in Φ in a single time
step; suppose there are currently k packets in the system.

In step (1), suppose that X packets are injected, where
X is a random variable with expectation at most 1

2 − ε and
variance at most θ. By analogy with the previous proof, the
expected increase in potential is at most

E[X(k +X) +X(k + n+X)]
≤ EX(2k + n) + 2EX2

≤ (1− 2ε)k + (
1
2
− ε)n+ 2θ + 2.

Now, again there is no change to Φ in step (2a), and it goes
down by at least k − n in step (2b). Thus, the expected net
change to Φ is

−2εk + (
3
2
− ε)n+ 2θ + 2. (3)

Let Φt denote the value of the potential after t steps, and
β = 4

(
n
ε + θ

ε

) (
n+ n

ε + θ
ε

)
. Then if Φt ≥ β, we can con-

clude that there are at least 2(n+θ)ε−1 packets in the system
at time t, and hence (assuming n ≥ 3) by (3) that

E[Φt+1 | Φt] ≤ Φt −
11
2
. (4)

Equation (4) now allows the use of Martingale inequalities
(given a bound on the variance of the edge capacity of injec-
tions), to yield a result indicating that the probability that the
number of packets in the system is equal to 2(n+ θ)ε−1 + j
goes down exponentially with j. In particular, it implies the
stability of P against the adversary S. 2

While it is true that a very general class of potential–
function arguments for deterministic adversaries yield anal-
ogous results for stochastic adversaries, we do not attempt
to formalize this principle at the present time.

3.2 Some Instability Thresholds
Clearly every protocol is unstable against a determinis-

tic adversary that is allowed to inject single paths at rate
1 + ε, for any ε > 0. Here we consider the following ques-
tion: what can be said about the stability of greedy protocols
against deterministic adversaries that inject paths at rate ex-
actly 1?

The answer, it turns out, depends on the protocol and on
the underlying network. We show in Section 3.4 that the Fur-
thest to Go protocol (priority to the packet with the greatest
distance to its destination) is in fact stable at injection rate
1 for path packings on the ring, and in Section 5 we show
that any greedy protocol is stable at injection rate 1 for path
packings on any directed acyclic graph. Here, on the other
hand, we exhibit adversaries with injection rate 1 that cause
instability on the ring for the Longest-in-System protocol
(priority to the packet that was injected longest ago) and the
FIFO protocol (queues are maintained in First–Come–First–
Served fashion).

Theorem 3 There is a deterministic adversary A that in-
jects single paths at rate 1, such that LIS on the ring is un-
stable against A. There is a deterministic adversary A′ that
injects single paths at rate 1, such that FIFO on the ring is
unstable against A′.

Proof: We consider only the LIS case here; the construc-
tion for FIFO is very similar.

We describe the adversary A. For simplicity of presenta-
tion, assume that each path requested by A will be a “self-
loop” — a path which traverses all the edges of the ring in
sequence. (In particular, our self loops will move from i to



i + 1 to i + 2, not the other way.) It is not difficult to refine
this argument so that the adversary injects shorter paths.
A works as follows:

• For k = 1, 2, 3, . . .

– Inject kn self-loops in sequence at node 1.

– Inject kn self-loops in sequence at node 0.

It is easy to verify by induction that at the end of iteration
k of this process, there will be one packet at node 1 and
kn−1 packets queued at node 0. Thus the number of packets
becomes unbounded. 2

3.3 The Longest-in-System Protocol

In the next two parts, we obtain tight bounds for two
natural greedy protocols, namely LIS and FTG (defined in
the previous section). Here we prove a result for LIS that
strengthens the bound of Theorem 1: we allow an adversary
of rate 1 − ε, and we allow its request set to consist of path
packings, as opposed to single paths. Given Theorem 3, this
result is essentially tight.

Theorem 4 Let G denote the n-node cycle and A an ar-
bitrary deterministic adversary that injects path packings at
rate 1 − ε, for some ε > 0. Then LIS is stable against A,
and there are never more than O(ε−1(n2 + ε−1)) packets in
the system.

