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Abstract

Given a function f mapping n-variate inputs from a finite
field F into F', we consider the task of reconstructing a list
of al n-variate degree d polynomials which agree with f on a
tiny but non-negligible fraction, é, of the input space. Wegive a
randomized al gorithm for solving thistask which accesses f asa
black box and runsin time polynomial in % , nand exponential in

d, provided § isQ(1/d/|F'|). For the special casewhend = 1,

we solve this problem for all ¢ defs ﬁ > 0. Inthis casethe

running time of our algorithmisbounded by apolynomial in %, n
and exponential in d. Our algorithm generalizes a previously
known algorithm, due to Goldreich and Levin, that solves this
task for the casewhen F' = GF(2) (and d = 1).

1 Introduction

We consider the following archetypal reconstruction problem:

Given: An oracle (black box) for an arbitrary function f
F* — F,aclassof functionsC, and a parameter 6.

Output: A list of al functions g € C that agree with f on at
least 6 fraction of the inputs.

Thereconstruction problem can beinterpretedin several ways
within the framework of computational learning theory. First, it
falls into the paradigm of learning with persistent noise. Here
one assumes that the function f is derived from some function
in the class C by “adding” noise to it. Typical works in this
direction either tolerate only small amounts of noise[2, 38, 19,
37] (i.e., that the function is modified only at asmall fraction of
all possibleinputs) or assumethat the noiseisrandom[1, 24, 18,
23,31, 13, 34] (i.e., that the decision of whether or not to modify
the function at any given input is made by a random process).
In contrast, we take the setting to an extreme, by considering a
very large amount of (possibly adversarially chosen) noise. In
particular, we consider situationsin which the noise disturbsthe
outputs for almost al inputs.
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A second interpretation of the reconstruction problem is
within the paradigm of “agnostic learning” introduced by
Kearns et. a. [21] (see also [27, 28, 22]). In the setting of ag-
nostic learning, the learner isto make no assumptionsregarding
the natural phenomena underlying the input/output relationship
of the function, and the goal of the learner isto come up with a
simple explanation which best fits the examples. Therefore the
best explanation may account for only part of the phenomena.
In some situations, when the phenomena appears very irregular,
providing an explanation which fits only part of it is better than
nothing. Interestingly, Kearns et. a. did not consider the use of
queries (but rather examples drawn from an arbitrary distribu-
tion) as they were skeptical that queries could be of any help.
We show that queries do seem to help (see below).

Yet another interpretation of the reconstruction problem,
which generalizes the “agnostic learning” approach, is the fol-
lowing. Suppose that the natural phenomena can be explained
by several simple explanations which together cover most of the
input-output behavior but not al of it. Namely, suppose that
the function f agrees almost everywhere with one of a small
number of functions g; € C. In particular, assume that each ¢;
agrees with f on at least a é fraction of the inputs but that for
some (say 26) fraction of the inputs f does not agree with any
of the ¢;'s. Thissetting isvery related to the setting investigated
by Ar et. a. [3], except that their techniques require that the
fraction of inputs left unexplained by any ¢; be smaller than the
fraction of inputs on which each ¢; agrees with f. We believe
that our relaxation makes the setting more appealing and closer
in spirit to “agnostic learning”.

In this paper, we consider the special case of the reconstruc-
tion problem when the hypothesis class is the set of n-variate
polynomials of bounded total degree d > 1. The most interest-
ing aspect of our resultsisthat they relateto very small values of
the parameter 6 (the fraction of inputs on which the hypothesis
has to fit the function f). Our main results are

e Analgorithm that given d, F and é = 2(y/d/|F'|), and
provided oracleaccessto an arbitrary function f : F'* —
F,runsintime(n/6)°(%) and outputs alist including all
degree d polynomials which agree with f on é fraction
of theinputs.

e An agorithm that given £ and ¢ > 0, and provided
oracle accessto an arbitrary function f : F'* — F', runs
in time poly(n/¢) and outputs alist including all linear
functions (degree d = 1 polynomials) which agree with

fonas ﬁ + € fraction of theinputs.



We remark that any algorithm for the reconstruction problem
would need to output all the coefficients of such a polynomial,
requiring time at least ("%). Moreover the number of such
polynomials could grow as a function of % Thus it seemsrea-
sonabl ethat the running time of such areconstruction procedure
should grow as a polynomial function of 1+ and (’;). Secondly,
for d < |F|, the value % seems a natural threshold for our
investigation since there are exponentialy (in n) many degree
d polynomials which are at distance ~ % from some func-
tions (see Appendix A). Finally, queries seem essential to our
learning algorithm since for thecase FF = GF(2)and d = 1
the problem reduces to the well-known problem of “learning
parity with noise” [18] which is commonly believed to be hard
when one is only allowed uniformly and independently chosen
examples [18, 7, 20]. (Actuadly, learning parity with noise is
considered hard even for random noise, whereas here the noise
is adversarial.) In the full version, we give evidence that the
problem may be hard with respect to d even in the case where
n=1.

A special case of interest is when the function f is obtained
as a result of picking an arbitrary degree d polynomial p and

letting f agreewith p on an arbitrary 6 = (4 /%) fraction of

the inputs and be set at random otherwise.! In this case, with
high probability, only one polynomial (i.e., p) agreeswith f on
aé fraction of theinputs. Thus, in this case, the above algorithm
will output only the polynomial p.

