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Abstract

This paper deals with approximating feedback sets in directed graphs. We consider
two related problems: the weighted feedback vertex set (Fvs) problem, and the weighted
feedback edge set problem (FES). In the FVS (resp. FES) problem, one is given a di-
rected graph with weights (each of which is at least 1) on the vertices (resp. edges),
and is asked to find a subset of vertices (resp. edges) with minimum total weight that
intersects every directed cycle in the graph. These problems are among the classical
NP-Hard problems and have many applications. We also consider a generalization of
these problems: SUBSET-FVS and SUBSET-FES, in which the feedback set has to intersect
only a subset of the directed cycles in the graph. This subset consists of all the cycles
that go through a distinguished input subset of vertices and edges, denoted by X. This
generalization is also NP-Hard even when |X| = 2. We present approximation algo-
rithms for the SUBSET-FVS and SUBSET-FES problems. The first algorithm we present
achieves an approximation factor of O(log® | X|). The second algorithm achieves an ap-
proximation factor of O(min{log7*loglog7*,lognloglogn)}, where 7* is the value of
the optimum fractional solution of the problem at hand, and n is the number of vertices
in the graph. We also define a multicut problem in a special type of directed networks
which we call circular networks, and show that the SUBSET-FES and SUBSET-FVS prob-
lems are equivalent to this multicut problem. Another contribution of our paper is a
combinatorial algorithm that computes a (1 + ) approximation to the fractional op-
timal feedback vertex set. Computing the approximate solution is much simpler and
more efficient than general linear programming methods. All of our algorithms use this
approximate solution.
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1 Introduction

This paper deals with approximating feedback sets in directed graphs. We consider two
related problems: the weighted feedback vertex set (FVS) problem, and the weighted feedback
edge set problem (FES). In the FVS problem, one is given a directed graph with weights
on the vertices, and is asked to find a subset of vertices with minimum total weight that
intersects every directed cycle in the graph. In the FES problem, one is given a directed
graph with weights on the edges, and is asked to find a subset of edges with minimum
total weight that intersects every cycle in the graph. We assume that all weights are at
least 1. The unweighted versions of these problems are classical NP-Hard problems, and
appear in Karp’s seminal paper [K72]. The FEs and Fvs problems are reducible to one
another (§2). These reductions preserve approximations, namely, feedback vertex sets are
mapped to feedback edge sets with the same weight and vice-versa. Hence, these problems
are equally hard to approximate in polynomial time.

The problem of finding feedback sets arises in a variety of applications. Omne of the
most interesting and important applications has to do with testing circuits. A circuit
can be modeled by a directed graph where the vertices represent gates (which compute
boolean functions) and the directed edges represent wires that connect gates [LS91]. Loosely
speaking, finding a small feedback edge set in this graph helps to reduce the hardware
overhead required for testing the circuit using “scan registers” [GGB89, KW90]. Other
applications have to do with efficient deadlock resolution, and analyzing manufacturing
processes.

We also consider a generalization of the FES and FVS problems which we call the
SUBSET-FES and SUBSET-FVS problems. In these problems, only a subset of the directed
cycles in the graph is considered interesting. A feedback edge set with respect to the inter-
esting cycles is a subset of edges that intersects every interesting cycle. Similarly, a feedback
vertex set with respect to the interesting cycles is a subset of vertices that intersects every
interesting cycle. The interesting sets of cycles that we consider are characterized by a
subset of vertices and edges. Namely, given a subset X (of special vertices and edges), the
set of interesting cycles characterized by X is the set of all cycles that intersect X. In the
SUBSET-FES (resp. SUBSET-FVS) problem the goal is to find a minimum weight feedback
edge (resp. vertex) set with respect to the interesting cycles. The SUBSET-FVS (SUBSET-FES)
problem is NP-Hard even when the interesting cycles are characterized by a set X contain-
ing only two vertices, as follows from the work of [YKCP83]. (See also a remark at the
end of the paper.) On the other hand, if X consists of a single vertex then the SUBSET-FES
and the SUBSET-FVS problems can be solved in polynomial time by computing a minimum
cut. (This is not the case in undirected graphs where the SUBSET-FES and the SUBSET-FVS
problems remain NP-Hard even if X consists of a single vertex.)

The motivation of this generalization is two-fold. First, in some of the applications we
may only be interested in cycles that intersect a subset of the vertices and edges, e.g., when



testing only part of a circuit. Second, from the theoretical standpoint, it is interesting
whether the quality of the approximation depends on the size of the set that characterizes
the interesting subset of cycles.

The relation between feedback set problems and multicut problems (first observed by
Leighton and Rao [LR88]), motivated many researchers to focus their attention on multicut
problems. This problem was first defined by Hu [H63] as follows. Given a capacitated
network, and a set of k source-sink pairs, find a minimum capacity set of edges whose
removal disconnects all the source-sink pairs. This problem is NP-Hard in general. We define
a directed multicut problem in special type of networks which we call circular networks. We
show that the subset feedback set problem is equivalent to the directed multicut problem
in such networks.

An obvious lower bound on the cardinality of a minimum FES (FVS) is the maximum
number of edge (vertex) disjoint directed cycles in the graph. We assume here that the
graph is unweighted. We note that there are certain families of graphs for which a mini-
max theorem relating the cardinality of a minimum feedback set with the maximum num-
ber of disjoint directed cycles exists. For example, it follows from the Lucchesi-Younger
Theorem [LY78] that a minimax theorem for the edge version can be proved for directed
planar graphs, and also an optimal FES can be computed in polynomial time. (See [GW96]
for approximation algorithms for the vertex version.) For reducible flow graphs, minimax
theorems exist for both edge [Ra90] and vertex [FG76] versions. In the edge version, Ra-
machandran [Ra88] provides a polynomial time algorithm for finding an optimal FES.

The first approximation algorithm for the FES problem was given by Leighton and
Rao [LR88] (and followed by [KST90]). Their approximation factor is O(log®n) in the
unweighted case, where n is the number of vertices in the graph. Leighton and Rao achieve
this bound by using an O(logn) approximation algorithm for a directed separator that
splits the graph into two (approximately) equal sized components. This separator is found
by approximating special cuts which are called quotient cuts.