Proof: As usual, we choose r large enough so that r
r+1 ≥

1 − ε; we focus on an interval I of r + 1 consecutive time
steps; and a single time step will consist of the following two
steps.

(1) A may inject 0 or more path packings.

(2) Packets move according to LIS and are absorbed.

To prove stability, we first modify the potential function as
follows. We first assign a color to each packet in the system,
so that two packets receive the same color if and only if they
were injected by A as part of the same path packing. Thus,
a single “color class” consists of all the packets in one path
packing.

If p is a packet, then we define wp to be the total time that
would be required for p to be absorbed under LIS if there
were no future injections; we add an overhead of r+1 to wp
that is reclaimed on absorption.

If γ is a color class, we define

cγ = max
p∈γ

wp.

Now our potential function is defined as Φ =
∑
γ cγ . So our

potential function is a sum of the maximum time till absorp-
tion (plus the overhead term) in each color class. One point
to note is the following: if p is a packet that has already been
absorbed, then wp = 0; and if γ is a color class all of whose

packets have been absorbed then cγ = 0. We say that a color
class γ is active if cγ > 0.

Suppose there are currently m active colors in the system.
Then the decrease of Φ over steps in I of type (2) is r + 1
per active color, for a total decrease of at least

mr +m.

The difficulty is in showing that the increase in Φ in steps of
type (1) can be bounded by a function ofm, and not just by a
function of the total number of packets in the system (which
may be much larger).

For this, we need to prove the following strengthening of
a result of Mansour and Patt–Shamir [10] in the case of the
ring. The result of [10] states that under any greedy packet–
routing discipline, in any network, the total time for a packet
to reach its destination is bounded by the distance to its des-
tination plus the total number of packets in the system. Here
we show

Claim 1 Let G, as above, denote the n-node ring. Let p
be a packet at distance d from its destination. If there are no
future absorptions, then the time until absorption of p is at
most d+m−1, wherem denotes the number of active color
classes.

Proof: Our proof is based on a construction from [10]; we
sketch it briefly in the next paragraph and refer the reader to
this paper for more extensive details.

[10] defines a time path to be a function τ mapping time
steps to packets, in such a way that if τ(t) 6= τ(t + 1), then
the two packets τ(t) and τ(t + 1) reside at the same node
at time t + 1. We say that the function τ is “following” the
packet τ(t) at time t. A time path is said to be blocked by
a packet q at time step t if at time t, q traverses the edge for
which τ(t) is waiting. Now suppose a time step t′ satisfies
the property that a packet q blocks τ at time t′, and q meets
τ at some time t′′ > t′. Moreover, suppose that t′ is mini-
mal with this property. Then we define Switch(τ) to be the
time path obtained by following τ(t) unless t′ ≤ t < t′′, in
which case it follows the packet q; that is, Switch(τ)(t) = q
for t′ ≤ t < t′′ and is equal to τ(t) otherwise. Consider
taking an initial time path which follows a packet p from
start to destination, and then repeatedly invoking the Switch
operation as long as it is applicable. [10] shows that such a
sequence of Switches must terminate; when it does, the re-
sulting time path is never blocked by the same packet twice,
and the number of nodes it traverses remains the same.

For our purposes, we need to define an operation that
keeps track of color classes as well. First we extend the
definition of time path as follows. Let z denote a special re-
served symbol, P the set of packets, and V the set of nodes
of the cycle. A time path is now a function that maps a time
step to a pair from the Cartesian product (P ∪ {z}) × V ,
subject to the following conditions.

(i) If p ∈ P and τ(t) = (p, v), then p resides at node v at
time t.



(ii) If τ(t) = (p, v) and τ(t+ 1) = (q, w) then

(a) If p ∈ P and p 6= q, then p resides at node w at
time t+ 1.

(b) If p = z, then (v, w) is an edge of G.