A different perspective: Maximum-likelihood decoding of
error-correcting codes Maximum likelihood decoding is the
term applied to the task of computing the “nearest codeword”
from a specified error-correcting code to agivenword (cf., [29]).
Consider the error-correcting code which encodes ("19) ele-
ments of /' by first computing the polynomial obtained by using
these elements as the list of coefficients and then evaluating the
polynomial at all pointsin the field. Such codes arefairly well-
known — for instance, the Hadamard code is one such code
with F = GF(2) and d = 1, and the Reed-Solomon code lies
at the other extreme withn = 1, and | F'| = O(d). Oneway to
interpret our resultsis as providing acode (over the alphabet F7)
and a corresponding maximum-likelihood-decoder which works
when the error-rate approaches 1. We are not aware of any other
case where an approach other than brute force can be used to
perform maximum-likelihood decoding with the error-rate ap-
proaching 1. Furthermore, our decoding algorithm works
without examining the entire codeword. Our algorithms seemto
be non-trivial and have better running timesthan the brute force
algorithm (table lookup) for list-decoding.

1.1 Other Related Work

Polynomial inter polation WhenthenoiserateisO, our problem
is simply that of polynomial interpolation. In this case the

1This is different from “random noise’ as the set of corrupted inputs is
selected adversarially — only the values at these inputs are random.

problem is well analyzed and the reader is referred to [41], for
instance, for ahistory of the polynomial interpolation problem.

Self-Correction In the case when the noise rate is positive but
small, one approach used to solving the reconstruction problem
is to use self-correctors, introduced independently in [8] and
[26]. Self-correctors convert programs that are known to be
correct on afraction é of inputsinto programsthat are correct on
eachinput. Self-correctorsfor valuesof é that arelargerthan3 /4
have been constructed for several functions[8, 9, 26,32]. Self-
correctors for f that are polynomial functions over afinite field
were found by [4, 26]. The fraction of errors they could correct
was improved to aimost 1/4 independently by [14] and [10] and
then to almost 1/2 by [15] (using a solution for the univariate
case implicit in [5]). However, when the error is larger than
% (or, aternatively 6 < 1/2), the utility of the standard self-
correction approach seems to disappear, since there could be
more than one polynomial that agrees with the program on an
8 < 1/2 fraction of the inputs.

Linear Polynomials Goldreich and Levin [17] have solved
the reconstruction problem in the case whered = 1 and F' =
(GF(2). Similar ideasare used by Kushilevitz and Mansour [23]
to learn boolean decision trees.

Reconstruction of polynomials under structured error mod-
els Aret. a. [3] have considered the problem of reconstructing
a list of polynomials which together explain the input-output
relation of agiven black-box. However, they have required that
thefraction of inputsleft uncovered by any of the polynomialsbe
smaller than the fraction of inputs covered by any single polyno-
mial. An alternative way of viewing thework of Ar et. al. [3] is
asreconstructing thelist of polynomialsthat agreewith the f on
> ¢ fraction of theinputs, provided that theinput-output relation
satisfies some (unknown) algebraic identities. No other polyno-
mial reconstructor seem to be known in the situation where the
error of the program is arbitrary and the error rate approaches 1
(or, alternatively, 6 approaches0).

1.2 Rest of this paper

The rest of the paper is organized as follows. In Sec-
tions 2 and 3 we construct the algorithm for solving the poly-
nomial reconstruction problem. In Section 4 we analyze the
running time of this algorithm, modulo a lemma which bounds
the number of polynomials which can agree with a given func-
tion at 6 fraction of the inputs. In Section 5 we provide two
upper bounds, one for the case of general degree d and another
(tighter) onefor the case of d = 1. In Section 6 we consider the
case where the output of the black box either agreeswith afixed
polynomial or is random. We conclude with some open issues
in Section 7.

2 Motivation to the algorithm

We are given oracle access to a function f : GF(¢)" —
GF(q) and need to find a polynomial (or actually all polynomi-



als) of degree d which agreeswith f onan é = % + ¢ fraction
of the inputs.

Linear Polynomials. Our starting point is the linear case
(i.e,, d = 1); namely, we are looking for a polynomial of the
form p(x1,...,2,) = Y i, ¢iz;. In this case our algorithm
is a generalization of an algorithm due to Goldreich and Levin
[17]%. (The original algorithm is regained by setting ¢ = 2.)
To proceed, we need the following definition: the i-prefix of a
linear polynomia p(z1, ..., #,) isthe polynomial which results
by summing up al of the (degree 1) monomialsinwhich only the
first ¢ variables appear. The algorithm proceedsin » rounds, so
that in the*" round wefind alist of candidatesfor the i-prefixes
of p.

The list of i-prefixes is generated by extending the list of
(¢ — 1)-prefixes. The simple (and inefficient) way to perform
thisextensionistofirst extend each (i—1)-prefix inall ¢ possible
ways and then to screen the resulting list of i-prefixes. A good
screening is the essence of the algorithm. It should guarantee
that the ¢-prefix of the correct solution p does pass and that
not too many other prefixes pass (as otherwise the algorithm
consumes too much time).

The screening is done by subjecting each candidate prefix,
(c1,...,¢), to the following test. We pick uniformly m =
poly(n/¢) sequencesin GF(¢)"~*, and for each such sequence,
(Si41, ---, Sn), We estimate the probabilities

)

P(U) déf Prrl,...,r,EGF(q) f(f, §) = ZC]'T]' + o (1)

j=1
(where 7, 5 denotes the vector (ry, ..., 7, Sit1,-..,55)), for
dl o € GF(q). o canbethought of asaguessfor 3~/ . | ¢;s;.

All these probabilities can be approximated simultaneously by
using a sample of poly(n/¢) sequences(ry, ..., r;) (regardiess
of ¢). We say that a candidate (¢4, ..., ¢;) passesthetest if for
at least one sequence of (s;41, ..., $n) there exists a o so that
the estimate for P (o) is greater than % + 5 (i.e, for randomly
chosen(s;41, ..., sn ), testif thereisas that occursoften enough
in Equation 1). As shown in [17], the correct candidate passes
the test with overwhelming probability. On the other hand, as
shown in Section 5, a most O(1/€?) candidates (of a certain
length) may pass the test.