Recently, there has been much progress in approximating the multicut problem in the
undirected case. Most notably, Garg, Vazirani and Yannakakis [GVY93] achieved a O(log k)
approximation factor for this problem. They introduced a novel “sphere growing” technique,
refining and simplifying previous works of [LR88, KRAR95|. Actually, the O(log k) factor
achieved in [GVY93] is with respect to the optimal fractional solution of the multicut
problem. Garg, Vazirani and Yannakakis also show that this is the best one can hope for,
by demonstrating a graph in which the gap between the fractional and integral solution is
indeed Q(log k). To the best of our knowledge, no approximation is known for the multicut
problem in general directed graphs.

The first result we present is an approximation algorithm that achieves an O(log? k)
factor for the subset feedback set problem. Recall the equivalence established between
the subset feedback set problem, and the directed minimum capacity multicut problem in



circular networks. We are able to exploit the special structure of such networks to find
an O(log? k) approximation factor of the minimum capacity multicut. Our algorithm is
based on a novel decomposition of the graph, and an adaptation of the undirected “sphere
growing” technique of [GVY93] to directed circular networks.

In a brilliant paper, Seymour [Se95] proved that the integrality gap in the case of the
unweighted Fvs problem can be at most O(log 7* loglog 7*), where 7* denotes the optimal
value of a fractional feedback set. A careful examination of Seymour’s proof reveals that
all of his existential arguments can be made constructive, and thus, with certain other
modifications, an algorithm for the unweighted Fvs problem that achieves an approximation
factor of O(log 7*loglog 7*) can be obtained. (Notice that in the unweighted case 7% < n.)

The second result we present is an extension of Seymour’s proof to the weighted
SUBSET-FVS problem. This results in an algorithm that achieves an approximation factor of
O(min{log 7*log log 7%, log nloglog n}), where, as before, 7* denotes the cost of a minimum
fractional subset feedback set, and n is the number of vertices. This result is almost optimal
within the primal-dual framework, since the integrality gap is Q(log7*) [Se95].

Both of our approximation algorithms recursively decompose a directed graph as follows.
A fractional (optimal) solution to a directed feedback set problem induces a distance metric
on the edge (vertex) set of the graph. The approximation algorithm picks (arbitrarily) a
vertex s € X, and conducts a single-source-shortest-paths algorithm from s with respect to
the distance metric. The single-source-shortest-paths algorithm defines layers with respect
to the source s, where each layer is a directed cut that partitions the graph into two parts.
The approximation algorithm chooses a directed cut, adds the cut to the feedback set, and
continues recursively in each part. The recursion ends when the graph does not contain any
interesting cycles. Each approximation algorithm applies a different criterion for choosing
the directed cut that partitions the graph. However, both algorithms relate the weight of
the cut to the cost of the fractional solution.

The first step in all feedback set approximation algorithms requires the computation of
an optimal fractional solution. Notice that the linear programming formulation of the Fvs
problem may contain an exponential number of constraints. Nevertheless, an optimal solu-
tion can be computed in this case in polynomial time by either using the Ellipsoid method
or interior point methods. In fact, it is possible to decrease the number of constraints to be
polynomial by reducing the Fvs problem to a multi-commodity flow [GVY93]. (But, then
the linear program is not positive anymore.) Using general linear programming methods is
usually undesirable, and algorithms that exploit the combinatorial structure of the problem
are sought when possible. Since we deal with approximation algorithms, we can actually
settle for an approximate (initial) fractional solution, where the approximation bound is a
constant.

In Section 5 we present a combinatorial algorithm that finds a (1 + €) approximation
to the fractional FvS and SUBSET-FVS problems. This algorithm is simple and also more



efficient than general linear programming methods. The complexity of our algorithm is
O(n?M (n)log? n) for any fixed e, where M (n) denotes the complexity of matrix multiplica-
tion. Our algorithm is based on a greedy (1+¢) approximation algorithm for the (fractional)
Set Cover Problem derived from a parallel algorithm for approximating positive linear pro-
gramming by Luby and Nisan [LN93]. We show how to adapt the approximate Set Cover
algorithm to the FvS and SUBSET-FVS problem, in spite of the fact that the number of
constraints in the corresponding Set Cover Problem is exponential. Plotkin, Shmoys and
Tardos [PSTI1] gave a general combinatorial approximation algorithm for fractional pack-
ing and covering problems. Their algorithm can also be applied to compute an approximate
fractional solution in our case. Our algorithm for computing an approximate fractional so-
lution differs significantly from the algorithm derived from [PST91]: They use a Lagrangian
relaxation technique on the dual problem, whereas we deal with the primal problem. The
complexity of the approximation algorithm of [PST91] is better than our algorithm by a
factor of O(n). However, we believe that our algorithm and its analysis are simpler.

Independently, Klein et al. [KPRT93] present a network decomposition for directed
graphs called symmetric multicuts. Using a weighted version of their decomposition they
derive an O(log? k) approximation algorithm for finding a minimum capacity subset of
edges that separates k given pairs of terminals. That is, for each pair (s;,¢;) there is
no cycle containing both s; and ¢;. The NP-Hardness of finding such a minimum capac-
ity cut follows from the reduction of the SUBSET-FES problem to this problem as shown
below. The decomposition algorithm in [KPRT93| is essentially the same as our algo-
rithm for approximating the minimum capacity multicut in circular networks. In fact,
we show in the sequel how our approximation algorithms can be applied to obtain an
O(min{log 7* log log 7*, log n log log n}, log? k) approximation algorithm for finding a mini-
mum capacity subset of edges that separates k given pairs of terminals, where 7* is the
optimal fractional solution.

To summarize, the results presented in this paper are:

1. Reductions between the various problems considered in the paper (§2).

2. A polynomial-time approximation algorithm for the multicut problem in circular net-
works that achieves an O(log? k) approximation factor, where k is the number of
source-sink pairs. We apply this algorithm to approximate the weighted SUBSET-FVS
and weighted SUBSET-FES problems and obtain an approximation factor of O(log? k),
where k is the number of vertices and edges that characterize the interesting cycles.