Essentially, we now explicitly keep track of the node at
which a time path resides, as well as the packet it is follow-
ing. Conditions (i) and (ii)(a) are straightforward; condition
(ii)(b) in effect says that the time path cannot be delayed as
long as it is following the special symbol z.

Now consider the packet p in the statement of the claim,
and suppose we start with the time path that simply follows p
and then repeatedly invoke the Switch operation until it is no
longer applicable. Let τ be the resulting time path. Suppose
that at time t′, τ is blocked by a packet q, and at time t′′ it
meets a packet s, and q and s belong to the same color class.
Again, suppose that t′ is minimal with this property. In this
situation, we define the following new time path, which we
denote by S2(τ):

(i) Follow τ until time t′−1, just before τ is blocked by q.

(ii) Then follow packet q until it is absorbed (which cannot
come after the origin of s, since they belong to the same
color class).

(iii) Then follow the special symbol z forward one node per
time step.

(iv) Now, since Switch was not applicable, q does not meet
τ again after time t′. Thus z begins strictly ahead of
τ but not ahead of s. But τ eventually meets s; since
z moves forward one node per time step, it reaches s
before τ does.

When z first reaches s, S2(τ) begins following s.

(v) Finally, when τ first meets s, S2(τ) resumes following
τ .

Our construction is thus to repeatedly perform Switch
whenever it is applicable, and otherwise to perform the S2

operation if it is applicable. We must show that this se-
quence of operations terminates; here, the argument is very
similar the one in [10]. For a time path τ , define ρ2(τ) to
be the minimal time step at which Switch is applicable to
τ , or the minimal time step at which S2 is applicable to τ
if Switch is not applicable; and it is undefined otherwise.
Suppose that our sequence of transformations produces time
paths τ0, τ1, τ2, . . .. We now argue that if there are indices
i < j such that ρ2(τi) = ρ2(τj), then there is a k between i
and j such that ρ2(τk) < ρ2(τi). To see this, note that τi+1 is
not delayed at time step ρ2(τi), but that τj is; thus, a Switch
or S2 operation must have been invoked before time ρ2(τi)
on some τk between τi+1 and τj . Finally, by an argument in
[10], this implies that the sequence τ0, τ1, . . . is finite.

So when this sequence of transformations terminates, we
have a time path τ which is only blocked at most by every
color class but one (which doesn’t block it at all). Since τ
either crosses an edge or is blocked at every time step in the
interval before p is absorbed, this implies the claimed bound.
2

From this claim, Theorem 4 follows easily, since the in-
crease in Φ in steps of type (1) is now seen to be at most

r(m+ n+ r) + r(r + 1) = rm+ rn+ 2r2 + r.

2

Using the technique of Theorem 2, we obtain
Corollary 5 Let G denote the n-node cycle and S an ar-

bitrary stochastic adversary that injects path packings with
rate 1−ε, for some ε > 0, and variance bounded by θ. Then
LIS is stable against S.

3.4 The Furthest-to-Go Protocol

In this section, we prove that the FTG protocol is stable
for the ring, first for injection of path-packings by a deter-
ministic adversary at injection rate 1, and then for injection
of path-packings by a stochastic adversary at injection rate
1−ε. For simplicity, we assume that all packets are traveling
in a clockwise direction.

To prove this, we define a quantity ψ(i, j, t) for 0 ≤ i, j ≤
n−1. Throughout this section, all arithmetic on node names
is mod n. The quantity ψ(i, j, t) denotes the number of
packets at time t in the queues in nodes i, i+1, . . . , j (inclu-
sive) which need to cross the edge from node i − 1 to node
i. We assume that this quantity is measured at the end of
time step t (that is, at time step t, packets are inserted, then
moved, after which the value of ψ is determined). We first
prove the following lemma.

Lemma 1 Assume the system is empty at time 0. For any
time t ≥ 0, ψ(i, j, t) ≤ j − i.