The above yields a poly(ng¢/¢)-time agorithm. In order to
get rid of the ¢ factor in running-time, we need to modify the pro-
cess by which candidates are formed. Instead of extending each
(¢ — 1)-prefix, (¢1, ..., ¢;—1), in ¢ possible ways, we do the fol-
lowing. We pick uniformly s def (Si41, .-, 8n) € GF(g)"71,

7 E (r, .. rio1) € GF(g)i~ and ', € GF(g). Note

that if p is a solution to the reconstruction problem for f then
for at least an ¢/2 fraction of the sequences (7, 3), p satisfies
p(7,r,5) = f(F,r,s) for atleast an ¢ /2 fraction of the possible
r's. Wemay assumethat 1/q < ¢/4 (since otherwise ¢ < 4/¢

2We refer to the original algorithm as in [17], not to a simpler algorithm
which appearsin later versions (cf., [25, 16]).

and we can afford to perform the simpler procedure above). De-
note by y the unknown value of the sum Z?:i 41 ¢5j (Where
these ¢; s are the coefficient of the polynomial closeto f) and
by = the coefficient we are looking for (i.e., the i*" coefficient
¢;). Then, with probability ©(¢?), the following two equations
hold:

i—1

! !

ety = flr, i, 841, e Sn) — E T
ji=1
i1

1 1

ety = flry,eurien " Sip1, ey Sn) — E ¢ir;
ji=1

wherer’ # 7. Thussolving for « we get the desired extension.
We emphasize that we do not know whether the equalities hold
or not, but rather solve assuming they hold and add the solution
to the list of candidates. In order to guarantee that the correct
prefix always appears in our candidate list, we repeat the above
extension poly(n/¢) timesfor each (i — 1)-prefix. Extraneous
prefixes can be removed from the candidatelist viathe screening
process mentioned above. We have:

Theorem 1 Given oracle access to a function f and param-
eters ¢, k, our algorithm runsin poly(k'T")-time and outputs,
with probability at least 1 — 2=*, a list containing all linear
polynomialswhich agreewith f onat leastaé = % + ¢ fraction
of theinputs. Furthermore, thelist doesnot contain polynomials
which agreewith f onlessthan a % + 5 fraction of the inputs.

Higher Degree Polynomials. Dealing with polynomials of
degree d > 1 is more involved. Our plan is to first “isolate”
the terms/monomials of degree exactly d and find (candidates
for) their coefficients. We need the following definition, which
is a generalization of an i-prefix: the (d, )-prefix of a degree
d polynomial p(z1, ..., x,) is the polynomial which results by
summing up al the degree d monomials of p in which only the
variables x4, ..., x; appear.

Subtracting sucha(d, #)-prefix for f leavesuswithaproblem
of degree d — 1. Thus, the main part of the algorithm is finding
the list of (d, ¢)-prefixes. This list is built analogously to the
above and so we need to show how to extend alist of (d, i — 1)-
prefixesinto alist of (d, ¢)-prefixes. Suppose we get the (d, i —
1)-prefix p which we want to extend. We select uniformly
a sequence (s;41,...,s,) € GF(¢)"~%, and d + 1 elements
r(D e+ € GF(q). Now consider the functions

def

f(j)(xla"'axi—l) —

f(l‘l, sy i1, T(j), Siq1yeeny Sn)

—p(®1, ..., @—1).

Suppose that f equals some degree d polynomial and that p is
indeed the (d, i — 1)-prefix of this polynomial. Then fU) is
a polynomial of degree d — 1 (since al the degree d mono-
mials in the ¢ — 1 variables have been canceled by p). Fur-
thermore, given f(1) ..., f(4+1) we can find (by interpolation)



the extension of p to a (d, ¢)-prefix. The last assertion de-
serves some elaboration. Consider the (d, ¢)-prefix of f, de-
noted p’ = p/(x1, ..., #;_1,2;). Ineach fU) the monomials of
p" which agree on the exponents of z, ..., z;_ are collapsed
together (since z; is instantiated and so monomials containing
different powers of x; are added together). However, using
the d + 1 collapsed values, we can retrieve the coefficients of
the different monomials (in p’). (Actually, we obtain a degree
d polynomial in variables z1, ..., 2; which matches each f(/)
when instantiating z; = (), but only the degree d monomials
in this polynomial correspond to p’ —asthey are not affected by
the instantiation of x;41, ..., ,.) To complete the high level
description of the procedure we need to get the polynomial rep-
resenting the f(7)’s. Sincein reality we have only have accessto
a (possibly highly noisy) oracle for the f/)’s, we use the main
procedure for finding alist of candidates for these polynomials.
We point out that the recursive call is to a problem of degree
d — 1, whichislower than the degree we are currently handling.

The complete description of this algorithm can be found in
Section 3.

3 Algorithm for degreed > 1 polynomials

The following algorithm is given oracle accessto a function
f : GF(q)” — GF(¢) and finds the list of all polynomials
of degree d in the variables x4, ..., z,, which agree with f on
at least a ¢ fraction of the inputs. The algorithm utilizes two
subroutines.

Thefirst subroutine, called Constants, merely returnsthe list
of al constants which agree with the function f on at least §
fraction of the inputs (it may also return other constants but not
ones which agreewith f on lessthan é/2 of the inputs).