(83).

3. A polynomial-time approximation algorithm for the weighted SUBSET-FVS
and weighted SUBSET-FES problems that finds a feedback set with weight
O(min{7* log 7% log log 7*, 7* log |V'| log log |V'|}), where 7* is the cost of an optimum
fractional feedback set (§4). We note that this algorithm achieves the same approx-



imation factor for the multicut problem in circular networks since this problem is
equivalent to the subset feedback set problem.

4. A (1+e¢) factor approximation (combinatorial) algorithm for the fractional Fvs prob-
lem (§5).

2 The problems and reductions among them

In this section we define the problems that are considered in the paper. We describe various
versions of these problems and discuss reductions among them. In all the reductions, a
feasible solution is mapped to a feasible solution. Moreover, the cost of the feasible solutions
is preserved by the reductions, and therefore, an approximate solution to one problem can
be translated to an approximate solution to all other problems reducible to this problem.
Most of the reductions can be performed in linear time, and therefore, these problems can
be regarded as different representations of the same problem.

2.1 The problems

Let G = (V, E) denote a directed graph, where |[V| = n. There are two natural weight
functions that are associated with G: either weights on the edges, denoted by c(e) for
e € E, or weights on the vertices, denoted by ¢(v) for v € V. Let X denote a subset of the
vertices (edges) that are called special vertices (edges), and let | X| = k.

The first problems we consider are the minimum weight feedback vertex set (Fvs),
the minimum weight feedback edge set (FES) and their generalization to the SUBSET-FVS
and SUBSET-FES problems. All these problems are defined in the introduction. Another
extension of the FvSs problem that we consider is the BLACKOUT-FVS problem. In this
problem an additional subset of “blackout” vertices, B, is given. We allow only feedback
vertex sets that do not contain any vertex of B. In the BLACKOUT-FVS problem a minimum
weight feedback vertex set that does not contain vertices of B is sought.

We counsider the problem of finding minimum capacity multicuts in directed “circular”
multi-commodity networks. A network N = (‘77E~'7C(')7{(5i7ti)}i:1,...,k) is a quadruple,
where: (V,E) is a directed graph, c(-) is a capacity function defined on the edges, and
{(si,ti) };=1,.x are pairs of vertices called source-sink pairs. The capacity (or cost) of a
subset of edges, F C E, is defined by ¢(F) = > zcic(€). A multicut in a network is a
subset of edges, F' C F, such that for every source-sink pair, (s;,t;), every path in N from
s; to t; contains at least one edge of the set F. We consider special networks, which we call
circular networks. In circular networks there is an infinite capacity edge t; — s; for every
source-sink pair (s;,t;), and this edge is the only edge that emanates from ¢; and the only
one that enters s;. We note that the last condition, namely, that (s;,¢;) is the only edge



that emanates from ¢; and the only one that enters s;, is only used to show the equivalence
of this problem to the SUBSET-FES problem. However, our approximation algorithm is valid
even if this condition is not satisfied.

2.2 Reductions among the problems

In this subsection we show reductions between the problems presented in Section 2.1. These
reductions preserve feasible solutions and their cost, and therefore, these problems are
equally hard to approximate in polynomial time.

Characterizing interesting cycles

The subset, X C V U E, defining the interesting cycles can be assumed to contain only
vertices without loss of generality by the following reduction. Every edge u — v € X is
split by adding a new vertex a,, and by replacing u — v with u — ay, and ay, — v. Add
ayy to X instead of the edge u — v. If a feedback vertex set is sought, then set w(ay,) = 0.
If a feedback edge set is sought, then set w(u — ayy) = w(ayy — v) = w(u — v). There is a
1-1 correspondence between the interesting cycles before and after the reduction. Moreover,
there is a weight preserving correspondence between the finite weighted feedback vertex sets
before and after the reduction. (The same holds for feedback edge sets.) Conversely, we
note that the subset, X C V U E, defining the interesting cycles can be reduced to a subset
of edges by splitting the vertices in X.

FES < FVS

Construct the “directed line-graph”, G' = (V' E'), of G = (V, E) as follows: V' = E and
an edge in E’' connects v; — v € V' with v3 — vy € V' if and only if vo = v3. In the
weighted version, the weight of the “vertex” v; — vy € V' equals the weight of an edge
vy — v9 € E. A subset of edges, F, is a feedback edge set of G if and only if it is a feedback
vertex set of G'. Note that this reduction can be used to reduce SUBSET-FES problems to
SUBSET-FVS problems as well.

FVS < FES

Split every vertex, v € V, into two parts, v; and vs; all the edges that enter v are connected
to vy, and all the edges that emanate from v emanate from v,. Add an edge v1 — v9 for every
vertex v € V. All edges are given infinite weight, except for the edges {v; — vo : v € V'}
whose weight is ¢(v). There is a 1-1 correspondence between the finite weighted feedback
edge sets of the new graph and the feedback vertex sets of the original graph. Note that
this reduction can be used to reduce SUBSET-FVS problems to SUBSET-FES problems as well.



BLACKOUT-FVS < FVS

Blackout vertices can be handled by assigning them infinite weight. However, in certain
cases, we may need the following reduction. Bypass the vertices of the blackout vertices, B,
one by one as follows: For each blackout vertex, v € B, connect edges between every two
vertices that have a path of length two connecting them in which v is the middle vertex.
Remove the blackout vertex from the graph, and continue with the next vertex in B. A
subset of vertices, U, is a feedback vertex set that does not contain any vertex from B, if
and only if it is a feedback vertex set of the graph obtained by the reduction. Note that
this is the only reduction that requires more than linear time.

This reduction can also be extended to the case in which there is a subset X C F that
defines the interesting cycles. Namely, a cycle is interesting if only if it intersects X. A
problem with the reduction arises when an edge of X is incident to a blackout vertex, since
bypassing the blackout vertex removes this edge. We overcome this problem by adding a
new bypassing edge to X if the path of length two from which it originates contains an edge
of X.