Proof: We first argue that the only way ψ(i, j, t) can in-
crease is due to the insertion of packets and can only go up
by one per insertion of a path-packing. Any packet entering
the queue at node i from the queue at i − 1 will not need
to traverse the edge (i − 1, i) again, and thus is not counted
in ψ(i, j, t). Additionally, only one packet per path-packing
may traverse (i− 1, i), and so ψ(i, j, t+ 1)−ψ(i, j, t) ≤ 1.

We now prove the lemma by double induction, the outer
induction on j − i, and the inner on t. By hypothesis
ψ(i, i, 0) = 0. Assume ψ(i, i, t − 1) = 0. Then ψ(i, i, t) =
0, since by the FTG protocol any packet inserted at time t
at node i that needs to cross the edge (i − 1, i) must have
the highest priority and is moved at time t: no other packet
in the queue can have more than distance n to go, and none
currently has distance n to go.

Now assume that ψ(i, j, t) ≤ j−i is true for any j−i < k
and any t. We claim that it is true for any i, j such that
j − i = k and any t. Certainly ψ(i, j, 0) = 0 is true by



hypothesis. Now assume that ψ(i, j, t − 1) ≤ j − i. We
consider two cases. If ψ(i, j, t− 1) < j− i then the claim is
proven sinceψ can increase by at most one. In the other case,
ψ(i, j, t− 1) = j − i. Then ψ(i, j, t) ≤ j − i+ 1. Suppose
(by way of contradiction) that ψ(i, j, t) = j − i + 1. By
assumption we know that ψ(i, j − 1, t) ≤ j − i− 1, so that
there are at least ψ(i, j, t)−(j− i−1) ≥ 2 packets at node j
at the end of time t that must traverse the edge (i− 1, i). At
most one of them could have moved to node j during time
step t, so at least ψ(i, j, t) − (j − i) ≥ 1 were present in
the queue at node j when packets were moved. But if any
such packets were present, one would have had the highest
priority at node j, and it would have been moved to j+ 1 by
the FTG protocol, and therefore ψ(i, j, t) ≤ ψ(i, j, t− 1) ≤
j − i. 2

Notice that the proof only required ψ(i, j, 0) ≤ j − i,
rather than the stronger assumption of an empty system at
time 0. The theorem below follows immediately from the
lemma, since the total number of packets in the system at
time t can be upper bounded by

∑n−1
i=0 ψ(i, i − 1, t), which

will be no greater than n(n− 1).

Theorem 6 Let G denote the n-node cycle and A an ar-
bitrary deterministic adversary that injects path packings at
rate 1. Then FTG is stable against A, and there are never
more than n(n− 1) packets in the system.

We now extend the above theorem to the case of a stochas-
tic worst-case adversary with injection rate 1− ε. Our main
theorem here is:

Theorem 7 Let G denote the n-node cycle and S an ar-
bitrary stochastic adversary that injects path packings with
rate 1−ε, for some ε > 0, and variance bounded by θ. Then
FTG is stable against S.

We prove this by introducing a potential function which
attempts to capture the intuition of the proof of Lemma 1.
The potential is defined in terms of the quantities ψ(i, j, t) as
follows: φ(i, j, t) = max{ψ(i, k, t) + (j − k) : i ≤ k ≤ j}.

Lemma 2 For all i, and for all t, the quantity φ(i, i+n−
1, t) satisfies the following Martingale property: If φ(i, i +
n−1, t−1) ≥ n then E[φ(i, i+n−1, t)|φ(i, i+n−1, t−
1)] ≤ φ(i, i+ n− 1, t− 1)− ε.

Proof: We divide the time step from the beginning of t
(or the end of t − 1) to the end of t into two sub-phases. In
the first step we consider the injections. In the second we
consider the routing progress. Let φ−1, φ 1

2
, and φ refer to

the potential φ(i, i+n−1, t) at the beginning, the middle and
the end of the time step t respectively. Define ψ−1(i, k, t)
and ψ 1

2
(i, k, t) similarly. We assume that φ−1 ≥ n which

implies φ 1
2
≥ n.