The main subroutine, called Extend, is given a polynomial p
consisting only of monomials of degree d in x4, ..., x;_; and
returns a list of polynomials which “extend” it. Each such
polynomial consistsonly of monomialsof degreed inz, ..., x;,
and furthermore the monomials of degree d containing only the
variables x4, ..., #;_1 are exactly thosein p. In other words, if
p" isinthereturned list then

d—1
p/(xla ceey xl) = P(l’la ceey xi—l) + Zp](xla ceey xi—l) . x;l—]
j=0

wherep; consistsonly of monomiasof degreejinz., ..., z;—1.
Given apolynomial p, Extend does not return an arbitrary list of
admissible polynomials. Instead, it returns alist of polynomials
which seem to be good with respect to f. Extend is invoked
with a (d, i — 1)-prefix and returns a list of (d, ¢)-prefixes all
consistent with the input prefix. Furthermore, when invoked
with a (d,7 — 1)-prefix of a polynomial p which agrees with
f on at least a é fraction of the inputs, Extend returns a list
containing the (d, ¢)-prefix of p. Finaly, the list returned by
Extend isnever toolong; itslengthisbounded aboveby NV; 45 =
poly(é_(”—d/q)) (see below).

Find-all-poly( f, 8; n,d, q);

if d=0 then return Constants(f,8; n,q)
for i=1to n do
L; —{} 1* List of (d,i)-prefixes */
for every polynomial pe £;_; do
L; = L; UExtend(f,8,p,¢; n,d, q)

L—{}

for every polynonial pe £, do
L' — Find-all-poly(f — p,é6;n,d— 1, q);
L—LU{p+p  :p el

return(C);

NOTATIONS AND CONVENTIONS. We write p; = po if p; and
p2 areidentical polynomials. Below, we use the term a (d, 7)-
strict-prefix to mean the difference between the (d, )-prefix and
the (d, ¢ — 1)-prefix. The notation fl,, . ., represents the
n-variate function f(z1, ..., z,) restricted by z; = a; (i.e,

Flai . an (1, oy 2iz1) def flay, .., 2521, a4, ...,a,)). The
parameter T (approximately the logarithm of the allowed error
probability of the algorithm) will be determined later. We also
postpone the determination of the parameter « (which governs
the “lossin agreement” introduced by the recursive calls).

The procedure Extend uses two procedures to be described
below. The first procedure, Comp-coeff, gets as (main) inputs a
sequenceof d + 1 polynomials, p(%), ..., p{4+1) each of degree
d — 1 in the first ¢« — 1 variables and a corresponding list of
d + 1 values, »\V) .. r{d+1) Using interpolation, it returns a
polynomial, p, of degree d in the variables x4, ..., x; such that
plyoy =plforalj =1, ..., d+1. (For detailsseeLemma7.)

The second procedure, Test-valid, iS given oracle accessto a
function f'(z1, ..., ;) (= fls.4.,....s,, — p) and adegreed poly-
nomial p'(x1, ..., #;). It tests by the obvious sampling method
whether p’ agrees with f* on ¢’ = % fraction of inputs. The
correctness of the algorithm is shown in the following lemma.

Lemma 2 Supposethat Constants, Test-valid and Comp-coeff are
perfectly correct; that is,

(H1) constants(f, 6;n,q) returns each field element e, such
that f assumesthe value e on at least a ¢ fraction of the
inputs;

(H2) Testvalid(f’,p’,6';,d, q) answersyes if and only if f*
agreeswith p’ on at least a ¢’ fraction of the inputs; and

(H3) comp-coeff(pt), ..., pldtD) (1) p(d41)5 d ¢} re-
turnsa polynomial, p, of degreed inthevariablesx1, ..., x;
sothat p|,) = pY),foral j=1,... d+ 1.



Extend(f, é,p,4; n,d,¢). (additional paraneters 7 and «)
L—{}

r epeat m times /* main |oop */

Pick $it1,...,8, uniformy in GF(g).
Pick m = T=mar - (d+1) distinct el ements #(*), ... (™), uniforny from GF(q).

for j=1to m do

f(]) — f|7‘(j)751+17"'787% b
) FFind—a”-F)OIV(f(])’ a? b i,d—1,q).

for every set {ji,...,Jar1} C{1,...,m}
for every (d+1)-tuple (pUs) ... pUat)) with plr) € £Ux)
p/ «— Comp_coeff(p(jl)’ . ’p(jd+1)’ r(jl)’ R r(jd+1); i’ d’ q)

i f Testvalid( f

/* end of main |oop */
return(£’).

Si41,5n _pap/aa'é; iada Q) then
L' — L U{p+ (d,i)-strict-prefix of p'};

Suppose that p* is a degree d polynomial which agreeswith f
on at least an § > (1_(5;% fraction of the inputs. Then,
with probability at least 1 — 2dn - 277, the list output by Find-
all-poly( f, 8; n, d, ¢) contains the polynomial p*.

The lower bound on é is used for guaranteeing that in each
invocation of Extend (regardless of the depth of recursion) the
parameter m is not larger than the field size. This s required
in order to allow the selection of m different field elements (see
footnotes in the proof below).

Proof: The proof proceedsby inductionond. Thecased = 0
follows by the hypothesisH1. The induction step usesthe other
two hypotheses (i.e., H2 and H3). First, observe that (for the
next d in theinduction) it suffices to show that the (d, n)-prefix
of p* (i.e., al degree d monomials) appearsinthelist £,, (since
the induction hypothesis will be used to reconstruct all lower
degree monomials of p*).