SUBSET-FES < directed multicuts

We reduce an instance of SUBSET-FES where X C V to an instance of the minimum multicut
problem in circular networks, as follows. Construct the network N by breaking each vertex
u € X into a source-sink pair (s,,%,). Modify all edges entering u so that they enter t,,
and modify all edges leaving w so that they leave s,. The capacity of an edge is equal
to its weight in the subset feedback set problem. Also, connect t, to s, by an infinite
capacity edge. Notice that we defined circular networks in a way that makes this reduction
invertible. A SUBSET-FES instance is obtained from a circular network by coalescing all
source-sink pairs.

2.3 The relation between directed multicut problems

Klein et al. [KPRT93] consider the following directed decomposition problem. Given a
directed graph G = (V, E') with edge capacities, and k terminal pairs (s;,t;), find a multicut
that separates the pairs of terminals. Namely, after the removal of the edges of the multicut
either s; is not reachable from t;, or vice versa. Klein et al. present an algorithm that finds
an O(log? k) approximation of the minimum capacity of such a multicut.

The problem of finding minimum capacity multicuts in circular networks is easily re-
ducible to the problem considered by [KPRT93], since there are infinite capacity edges
from each sink to its corresponding source. Hence, the result presented in Section 3 can
be obtained from the work of [KPRT93]. Similarly, our algorithm presented in Section 3
can be applied to the multicut problem considered by [KPRT93] to yield an alternative



O(log? k) approximation algorithm. In fact, both algorithms can be viewed as extensions
of the work of [GVY93] to directed graphs. In Section 4 we show how to extend the algo-
rithm presented therein to the multicut problem considered by [KPRT93]. This yields an
O(min{log 7* log log 7*, log n loglog n}) approximation algorithm for this problem. In case
min{log 7* log log 7*,log n log log n} = o(log? k), this improves the O(log? k) approximation
of [KPRT93].

2.4 Finding an optimal fractional solution

Feedback set problems belong to the class of covering problems, where the elements cor-
respond to vertices or edges, and the subsets correspond to interesting cycles. A feedback
set problem can be cast as a linear integer program, whose fractional relaxation can be
solved efficiently. We describe the integer programming formulation for the case of a subset
feedback edge problem. (The vertex case is similar.) There is a variable for each edge e
denoted by d(e). (The variable is d(v) for v € V in the vertex case.)

Minimize Y c(e) - d(e)
ecEl

subject to Z d(e) > 1 for every interesting cycle C.
ecC
d(e) € {0,1} for every edge e € F

As can be seen from the formulation, in case we relax the integrality condition we get
a fractional feedback edge set: a function d : £ — [0,1] with the property that every
interesting cycle is of length at least one.

The (linear programming) dual of this covering problem is called a packing problem,
and in the case of the feedback edge set problem, this means assigning a dual variable
to all interesting cycles in the graph, such that for each edge, the sum of the variables
corresponding to all the interesting cycles passing through that edge is at most the weight
of the edge.

The linear program has an exponential number of constraints, but can be solved in
polynomial time through either the Ellipsoid method, or interior point methods [NN94].
These methods can be applied here, since a violated constraint can be found in polynomial

time.

As already mentioned, we can actually settle for an approximate solution of the above
linear program. This can be achieved by either the algorithm described in Section 5, or
through the methods of [PST91]. We note that Garg, Vazirani and Yannakakis [GVY93]
provide an equivalent LP formulation with polynomially many constraints, however, their



LP is not positive, and therefore, the techniques described in Section 5 are not applicable
to this formulation.

3 The first SUBSET-FVS approximation algorithm

In this section we show how to find a subset feedback edge set of a weighted directed graph
G = (V,E), where the interesting cycles are defined by a set of special vertices X C V,
such that |X| = k. The SUBSET-FES problem is considered for ease of presentation, but the
reduction from the SUBSET-FVS problem to the SUBSET-FES problem described in Section
2.2 implies that the results presented in this section hold for the SUBSET-FVS problem as
well. The weight of the feedback edge set found by the algorithm is O(7*-log? | X|), where 7*
is the weight of an optimal fractional feedback set. Therefore, we obtain an approximation
factor which is independent of the weight of the optimum (fractional) feedback edge set.

We apply the reduction to the directed multicut problem in circular networks given
in Section 2.2. Let N = (17, E,c(-), {(Sivti)}izl,...,k) be the directed network obtained by
reducing the SUBSET-FES instance to a multicut problem instance. Let 7* denote the cost of
an optimal fractional multicut in N. We show how to find a multicut of cost O(7* - log? k).

3.1 Overview

Our algorithm uses the undirected sphere growing technique of Garg, Vazirani and Yan-
nakakis [GVY93]. They used it to approximate the multicut problem in undirected net-
works. As we explain below, the application of this technique to the directed case does not
seem to be trivial.

To gain some intuition, let us first describe the algorithmn for the undirected case given
by [GVY93]. The algorithm consists of two stages. In the first stage, the fractional multicut
problem is solved (exactly) in polynomial time by any polynomial-time linear programming
algorithm. We regard the output values, d(e), as a distance function, where d(e) denotes
the distance between the tail and head of edge e. Note that the distance between s; and t; is
at least one. In the second stage we grow radial spheres around the sources. We start from
s1 and grow a radial sphere around it. (A radial sphere of radius r includes the subgraph
induced by all the vertices at distance at most r from s;.) We look for the sphere with the
smallest radius such that the cut separating it from the rest of the graph can be “charged”
to the cut edges and the edges inside the sphere. (The exact notion of the charging scheme is
omitted.) Garg, Vazirani and Yannakakis [GVY93] show that under an appropriate choice
of parameters, the radius of the sphere is bounded by 1/2. We add the cut corresponding
to this sphere to the multicut. Note that this cut separates s; from ¢;. Moreover, since no
source-sink pair (s;,t;) can appear inside a sphere (because its radius is at most 1/2, and
the graph is undirected), in case there exist some index 1 < j < k, such that either s; or



t; is in the sphere, the respective source-sink pair is also separated. Thus, after taking this
cut we can “throw away” all vertices in the sphere, and all edges that touch them. This
ensures that we will not “charge” these edges in subsequent iterations, in which we grow
spheres around other sources that are not yet separated.