We argue as in the non-stochastic case, that as packets
are inserted at the beginning of the time step t, the potential
increases by at most the number of inserted packets at time
step t which wish to cross the edge i − 1 to i. Since the

expected number of insertions is 1− ε, we conclude that

E[φ 1
2
]− φ−1 ≤ 1− ε. (5)

For the second sub-phase, let k be any index which
achieves ψ 1

2
(i, k, t) + i + n − 1 − k = φ 1

2
≥ n. We will

show for any such k that ψ 1
2
(i, k, t) = ψ(i, k, t) + 1 and in

turn we get φ ≤ φ 1
2
− 1. We assert that for any such k, there

is at least one packet queued at the node k at the middle of
time step t which wishes to cross the edge i − 1 to i. For
k 6= i, this follows or else ψ 1

2
(i, k, t) + i + n − 1 − k <

ψ 1
2
(i, k− 1, t) + i+ n− 1− (k− 1). In the case k = i, we

claim our assumption that φ 1
2
≥ n guarantees there must be

at least one packet at node i which wishes to cross the edge
i−1 to i. Otherwise ψ 1

2
(i, i, t)+ i+n−1− i = n−1. Thus

for every such k, one packet needing to cross edge (i− 1, i)
is moved from k to k + 1 when packets are routed. This
implies that ψ 1

2
(i, k, t) = ψ(i, k, t) + 1. We conclude that

φ ≤ φ 1
2
− 1. (6)

From (5) and (6) we get that E[φ] ≤ φ−1 − ε, provided
φ ≥ n. 2

The lemma now allows us to use Martingale type tail in-
equalities as in the proof of Theorem 2. Theorem 7 now
follows.1

4 Results for General Networks
Our purpose here is to note the following partial general-

ization of Theorem 4 to the case in which G now denotes
an arbitrary directed graph. Here, we have a determinis-
tic adversary that injects single shortest paths at rate 1 − ε.
We use the same potential function as in the proof of Theo-
rem 4. Note that now each packing consists of single packet,
so we can apply the theorem of Mansour and Patt–Shamir
[10] directly to conclude that the potential drops whenever
k = Ω(ε−1 · diam(G) + ε−2). Thus we can show

Theorem 8 Let G denote an arbitrary directed graph of
diameter d, and A denote an arbitrary deterministic adver-
sary that injects single shortest paths at rate 1− ε, for some
ε > 0. Then LIS is stable against A, and there are never
more than O(ε−1(d+ ε−1)) packets in the system.

Corollary 9 Let G denote an arbitrary directed graph
and S an arbitrary stochastic adversary that injects short-
est paths with rate 1 − ε, for some ε > 0, and variance
bounded by θ. Then LIS is stable against S.

5 Meshes, Trees, and DAG’s
An argument that builds on Lemmas 2 and 4 in

Leighton [9] yields the following theorem.
1The proof of Lemma 2 may appear to be independent of the variance of

the stochastic adversary. Actually, this is not really the case. The variance
does show up in the application of the Martingale tail inequality and it is still
the case that our bound will not hold for an adversary with infinite variance.



Theorem 10 For one-bend routing on the mesh, the
furthest-to-go discipline is stable for any adversary that in-
jects path packings at rate 1− ε.

An induction argument similar in spirit to the proof of
Theorem 6 allows us to show that any greedy protocol is
stable on a directed acyclic graph against the strongest type
of deterministic adversary.

Theorem 11 Let G denote an arbitrary directed acyclic
graph, P an arbitrary greedy protocol, and A an arbitrary
deterministic adversary that injects path packings at rate 1.
Then P is stable against A.

Proof: For e an edge of G, let Qt(e) denote the queue at
the tail of edge e at time t, and let Dt(e) denote the set of
packets at time t that are eventually destined to cross edge
e. Finally, G(e) is a multiset of edges defined inductively as
follows.