We show by induction on ¢ that the (d, ¢)-prefix of p* appears
inthelist £;. Herethe base case (: = 0) holdsvacuously and so
we consider theinvocation of Extend( f, é, p, é; n, d, q), where p
isthe (d, ¢ — 1)-prefix of p* (i.e., by the induction hypothesis
p € L;_1). Call asequences = (s;41, ..., sn) € GF(q)"‘i_1
good if thefunction f |z and the polynomial p* |5 agreeon at least
an « - 6 fraction of the inputs. Clearly, at leasta (1 — «) - é
fraction of the sequencesare good and so with probability at least
1 — 277 agood sequence s is selected in one of the iterations
of the main loop. Let us consider such an iteration and fix the
good sequence s for the rest of the proof.

We say that € GF(q) is5-good if the function f|, s and
the polynomial p*|, 5 agree on at least an « - a6 fraction of the

inputs. Clearly, at least (1 — «) - a6 of the r’sare 5-good and
so, with probability at leat 1 — 277, at least d + 1 of the m
“uniformly”3 chosen r/)'s are 5-good. Let us assume, without
loss of generality, that »(*), ..., 7(4+1) are all 5-good and fix
them too for the rest of the proof.

Let us denote the polynomia (p* |, 5) — p by pU). We
first observe that p'Y) isa degree d — 1 polynomial in the vari-
ables w1, ..., 2;_1, since the only monomials of degree d in
p*|,0) 5 are those which have all variables in {x1, ..., 2;_1}
and that al these monomials are cancelled out by p. Next,
we observe that /) o (fl,) 5) — p agrees with the poly-
nomial pY) on at least an a2 fraction of the inputs. By the
induction hypothesis (for d — 1), the polynomial p/) must be
in the list returned by Find-all-poly( 1), o6; i,d — 1,¢) and
so pi) € £U). It remains to examine what happens when
Comp-coeff is invoked with the polynomials p(*/, ..., p{4+1) and
the values (1), ... »(d+1)_ et p/ denote the polynomial re-
turned in this invocation and recall that (by the hypothesis H3)
P,y = pY) forj = 1,...,d+ 1. Using the definition of
P wegetp! (1, ..., 21, 79)) = [p* s, ..., g, 7)) —
p(x1, ..., x;-1)] for j = 1,...,d+ 1. Namely, these two degree
d polynomialson ¢ variablesare identical for d + 1 distinct* in-
stantiations of the last variable and thus these two polynomials
are identical; namely

Pl(l‘l, sy Li—1, l‘z) = P*|§(l‘1, sy Li—1, l‘z) —P(l‘l, s 902’-1)

3 Actually, the r(4)'s are selected uniformly among all m-tuples of distinct
elements.

“Here is where we use the fact that the »(9)’s are digtinct. Clearly, the
conclusion would not have held otherwise.



Next, we observe that the (d, 7)-strict-prefix of p* equals the
(d, i)-strict-prefix of p*|s (actualy, the corresponding (d, 7)-
prefixes are identical). Thus, it follows that the (d, ¢)-strict-
prefix of p’ equalsthe (d, ¢)-strict-prefix of p* (equiv., of p* —p)
and that p’ agrees with (f|z) — p on at least an «é fraction of
the inputs. By the hypothesis H2 it follows that p’ will pass
Test-valid(( f|z) — p, p', @8; i, d, q) and so the (d, 7)-prefix of p*
(i.e., p+ p'’ wherep” isthe (d, i)-strict-prefix of p*) will bein
the list returned by Extend. Thelemmafollows. |

4 Boundingtherunningtime

In al our complexity estimates we assume that it is possible
to obtain the value of afunction (beit afunction given as oracle
or a polynomial represented explicitly) at a given point at unit
cost. Likewise, al standard field operations and algorithmic
conventions are implemented at unit cost. In addition, we need
to set the additional parameters for Extend: weset 7 = k +
O(dlog(knd/é))and o = 1 — (1/d). We stressthat here d is
the degree-parameter in the initial/main invocation of algorithm
Find-all-Poly (rather than in the recursive calls).

Theorem 3 Given oracleaccessto afunction f and parameters
6, kandd, sothat§ = Q(max{(d+1)*log(knd)-1,/d/q}),
algorithm Find-all-Poly runs in poly((k - nd/é)*+!)-time and
outputs, with probability at least 1 — 2%, a list containing
all degree d polynomials which agree with f on at least an 6
fraction of the inputs. Furthermore, the list does not contain
any polynomials which agree with f on lessthan an g fraction
of the inputs.

Using additional ideas it is possible to relax the condition on 6.
Specifically, it sufficestohave§ = Q(1/d/q¢). Furthermore, itis
also possibleto improve therunning-time. Oneimportantideais
to randomize the problem so that most sequences and elements
are good in the sense used in the proof of Lemma 2 (above).
Thisisdone by auniformly selected linear transformation of the
original variables z;’s into new variables y;’s (i.e., each y; isa
linear combination of x;'sand vice versa). The theoremfollows
from Lemma 2 (above) and the following four lemmas.

Lemma4 Constants(f, 4;n,¢) can be implemented in time
poly(k/é) so that with probability at least 1 — 27* the list
output by the subroutine contains all field elements which agree
with f on at least 6 fraction of the inputs and no field elements
which agreewith f onlessthan é/2 fraction of theinputs.

We assume, without loss of generality, that Constants( f, §; n, ¢)
never returns more than 2 /46 field elements (as otherwise, in the
rare case this does not hold, we can halt with an error message).

Lemma5 Testvalid(f’,p’,8'; ¢,d,¢) can be implemented in
time poly(% /&) so that the following holds with probability at
least 1 — 2= %: If p’ agreeswith f/ on at least an &' fraction
of the inputs then the test accepts and if p’ agreeswith f/ on at
most an % fraction then the test rejects.