Suppose that we wish to apply the same paradigm to the directed case. Consider a
sphere of radius r around s;. This sphere includes all vertices of distance r from s;. In the
application we face the following two problems: (1) The sphere may include a sink ¢; whose
source pair is outside the sphere. In order to separate s; from ¢;, and ¢; from s;, we have to
take both incoming and outgoing cuts; i.e., the edges going out from, and the edges coming
into the sphere. However, we cannot “charge” the edges in the sphere for both cuts. (2)
The sphere may include a source-sink pair (sj,t;), for j # 4. This may happen although
the distance from s; to t; is at least one; since, in a directed graph, both s; and ¢; may
be at distance at most r from s;. In this case, even after separating s; from ¢;, we cannot
“throw away” the vertices in the sphere. Thus we have to resort to “charging” the same
edges more than once.

We overcome these problems as follows. For the first problem, we note that in circular
networks, all edges e = t; — s;, for ¢ = 1,...,k, have infinite capacity edge. This implies
that all these edges have zero length. Thus, while growing a radial sphere around a source we
never encounter the situation where a sink is in the sphere while its source mate is outside.
To overcome the second problem, we limit the number of times each edge is charged. This
is done by growing disjoint spheres, one around s;, and the other around t;. (The latter
is a “reversed” sphere.) We may choose either sphere for the cut, and we will choose the
one that contains fewer source-sink pairs. This guarantees that an edge is charged only a

logarithmic number of times.

Below, we describe the algorithm in detail. First, we describe how to grow the spheres.
Then, we describe how to break the problem into small subproblems, such that each edge
is “charged” at most a logarithmic number of times.

3.2 The sphere growing procedure

In this subsection, we present an adaptation of the region growing procedure of Garg, Vazi-
rani and Yannakakis [GVY93]. The procedure of [GVY93] deals with undirected networks,
whereas our procedure deals with directed circular networks (as defined in Section 2.1).

Let {d(e)},_j denote a fractional multicut of the network IV, and let 7* denote the cost
of this fractional multicut. We show how to grow a sphere from a source, s;,.

Regard the values, d(e), as a distance function, where d(e) denotes the distance between
the tail and head of edge e. Define dist(u,v) as the length of the shortest path from u to
v. Order the vertices in ascending distance from s;,. Namely, vy = s;,, and dist(vy, vi+1) >
dist(vg,v;), for 1 < i < n.

10



We use the following notation:

¢
A;

dist(vg, v;)

> 1>

{vo,v1, ..., v }

For a set A;, i > 0, define the weight, wt(A;), as follows:

wiA) 2+ Y ele) d(e) + Y o) (-t

eCA;xA; e:(’Uj—YUk)EAZ‘X(‘/;—Ai)

The “credit” for the cut of the sphere A; is given by €-wt(A4;), for some parameter ¢ > 0
to be fixed in the analysis. Define a stopping index o by:

o = min {z c(cut(A;, A;)) < e- wt(Ai)} .

A, is the sphere found by the sphere growing procedure, since its cut can be charged to
e-wt(Ay).

The following claim follows Garg et al. [GVY93, Lemma 4.1].

Claim 1: The radius of the sphere A,, denoted ¢, satisfies £, < In(k + 1) /e.

3.3 Computing the multicut

We show how to use the sphere growing procedure to compute the multicut. This is done
by breaking up the problems into subproblems, each of size at most (k — 1)/2. We set
the sphere growing parameter to ¢ = 2In(k + 1). Using this parameter, we grow a sphere
around s;. Recall that if this sphere includes a sink ¢;, it also includes its mate s;. We also
grow another “reversed” sphere around t;. (A “reversed” sphere is a sphere computed in
the network given by flipping the directions of the edges.) Note that if this sphere includes
a source s;, it also includes its mate ¢;. Since the radius of each such sphere is less than
1/2, they are disjoint. Hence, one of them includes less than (k — 1)/2 source-sink pairs.
Suppose that this is the sphere around s;. The other possibility is analogous. We add the
edges going out from this sphere to the multicut. This separates all sources in the sphere
whose mate is not in this sphere. To separate the pairs included in the sphere we have
to solve the subproblem given by the network induced by the vertices inside the sphere.
This subproblem has no more than (£ — 1)/2 source-sink pairs. Now, if there are more
than (k —1)/2 source-sink pairs outside the sphere, we choose one such pair and repeat the
process. When we end the process we are left with subproblems each of which consists of
at most (k —1)/2 pairs and whose total size is bounded by the size of the original problem.
For a detailed description of the process see Figure 1.
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breaking-iteration (N, k,{d(e)}.cy)

N =N

K =k

1=10

while &' > (k —1)/2 do
begin
1=1+1
Let (s;,t;) denote a source-sink pair in N'.
Compute a sphere around s; and a “reversed” sphere around ¢;.
Let R; be the sphere with the least number of source-sink pairs.
N' = the network induced by the vertices of N that do not belong to R;.
k' = the number of source-sink pairs in N'.
end

1=1+1

R; = the vertices in N'.

Return Ri, Rg,..., R;

Figure 1: Breaking into subproblems

As explained above we associate a cut y(R;) with each selected sphere R;. Recall that
if R; is a sphere around a source, then y(R;) = cut(Rj,R;), and if R; is a “reversed”
sphere around a sink, then y(R;) = cut(R;,R;). Let {R;} ; denote all selected spheres
computed recursively, until no sphere contains a source-sink pair. The set of edges U;v(R;)
is a multicut.