• If the tail of e is a sink, then G(e) = {e}.

• Otherwise the tail of e is entered by edges f1, . . . , fk;
we define G(e) to be the multiset union of
{e}, G(f1), . . . , G(fk).

We claim that for all t ≥ 1 and all e ∈ G, we have

|Dt(e)| < |G(e)|. (7)

The theorem will then follow, since this gives an absolute
upper bound on the number of packets in the system.

The proof of this claim proceeds by induction on t, and
for t by induction on |G(e)|. The claim clearly holds when
t = 1 and when |G(e)| = 1. Now let t > 1, and e emanate
from a non-sink, so that it is entered by edges f1, . . . , fk. By
the inductive definition of G(e), we have

|G(f1)|+ ...+ |G(fk)|+ 1 = |G(e)|.

Also, Dt(e) can only increase by one when a path-packing
is inserted. So if Dt−1(e) < |G(e)| − 1, the induction will
hold, and if Qt−1(e) is non-empty, then a packet will cross
edge e and offset the increase due to injection.

Finally, if |Dt−1(e)| = |G(e)|− 1, and Qt−1(e) is empty,
thenDt−1(e) can be written as the union of setsD1, . . . , Dk,
where the packets in Di must cross edge fi. Thus we have

|D1|+ · · ·+ |Dk| ≥ |Dt−1(e)|,

and also
|Dt−1(fi)| ≥ |Di|.

So by the pigeonhole principle,

|Dt−1(fi)| ≥ |G(fi)|

for some i, contradicting the induction hypothesis. 2

The upper bound on the number of packets in the system
that follows from this proof is exponential in the number of
edges of G; we have a lower bound showing that it can be
quadratic. For tree networks, the same proof gives a much
better bound; here, the sets G(e) all have linear size.

6 Conclusion
We have introduced a new approach for the study of

queueing networks. We can view continuous packet rout-
ing as one non-trivial application area in which service time
distributions are all identical and independent of the class
of service (in this case, one class per path) as well as in-
dependent of the number of jobs (i.e., packets) waiting for
service at any edge. Clearly extending the adversarial ap-
proach to more general queueing networks offers additional
challenges.

As was stated in the introduction, prior work on packet
routing that assumed constant time per edge traversal also
usually assumed random destinations. Our goal (and the
goal of Harchol-Balter and Black [3]) was to extend these
results to specified destinations and paths. For stability, it is
obviously a necessary condition that the arrival rate of pack-
ets is such that the induced arrival rate on any edge is less
than one. Our primary open question, then, is to provide a
general sufficient condition for stability (in our adversarial
model, or in any of the more traditional models).

As mentioned in Section 2, recent work of Awerbuch and
Leighton [2] shows that in this adversarial model, stability
cannot be determined based on rate alone. In particular, they
report the following results: (i) the Newest–In–System dis-
cipline is stable for every network and every adversary with
rate ρ < 1 (albeit with an exponential upper bound on queue
size); and (ii) there exists a network, with deterministic and
stochastic adversaries of rate ρ < 1, for which some greedy
queueing discipline is not stable. They also indicate that
their packet–based multicommodity flow algorithm [1] may
be of use in designing queueing disciplines for the adversar-
ial model.

It remains an interesting open question to find some set
of general conditions (depending, for example, on the rate,
queueing discipline, and underlying network) that are suffi-
cient to guarantee stability. Further work is also needed to
better bound queue sizes and packet delays, and to under-
stand specific networks such as arrays and hypercubes.
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A Appendix: Brief overview of previous work
Queueing theory is a well developed subject of fundamen-

tal importance to computer science, providing the mathemat-
ical foundation and the main analytical tools for the perfor-
mance evaluation of computer systems. As clearly articu-
lated in a number of recent papers (see [13], [12] and [4]),
queueing theory usually assumes an immediate queueing
discipline — for example, processor sharing — or the as-
sumption that the service times are exponentially distributed.
For routing networks, on the other hand, an edge traver-
sal (which plays the role of a server) takes a fixed constant
amount of time. We will first discuss why replacing ex-
ponentially distributed servers by constant time servers has
thus far been such a stumbling block.