Let us denote by V; 45 an upper bound on the number of
1-variate degree d polynomials which agree with a particu-
lar function on an é fraction of the inputs. (See a spe-
cific bound in Lemma 6.) We assume, without loss of gen-
erality, that the number of polynomials, p’, passing Test-
valid(( f|s) — p, ', 8/2; i,d, q) inasingleiteration of the main
loop of Extend( f, 6, p, ; n, d, ¢) is bounded above by N; 4 52
(since, again, in the rare case this does not hold the algorithm
can be made to halt with an error message).

1 [d—1 R S
Lemma6 For 6 > 5—1' ' Wernayseth,d,é — =]y

Proof: Immediate by Theorem 10 Part (2). |

Lemma7 Comp-coeff(pt!), ... pldt ) #(1)  pld+Dip o

g) canbeimplementedintime (1) - poly(d).

Proof: Let p(j)(xl,...,xm_l) = ZIC(I])HieIxi be de-
gree d — 1 polynomials, for j = 1,...,d + 1; that is, the
I's are multisets of size at most d — 1 (of {1,...,m — 1}).
We need to find a polynomial p(z1, ..., %) of degree d so
that p(x1,...,&m_1,79)) = pUl(xy,....,2m_1), for j =
Lo,d+ 1. Let p(1, ., Tmo1,Tm) = > g ¢k [Licx Tis
where the K’s are multisets of sizeat most d (of {1, ..., m}). It
follows that for every multiset I C {1, ..., m — 1} we have, for
everyj=1,...,d+ 1,

|I|—d
C(I]) = Z CIU{m}t(T(]))t
t=0

where 7 U {m}' denotes the multiset consisting of  and ¢
occurrences of m. Note that all ¢t)’s and r/)’s are known to
us and we are looking for the cry,,}+’s. For each I we obtain
an ordinary interpolation problem (which is solvable by linear
algebra) and so the lemmafollows. |

Lemma8 Seta = 1— 5 and supposethat 6 > 24/d/q. Then
the running-time of Find-all-Poly( f, é; n, d, ¢) isat most

ndr o(d)
()

Proof: omitted (seefull version). |

5 Counting: Worst Case

In this section we give a worst-case bound on the number of
polynomials which agree with a given function f on ¢ fraction
of the points. Inthe case of linear polynomials our bound works
forany 6 > % whilein the general case our bound works only
for 6 that is large enough. We then present examples indicating
that our bound in the linear case is essentialy tight. We have



evidence as to why the bound in the general degree case may
not have a simple improvement. Details of the latter will be
included in thefinal version.

Theorem 9 Let ¢ > 0. For afunction f : GF(q)" — GF(q),

if fi,..., fm : GF(q)' — GF(q) aredistinct linear functions
which satisfy
vie{l.m), P [fa)=fie)] =+
yeeo, My, I r) = Jilx)] = — €
/ rEGF(q) q
2
thenm < (1—1) iz
q €

Proof: We first fix some notation. We use « to denote
q/(¢ — 1) and Q to denote ¢'. For i € {1,...,m} and
z € GF(q)" let x;(z) = 1if fi(z) # f(z) and 0 otherwise.
For i € {1,...,m}, t € GF(q) and = € GF(q)' let

(@) = 1if fi(x) — f(x) = t and 0 otherwise. Let w; =

o file) # J(2)] andlet = 2=im

The fact that the f;'s are close to f implies that for all 1,
wl_(l—e—%)~Q.

Our proof generalizes a proof due to S. Johnson (c.f.,
MacWilliams and Sloane [29]) for the case ¢ = 2. The central
guantity used to bound i in their case can be generalized in one
of the two following ways:

S=> xilz)x;(x)

7,

Z Z X(f) (f)

i,J,2 tZ£0

The first sums over al 4, j, the number of inputs for which f;
and f; both differ from f. The second sums over all i, j, the
number of inputs for which f; and f; both differ by the same
amount from f. (Notice that the two quantities are the same for
the case ¢ = 2.) While neither one of the two quantities are
sufficient for our analysis, their sum provides good bounds.
Lower bound on S + S’: Let N, = [{i|fi(x) # f(x)}| and
let NV = |{i|fi(z) — f(x) = t}|. Thenwe can lower bound
S asfollows:

S=3 xile)x(x

7,

(mw)?

)=> N>

Thelast inequality above followsfrom the fact that subject to the
condition}" . N, = mw, thesumof N,’ssquaredisminimized
when al the V,.’s are equal.

Similarly we lower bound S” asfollows:

O 2) O e (2 < _(m@)*
S I MIUENIEED 9) WHTI e wrss

7,j,x t#£0 r t#0

Thus by adding the two lower bounds above we obtain:
(mw)? N (mw)? B am’w?
Q (¢-HQ @

Upper bound on S + S
the following quantities: For distinct 7,5 € {1,...,
1,1 € GF(q), let

S+5 > @

For the upper bound we define
m} and

My = Hal (™ (@) = 3 (@) = 1},
Then we can express S and S’ as
S=Y 33 M) ad s =33 M
ij 11701270 ij t#£0

We start by upper bounding the internal sum above for fixed
distinct pairi and j. By thefact that f;(z) = f;() for (at most)
Q)/q valuesof z, we have

S oM < Qlg— M.
120

To bound the other term in the summation above we use
inclusion-exclusion as follows:

> M

t1#£0 1220
SOS M ST M ST M)+ M
t1 ta i1 t2
= Q- (Q—w)—(Q—w)+ My’
= wi+w;— Q+ M),

Combining the bounds above we have (for ¢ £ j)

RPIRVKIED BV

1120 1220 t£0
< Qlg— M 4w+ w; — Q+ MY
Q

= wi—i—wj—g.