We analyze the cost of the multicut, U;v(R;). Fix a network, N, with n vertices and
k source-sink pairs. Let cut(n, k) denote the maximum cost of the multicut found by our
procedure. Let Ry,..., R, denote the spheres selected in the top level of the process (i.e., in
breaking into subproblems with no more than (k — 1)/2 pairs). Let n; denote the number
of vertices in R;, and k; denote the number of source-sink pairs in R;. Then, cut(n,k)
satisfies the following recurrence inequality:

0 ifk=0

tin, k) <
cut(n, k) < { 22210(7(}23')) + 27;’:1 cut(nj, k;) otherwise

Where 357 nj=n, 35 kj =k —r,and 0 < k;j < k/2, for every j.
Claim 2: If ¢ = 2In(k + 1), then cut(n, k) < 4-1n(2) - 7* - log?(k + 1).
Proof: We first show that the cost of the cuts chosen in each level of the recursion

is bounded by 2e7*. The spheres Ry,..., R, are disjoint, and hence, the subprobelms in
each level are disjoint. To bound the sum of the weights of the subproblems, consider, for
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example, the top level: 377 wt(R;) < 7" +r-7%/k < 2. 7". The additional ¢ factor is the
ratio between the capacity of the cut y(R;) and wt(R;).

The recursion depth is bounded by logk, because k; < (k —1)/2. Hence, cut(n, k) is
bounded by 2e7* - log k, which is bounded by 4 - In(2) - 7* - log?(k + 1). O

A more careful analysis of cut(n, k) shows that the 4 - In(2) factor can be improved to
2-In(2) - (1 + Wlﬂ)—l) This value is at most 4 - 1In(2), and tends to 2-1n(2) as k grows.

4 The second SUBSET-FVS approximation algorithm

In this section we describe an algorithm for approximating the minimum weight SUBSET-FVS
of a weighted directed graph G = (V, E). The reductions from SUBSET-FES to SUBSET-FVS
shown in Section 2.2 imply that the results of this section hold for the SUBSET-FES problem
as well. The algorithm presented in this section is an algorithmic adaptation of Seymour’s
paper [Se95], which we extend to the weighted subset feedback set problem. The presented
algorithm is not the most efficient implementation of Seymour’s ideas, however, it is simpler
than the more efficient implementation presented in [ENRS95]

Let d(v) denote the fractional value of vertex v € V in the solution produced by the
linear programming formulation of the SUBSET-FVS problem, and let 7* denote the value of
the optimal fractional SUBSET-FVS. Without loss of generality we can assume that d(v) = 0,
for all special vertices v € X. (This can be obtained by splitting special vertices into two
vertices.)

4.1 Modifying the graph
We first show how to modify the fractional solution so that all values attached to vertices

are integral multiples of 1/2n. This modification increases the cost of the fractional solution
by at most a factor of 4. We define the following fractional SUBSET-FVs d':

0 if d(v) <1/2n
d'(v) =
(v) { 2-d(v) otherwise.

The following proposition is immediate.

Proposition 3: The function d’ is a feasible SUBSET-FVS and its weight is at most 277*.

We now round up each value of d' to the nearest integral multiple of 1/2n. This clearly
preserves feasibility, and increases the cost by at most a factor of two. Let us denote the

new fractional SUBSET-FVS by d”. Its cost is at most 47*. Since these modifications in
the fractional solution changed the value of the fractional feedback set by only a constant

13



multiplicative factor, we can henceforth rename d” and call it d, and also let 7* be the
changed value of the fractional feedback set.

We now modify the graph as follows. All non-special vertices v for which d(v) = 0 are
marked as blackout vertices, and we delete them from the graph by using the reduction
BLACKOUT-FVS = FVS described in section 2.2. This reduction is needed for the strongly
polynomial bounds achieved in Section 4.4.

Next, we “equalize” the graph G into graph H as follows. For each non-special vertex
v, we replace it by a directed chain of vertices v; — ... — vy where ¢ = d(v) - 2n. By the
above discussion, £ is a positive integer. Set the weight of each vertex v;, 1 <1i </, to ¢(v).
For each edge © — v € E(G), we add a directed edge from the last vertex of u’s chain to
the first vertex of v’s chain. The girth of a graph is defined to be the length of a shortest
cycle in the graph. Here, we modify the definition of the girth with respect to the graph H
as follows: the girth of H, denoted by girth(H), equals the minimum, over all interesting
cycles, of the number of non-special vertices in the cycle. The next lemma summarizes the
properties of the graph H.

Lemma 4: [Se95] Graph H has the following properties:

(i) There is a 1-1 correspondence between the interesting cycles of G and H. There is also a
weight preserving correspondence between the (fractional) feedback vertex sets of G and H.
(ii) The girth of H satisfies:

wt(V(H))

irth(H) >
girth(H) > “

, where wt(V (H)) is the total weight of the vertices in H.
Proof:  Property (i) follows from the “equalizing” transformation. Any SUBSET-FVS of G
can be transformed into an SUBSET-FVS of H by assigning the value of each vertex v € V(G)
to the first vertex in v’s chain. All other vertices are assigned value zero. Conversely, given
an SUBSET-FVS of H, construct an SUBSET-FVS of G by assigning each vertex v € V(G) the
sum of the values of the vertices in its corresponding chain in H.

Property (ii) follows by observing that

wt(V(H)) = Z c(v)-d(v)-2n=2n- 71"
veV(Q)

and that each interesting cycle C' € H contains at least

Z d(v) -2n > 2n
vel

non-special vertices, where C is the cycle in G corresponding to C. Since C is an arbitrary
interesting cycle in H
wt(V(H))

T*

girth(H) >

14



The above lemma implies that the problem of finding an SUBSET-FVS in an arbitrary
graph G is equivalent to finding an SUBSET-FVS in a graph H with the property that its
girth, and the weight of its optimal (fractional) SUBSET-FVS are inversely related. Notice
that by assigning each non-special vertex in H the value 1/girth(H), we obtain a near-
optimal fractional SUBSET-FVS of H. Therefore, we consider H to be “equalized”.

4.2 The algorithm

We present the algorithm for approximating the SUBSET-FVS problem in the graph H.
Seymour [Se95] defines the function p as follows:

(z) = 0 itz <1
E= 4a- In(4z) - Inlog(4z) otherwise.