A.1 Basic concepts

We begin with a review of some basic definitions and re-
sults from queueing theory (see, for example, the texts of
Kelly [7] and Kleinrock [6]).

We can view a queueing network as a Markov process
in which the “state” of the system changes whenever there
is an injection or service completion. Here the state of the

network is a vector describing the state of each server; the
state of a server describes the jobs currently waiting (i.e.,
queued) for service as well as the job(s) being serviced and
the remaining time of such service. We say that a queueing
network is stable if this Markov process has a stationary dis-
tribution and call this the equilibrium state. In particular, a
stable network has the property that if N represents the total
number of jobs in the system, then Prob[N > η] limits to 0
as η increases. For our adversarial models, we have defined
stability in terms of this boundedness property (either in an
absolute or probabilistic sense).

When the external arrivals to a server are all generated
by independent Poisson distributions and all of the service
times are exponentially distributed, then the queueing net-
work is an example of a product form network. In addition,
when the queueing discipline is FIFO, the network is called
a classed Jackson queueing network. (The term “classed”
indicates that jobs are partitioned into classes with different
requirements.) Another example of a product form network
is obtained when the servers are continuously operating in a
processor sharing mode; that is, if at any instant of time,
there are k jobs requiring service from a server v having
service rate r, then v is able to serve each of these k jobs
at a rate of r/k. In a product form network, total job ar-
rivals at a server (e.g., new injections plus jobs from else-
where in the network) constitute a time independent (but not
necessarily Poisson) distribution. The salient property of a
product form queueing network is that the equilibrium state
(if it exists) is the product of the equilibrium states of each
server; that is, in a product form network we can consider
each server as if it were an isolated single server with an in-
dependent input distribution (and rate corresponding to the
total arrival rate) and with its given service time distribu-
tion. Characterizations of which networks are product form
can be found in Chandy,Howard and Towsley ([5]). In par-
ticular, for class independent service times, they show that
a network using a FIFO queueing discipline must have ex-
ponentially distributed service times. Thus dynamic packet
routing cannot generally be viewed as a case of product form
networks.

Product form networks are relatively easy to analyze once
one can analyze the total arrival rate at each server. For ex-
ample, in the Jackson network model, suppose the total ar-
rival rate ρv is less than the service rate λv at each server
v. (Here “rate” denotes the mean of the corresponding dis-
tribution.) Then the system is stable and furthermore the
expected number of jobs at each server is ρv/(λv−ρv). Lit-
tle’s Theorem states thatN = T ∗RwhereN is the expected
number of jobs in the system, T is the expected time in the
system andR is the total injection rate into the system. Thus
a bound on the expected number of jobs at each server yields
a bound on the expected time (for a random job) in the sys-
tem.



A.2 Routing on arrays

Before discussing attempts (see [13], [12] and [4]) to ap-
ply queueing theory results to the case of constant time
servers, we note that the first results on dynamic packet rout-
ing did not use queueing theory.

Leighton ([9]) analyzes one bend routing on n × n ar-
rays; the paths in one bend routing are acyclic and in fact
one bend routing on arrays turns out to be easier to analyze
than routing on cyclic networks such as rings. Leighton con-
siders the case where each injected packet has a random des-
tination and packets are injected at each node according to
a Bernoulli distribution with rate α < 4/n. We note that
all the dynamic packet routing results to date concern pack-
ets having random destinations. One of our main goals is
to extend such results to the case where a packet is given a
specified destination and path at the time of its injection.