Also observe that if ¢ = 5, then the quantity

Zh#O th;éO t(llg = Zt;ﬁo Mt(t”) = wj.
We now combine the bounds above as follows:

2] D 3D SRTEIRS Bt

i \t120 270 t£0

1531 DIDIRLHIES RV

1#£j \T1#0 1270 t#£0

Zsz‘i‘Z wz‘i‘w]_%)

i£]

S+ 5

IN



Simplifying the right hand side above, we get:
-1)Q/a. (©)
Putting it together: By comparing the bounds (2) and (3), we

S+ .5 < 2m*w —m(m

have 2m*w — m(m — 1)Q/a > me (W —
Q/a)? < Q/a. Substitutingw < Q(1 — ) e =Q/a—
€@, we get
ayz  [1)° 1\°
ne(8)=(2) (-7)

|

For general d, we have the following theorem.
Theorem 10 Let § > 0 and f : GF(q)! — GF(gq). Sup-

pose fi,...,fm : GF(q)) — GF(q) are distinct polyno-
mials of degree at most d which satisfy V5 € {1,...,m},
Pr,ccrgy [f(2) = fi(x)] > 6. Then the following bounds
hold:

L 6> 24 L \/f

(For small f]l the above aprm ons are approximated by
8 > +/2d/qandm < 2/6, respectively.)
2. it > HACUEED

2 thenm < W

then m < ﬁq;dq%ﬂl.

1
(6-(1/9))?=(g—1)(d-1)/¢>"
(For small i the above expressions are approximated by

6 > = —|— =L and m <

tively)

Wwv respec-

Remark The above bounds apply in different situations and
yield different bounds on m. The first applies for larger values
of 6 and yields a bound which is O(%). The second bound
applies for smaller values of 4 and yields a bound which grows
as0().

Proof: The bound in (1) is proven by a simple inclusion-
exclusion argument. Let m’ < m and let Q = ¢'. We count
the number of points x € GF(q)' that satisfy the property that
one of the first m’ polynomials agree with f on z. Namely, let
xi(z) = 1if fi(x) = f(x) and x;(x) = 0 otherwise. Then,
by inclusion-exclusion we get

Q@ > I3 u) =1
S35 3) VD S SRLNIL)
> 00 () 1o fie) = o)

Since two degree d polynomials f; and f-» can agree on at most
g - Q points[11, 36, 39], we get:

ml ~1) dQ _

!
50 —
moQ 5 p

Consider thefunction g(y) ! (d/2q)-y*—(64+(d/2q))-y—+1.
Then the aboveinequality saysthat g(m’) > 0, for every integer
m’ < m. Let oy and a5 betherootsof g. Then if we can show
that the roots are real and additionally satisfy |a; — as| > 1,
then we could upper bound m by min{«;, as }. We now show
first that under the condition given on 8, oy — az| > 1. Then
we show that min{o;, as} < m This will suffice to
prove (1).

Let § = 5-. Theng(y) = fm* — (F + 6)m + 1. The

2
roots, a; and «v» arereal, provided that A & (B+¢)?—43is

positive which follows from a stronger requirement (see below).
Let oy bethesmaller root. Toguaranteews — oy > 1 werequire
2¥2 > 1 which translatesto A > /% (and hence A > 0 as
required above). We need to show that

(B+6)° —48> §°

which occursif 6 > /32 + 43 — 3. Plugging in the values of
6 and 3 we find that the last inequality is exactly as guaranteed
in the theorem statement. Lastly observe that:

o o BHO-VBHET-AP
_ .

_ B+6 1_(1_i)”2
28 (B +6)>
B+6 3
< 3 '[1_1+4<6+6>2]

_ 2
R

The inequality follows by A > 0. Again by plugging in the
value of 3 and é we get the desired bound.

We sketch the proof of part (2). The proof is an extension of
the proof of Theorem 9. We define S and 5" asin Theorem 9.
Herew < (1 —4)Q = (1 — e — d/q)Q. The lower bound
found for S + S’ till appliesi.e.,

mzwzq

“Q-(¢-1)

The upper bound gets modified due to the fact that two poly-
nomials agree on at most ¢ fraction of the points (and not 1/¢
fraction). Thisyields:

S+ 8 > 4

S+ 8" < 2m*w — m(m — 1)(];—dQ (5)
Thus we find that
<l —d L 1 _
0 @R
provided (Z)? L + =2 — 2Z > 0. Letg(x) = qq—lxz -

22 + 4. We need to bound & so that ¢(1 — 6) > 0.



d = 1 wehave g(x) > 0foral z # 1 — _ indicating that
the bound holds for al é > 1/¢.) For d > 1 the function

. . . 1—4/1-(g=d)/(g-1)
¢(x) is positive provided that < 7= . Thus,

5> %+%~, /f]l:—}suffices(whichistheconditioninPart 2)).
The corresponding bound is m < ‘Z—d . ﬁ which, using
2 g(x) = (¢ — £22)? = L51 - (d — 1), yields the bound

q
claimedin Part 2). |

The following result shows that Theorem 9 is tight for 6 =
0O(1/¢) (and d = 1), whereas Part (1) of Theorem 10 is tight
for6 =0O©(1/\/g) andd = 1.

Proposition 11 Givenaprimep,andintegersd, k > 1,leté =
k/p. Then, thereexistsafunction f : GF(p) — GF(p) and at

least m & sy functions f1, .., fn : GF(p) — GF(p)

suchthatfor all ¢ € {1,...,m}, {z|fi(x) = f(2)}| > ép.