The algorithm for approximating the optimal weighted SUBSET-FVS proceeds recursively
as follows. The graph is first partitioned into strongly connected components. If a strongly
connected component lacks vertices of X, then an empty set is a valid feedback vertex set
with respect to this component. Otherwise, a directed separator S is computed (separately)
for all strongly connected components containing at least one vertex of X. We henceforth
assume that H is strongly connected. A directed separator partitions the vertices of H into
three disjoint subsets: A, S, and B, such that there are no directed edges from A to B. The
directed separator is computed by the procedure separator (H = (V,E),c(-),g) depicted
in Figure 2. (The parameters to this procedure are the graph H, the weight function c(-),
and a lower bound on the girth of H.) We add the vertices of S to the SUBSET-FVS, and
recursively compute a SUBSET-FVS of the subgraphs induced by A and B. In Procedure
separator, we perform a Breadth-First-Search (BFS) starting from a special vertex vy. The
distance dist(vg,u) used in the BFS is the minimum, over all paths from vy to u, of the
number of non-special vertices along a path. It is important that in Procedure separator,
the BFS starts from a special vertex. This ensures that the BFS contains at least g layers.

Theorem 5:  Suppose that the girth of graph H is at least g. The algorithm finds a

SUBSET-FVS of H whose weight is at most (W)

Combining Theorem 5 with Lemma 4 and setting g = girth(H) yields the following corol-
lary.

Corollary 6: Let H denote the directed graph obtained by modifying the graph G as described
in subsection 4.1. Let U C V(H) denote the SUBSET-FVS of H, found by the algorithm. Let
U C V(@) denote the SUBSET-FVS of G that corresponds to U. Then,

wt(U) < p(r*) < 47% -In(47%) - Inlog(47").
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separator (H = (V, E),c(+), 9)

Choose a vertex vy € X.

Counstruct “layers” starting from vy as follows:
Fori=1,...,(g — 1) define

Li 2 {ueV —X :dist(vy,u) =i}.

Ly £ V(H) - U, L.

1=0

repeat
1=1+1
Ai £ {u eV : dist(vg,u) <i}.
B2V — A; — L,.

until wt(Li) < p (wt(V(H))/g) — p (wi(Ai)/g) — p (wt(Bi)/g).

return(Ai, Li, Bz)

Figure 2: The directed separator algorithm.

Hence, an O(log 7* log log 7*)-approximation algorithm is obtained.

4.3 Proof of Theorem 5

We begin with the following lemma of Seymour [Se95, Lemma 2.3].

Lemma 7: Let £ > 0 be a real number. For 0 < z <1, let y(-) be a real-valued continuous
function of x, such that y(0) > 0, y(1) < 1, and for all h € [0,1] — I, where I C [0,1] is

some finite subset of [0,1], y(-) is differentiable, and % > 7. Then, there exists h with

=h
1/4 < h < 3/4, h &I, such that :

'Y

2| S el —pty(h)) — u(l(1 = y(h)).

z=h

The following claim establishes that procedure separator (H = (V, E),c(-),g) is success-
ful in finding a directed separator. We use the same notation as in the procedure.

Claim 8: There exists a layer, L;, that satisfies:

iy < (B (s40) ()
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Proof:  Define the function y(z) in the interval [0, 1] as follows:

a) & s (WHA) + (g =+ 1) - wt(L)

where i = [gz].

The function y(z) satisfies the requirements of Lemma 7, for ¢ = wt(V(H))/g. (Recall
that all weights are greater than 1. This guarantees that % weh = %) Therefore, there
exists an h € (1/4,3/4), h ¢ {1/g,2/g,...,1} for which

W < u(l) — wley) — (et ).
z=h

Define ¢ = [gh]. We claim that the following three equations hold:

wi(L) = zj—z B (1)

) < 0yt @)

w“gBi) < -(1-yh) (3)
_ _gwi(L;)

Proof of (1) follows from the fact that %| o—h = wigr () and from the definition of £.

Proofs of (2) and (3) follow from the observation that
wt(A;) < y(h) - wt(V(H)) < wi(V(H)) — wt(B;).

Since the function p(-) is monotone non-decreasing, the claim follows. O

We have established that procedure separator (H = (V, E), c(+), g) is successful in finding

a directed separator.

The proof of the theorem follows by induction on |V (H)|. The induction basis is imme-
diate. Assume that it holds for graphs with less than |V (H)| vertices. Since the separator
S decomposes the graph into two subgraphs A and B, we obtain the following recurrence:

wt(SUBSET-FVS(H)) < wt(SUBSET-FVS(A)) + wt(SUBSET-FVS(B)) + wt(S),

where SUBSET-FVS(G) denotes the subset feedback vertex set found by the algorithm on
graph G. Since girth(A) > girth(H), and |[V(A]) < |V(H)], it follows by the induc-
tion hypothesis that wt(SUBSET-FVS(A)) < p(wt(A)/g). Similarly, wt(SUBSET-FVS(B)) <
p (wt(B)/g). Therefore,

wt(SUBSET-FVS(A)) + wt(SUBSET-FVS(B)) + wt(S) < pu(wt(A)/g) + p (wt(B)/g) + wi(S).
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By the definition of S, it follows that the right hand side of the previous equation is bounded
by u (M) Consequently.

9 ) ’
wt(V(H )))

wt(SUBSET-FVS(H)) < < p

and the theorem follows. O

The role of the function y(x) is very similar to the region growing procedures in the works
of [LR88, KRAR95, GVY93]. Seymour’s refined analysis improves the stopping condition,
and the recurrence equation obtained by the decomposition scheme has a smaller upper
bound.

4.4 Strongly polynomial approximation bounds and running times

The approximation bounds obtained in Corollary 6 may be very weak, in cases where
the cost of an optimal fractional subset feedback vertex set, 7%, is super-polynomial in
n = |V(G)|. To overcome this problem we “truncate” the vertex weights to obtain a
SUBSET-FVS of weight O(7* - lnn - loglogn).