These assumptions (on the routing scheme, on the injec-
tion rate at each node, and on the fact that packets have ran-
dom destinations) imply that the induced traffic rate on any
edge is less than one (the service rate of each edge). Without
appealing to queueing theory, Leighton is able to provide
a detailed analysis that shows that for the “farthest-to-go”
scheduling discipline at each edge queue, the network is sta-
ble and “with high probability” queue sizes are bounded by
a small constant. Moreover, the expected delay of a packet is
bounded by a constant with high probability. These results
are strengthened in Kahale and Leighton where the same re-
sults are proven for any scheduling discipline. Somewhat
weaker results are derived when the underlying graph is a
ring. For the ring, stability and bounded delay results are
shown for farthest-to-go scheduling. The precise nature of
these packet delay results seems beyond what we can hope
to derive from applying general queueing theory results. On
the other hand, the Leighton and Kahale-Leighton results are
specific to certain networks, utilize the random destination
assumption (although perhaps not in any essential way), and
seem to depend on restricted routing rules.

A.3 Markovian networks

A different approach to network stability and expected
packet delays is taken in Stamoulis and Tsitsiklis [13].
They consider the case of layered, Markovian networks. In
Markovian queueing networks, jobs are indistinguishable
and the the next server taken is a Markov process (i.e., a
probabilistic function of the last server and independent of
previous history). In the context of routing, the Markovian
assumption means that the next edge to be traversed is a
random function of the last edge traversed and is indepen-
dent of the packet identity. They consider such networks
under the assumption of Poisson arrivals. They observe that
for layered Markovian networks the distribution on the net-
work states (i.e., the queue size at each edge) that results
from a network with constant time edge traversal and FIFO

scheduling is statistically dominated by the state distribu-
tion obtained using a processor (i.e., edge) sharing schedul-
ing discipline. They apply this observation to random des-
tination routing in layered networks (e.g., the butterfly) and
in networks which can be layered (e.g., dimension by di-
mension routing to random destinations in the hypercube). 2

Thus bounds on expected queue sizes for constant-time edge
traversal can be inferred from results about the analogous
network which assumes processor sharing for edge traver-
sal. Since the latter assumption results in a product form
network, standard queueing theory analysis can yield con-
stant bounds on expected queue sizes and from this follow
(by Little’s Theorem) bounds on the expected time in the
network.

Harchol-Balter and Black [3] consider the analysis of
packet routing in arrays and toroidal networks with respect
to the Jackson network model. Following similar experi-
ments by Mitra and Cieslak [11] for the Omega network,
Harchol-Balter and Black simulate packet routing on array
networks and conjecture that the queue sizes that obtain un-
der the exponentially distributed edge traversal time assump-
tion are an upper bound for the queue sizes obtained with
constant time edge traversal. Mitzenmacher [12] proves this
conjecture for one bend routing on arrays as follows. He
first observes that the equilibrium state for a network of ex-
ponentially distributed servers with mean service rate 1 is
the same as the equilibrium state for a network of proces-
sor sharing servers with service rate 1 (recall that both are
product form networks) and then applies the Stamoulis and
Tstisiklis results to the case of one bend routing on arrays for
packets with random destinations ( which can be viewed as a
layered Markovian network). Combining these observations
with the total arrival rates calculated by Harchol-Balter and
Black, he derives very precise bounds on the queue sizes and
expected time in system for random packet routing on arrays.
It is tempting to believe that the experiments and conjecture
of Harchol-Balter and Black apply to a much wider context.

However, Harchol-Balter and Wolfe [4] give evidence that
it will not be a simple task to apply the approach in [13]
to the general study of dynamic packet routing. First they
show that the “layered” assumption in [13] is not necessary
as they are able to derive the same results for any Markovian
network. But they also show that without the Markovian net-
work assumption, it is no longer necessarily true that the set
of delays for FIFO with constant time servers is statistically
dominated by processor sharing servers.

2Stamoulis and Tsitsiklis allow a more general, non-uniform, selection
of random destinations than in Leighton and Kahale and Leighton; e.g.,
nearby destinations can be more probable.