Proof: We start by constructing a relation R C GF(p) x
GF(p) suchthat | R| < p and there exist many linear functions
g1, -, gm Suchthat |[RN{(x, gi(x))|x € GF(p)}| > kforall
1. Later we show how to transform R and ¢; so that i becomes
afunction which still agreeswith each ¢; on & inputs.

Let! = |p/k]. Therelation R simply consists of the pairs
inthesquare {(¢, j)|0 < i < k,0 < j < l}. Let G bethe set of
all linear functions which agree with R in at least £ places. We
show that G has size at least {?/2(k — 1). Given non-negative
integersa, b, s.t. a(k — 1)+ b < I, consider the linear function
gap(2) = ax + b(modp). Then, g, 3(4) € {0,...,1 -1}
fori € {0,...,k — 1}. Thus, g4,5(¢) intersects R in k places.
Lastly we observe that there are at least p(! + 1)/2 distinct
pairs (a,b) st. a(k — 1) + b < I. Fixa < 1 = [p/k]. Then
there are at least { — (k — 1)a possible values for 4, so that

I
the total number of pairs becomes "7 =81 — (k — 1)a =
2 i 2
i~ (k=1 (737 > gz

Now we convert the relation R into afunction in two stages.
First we stretch the relation by a factor of [ to get anew relation
R. Explicitly, ' = {(li,5)|({,j) € R}. Given g(z) =
ar +b € G, let ¢'(x) = (a-I"Y)x + b, where [~! is the
multiplicativeinverseof [(mod p). If ¢(i) = j,theng’(li) = j.
Thusif (i, g(7)) € R, then (I7, ¢’(l7)) € R'. Thusif weuseg’
to denote the set of linear functions which agree with R’ in k
places, then ¢’ € G’ if ¢ € G. Moreover the map from g to ¢’ is
one-to-one, implying |G| > |G|. (Actually the argument above
extends to show that |G'| = |G].)

Last weintroduce aslopeto R/, so that it becomesafunction.
Explicitty R = {(li + j,j)|(i,j) € R}. Notice that for
any par (i1,71),(i1,j2) € R”, iy # iy implying that R”
can be extended to a function f : GF(p) — GF(p), which
satisfiesif (¢,7) € R"” then j = (). Now for every function
¢'(x) = d’w+b € G’, consider thefunction g’/ (z) = a”x+b"
wherea” = o'/(1+a’)andb” = b'/(1 4 o). Observethat if
¢'(x) =y, theng”(x + y) = y. Thusif ¢’ agreeswith R’ in k

places, then ¢"’ agreeswith 2" and hence f in at least k places.
Again, if we use G to denote the set of linear functions which
agree with f in k places, then |G”| > |G|

Thus f : GF(p) — GF(p) hasat least {?/2(k — 1) linear
functions agreeing with it in k& places. Expressing k as 6p, we
have | > W’ and the proposition follows (using (1/p) +

§<2.8). 1

6 Counting: Random Case

In this section we present a bound on the number of polyno-
mials which can agree with afunction f if f is chosen to look
like a polynomial p on some domain D and is chosen randomly
on other points. As a consequence we find that for functions
constructed in this manner the output of our reconstruction al-
gorithm will be asingle polynomial — namely, p.

Theorem 12 Let 6 > ﬁ%l. Suppose that D is an arbitrary

subset of density 6 in GF'(¢)” and p(#1, ..., z,) isa degree d

polynomial. Consider a function f selected as follows:

1 f agreeswithp on D;

2. the value of f on each of the remaining points in
G'F(¢)" — D isuniformly and independently chosen.

Then, with probability at least 1 — exp{(n?log,q) —

(8/4)%¢"~1}, the polynomial p is the only degree d polyno-

mial which agrees with f on at least an é/2 fraction of the

inputs.

7 Conclusions

The main feature controlling the running time of the recon-
struction algorithm described in this paper is the bound on the
number of polynomials which can agree with a given function
at 6 fraction of the places. Thus by improving any of the bounds
given here (or presenting similar boundsin other situations) one
can improve the running time of the algorithm presented (or ex-
tend it to other cases). The case of degree d polynomials with
6 < +/d/q seems to be a prime candidate for analysis here.
We seem to have some evidence that this bound may grow as
(1/68)4+! for small enough é.

Lastly we speculate on the need for the exponential depen-
denceon d. Inthefull version we point out the NP-hardness of
arelated univariate question which asks for the best polynomial
fitting arelation specified on O(d) points. The fact that this ev-
idence applies only to learning relations (rather than functions)
without queriesmakesthisrelatively weak. However when spe-
cialized to the univariate case, there is no known separation of
the “reconstruction” problem between the case on learning with
or without queries. (i.e., both are solvable, in time poly(d),
if error is bounded away from half.) Also we do not know of
instances where learning relations is harder than learning func-
tions. Thus all this accumulatesto some feeling that maybe this
exponential dependence may be inherent.
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A Justifying the % Threshold

Proposition 13 Let ¢ be a prime-power, d < g and 6 = g —
dq‘—Zl. Then, for every n-variate degree d polynomial, f, over
GF(q), there are at least ¢"~! degree d polynomials which
agreewith f on at least a é fraction of the inputs.

Proof: It suffices to consider the all-zero function, denoted
by f. Consider the family of polynomials having the form
ng_ll(xl—i) S, civi,Wherees, ..., ¢, € GF(gq). Clearly,
each member of this family is a degree d polynomial and the
family contains ¢"~! different polynomials. Now, each poly-
nomial in the family is zero on inputs (ay, ..., a,) satisfying
eithera; € {1,...,(d— 1)} or> ", c;a; = 0. Sinceat leasta

=L 4 (1 — 221 - L fraction of the inputs satisfy this condition,

the proposition follows. |