We truncate the vertex weights as follows. Let IN 2 {v € V : ¢(v) < 7*/n} and let
OUT £ {v € V : ¢(v) > 7* - n}. We add all vertices of IN to the SUBSET-Fvs. This increases
the total weight of the approximate SUBSET-FVS by at most 7*. All non-special vertices of
OUT are marked as blackout vertices. This can be done since it is guaranteed that none
of the vertices in OUT participates in an integral optimal SUBSET-FVS. The latter follows
by observing that the ratio between the values of an optimal integral SUBSET-FVS and an
optimal fractional SUBSET-FVS is at most n. (Given a fractional SUBSET-FVS, if one rounds
up to 1 all values that are bigger than or equal to 1/n, and rounds down to 0 all other
values, then a feasible integral SUBSET-FVS is obtained.)

In the remaining graph the ratio between the maximum and minimum weights of vertices
is bounded by n?. (Had we increased the weight of a blackout vertex to infinity, the ratio
would have been much higher.) Hence, after normalizing the vertex weights, the cost of an
optimal fractional SUBSET-FVS is a polynomial in n, and the modified (equalized) graph,
H, is also of polynomial size. Therefore, the algorithm finds an SUBSET-FVS of weight at
most O(7* Innloglogn).

4.5 Finding multicuts that separate pairs of terminals

We now turn to the decomposition problem considered in Klein et al. [KPRT93] defined
as follows. Given a directed graph G = (V,E) with edge capacities, and k terminal
pairs (s;,t;), find a multicut that separates the pairs of terminals. Namely, after the
removal of the edges of the multicut either s; is not reachable from ¢;, or vice versa.
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Klein et al. present an algorithm that finds an O(log? k) approximation of the minimum
capacity of such a multicut. The algorithm given in this section can be extended to get
an O(min{log 7*loglog 7*,log n loglog n}) approximation algorithm for this decomposition
problem as follows.

First, reduce the multicut problem to a version of the SUBSET-FVS problem in which
the interesting cycles are cycles that pass through a pair of terminals. (Note that our
algorithm does not consider this version of the SUBSET-FVS problem.) Let 7% denote the
optimal fractional solution of this SUBSET-FVS problem. Equalize the graph as described
in Subsection 4.1 to obtain a graph H with an inverse relation between the length of the
interesting cycles and the cost 7*. Let g denote the length of the shortest interesting cycle
after equalizing the graph.

The graph H is decomposed by removing vertices until there are no terminal pairs with
both ends in the same strongly connected component of H. Suppose that the terminal pair
(84, t;) is in the same strongly connected component of H. Assume without loss of generality
that g is even and the shortest path from s; to ¢; contains g/2 non-terminal vertices. (Either
this holds or the shortest path from ¢; to s; contains g/2 non-terminal vertices.) The cut that
separates the pair is computed by the procedure cut (H = (V, E), (s;,t;),c(-),g) depicted
in Figure 3. (The parameters to this procedure are the graph H, the terminal pair (s;,t;),
the weight function ¢(-), and a lower bound on the girth of H.)

cut (H = (Va E)a (Sia ti)a C('), g)
Construct “layers” starting from s; as follows:
For j =1,...,(g/2 — 1) define
L; = {v eV :dist(si,v) = j}.
A
Lgj2 =V = Ujcyalj.

J=0
repeat
j=j+1

Aj 2 {v eV : dist(s;,v) < j}.

Bj =V — A - L;.
until wi(Ly) < p Qwi(V(H))/g) — p (2wt(4;)/9) — p (2wi(Bj)/9g)
return(Aj, Lj, B])

Figure 3: The algorithm for computing the cut.

It is not difficult to see that the same analysis holds for this version of the algorithm
also, and hence, an O(min{log 7* log log 7%, log n log log n}) approximation algorithm for this
problem is obtained.
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5 Approximating the fractional optimal solution

In this section we show that an approximation by a (1 + ¢) factor to the fractional FVS
and SUBSET-FVS problems can be computed efficiently by a combinatorial algorithm. Our
algorithm is based on a (1 + ¢)-approximation algorithm for the more general (fractional)
Set Cover problem which is derived from a parallel algorithm for approximating positive
linear programming by Luby and Nisan [LN93]. An important feature of the Set Cover
algorithm is that the dependence of its complexity on the number of sets in the set system
is only logarithmic.

The (fractional) Set Cover Problem is defined as follows. Let (V, F,c(-)) be a set systen,
where V' is a universal set, F is a collection of subsets of elements from V, and ¢(-) is a
non-negative cost function associated with each element of V. Let |V| =n and |F| =m. A
cover of all the subsets in F is a collection of fractions of the elements in V' such that the
sum of the fractions chosen from the elements in each subset S € F is at least one. The goal
is to find a minimum cost fractional cover. (The cost of a fraction element is the respective
fraction of its cost.) In the literature, this problem is also referred to as the Hitting Set
problem. We note that in the integer version of this problem a cover must include whole
elements rather than fractions.

We represent Feedback Set problems as Set Cover problems by viewing the cycles as the
subsets in the set system, and the vertices as elements.

In Section 5.2, we present an implementation of the Set Cover algorithm for Feedback Set
problems that uses a succinct representation of the set of cycles in the graph, which might be
exponentially large. The algorithm is presented for the fractional Fvs problem. However,
it can be easily modified to handle the covering problem associated with a SUBSET-FVS
problem.

5.1 A (1 +¢)-approximation Set Cover algorithm

The algorithm associates an attraction function p(-) with each subset, where initially, p(S) =
1 for each S € F. The attraction of the set system is denoted by p(F) and is equal to
> s5e7P(S). Define the attraction p(v) of an element v € V' to be > g.,cqp(S).

The approzimate_SC algorithm depicted in Figure 4 computes a multi-cover of F, i.e., a
cover that may contain an element several times. Let £(v) denote the multiplicity of element
v € V in the multi-cover computed by the algorithm. The fractional cover is derived by
normalizing the values of £(v) as follows:

P0) £ ) 5

' Ao lnm
Note that the stopping condition of the repeat loop can be replaced by p(S) < m™—*2,
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approzimate_SC (V, F,c(-),€)
Ife >1thene=1.
Define: A; = 14 ¢/4 and Ay = 4/¢
Vo eV :4(v) =0.
VS e F:p(S) =1
repeat

Choose an element in {v € V' : p(v) > m~*2} that minimizes the ratio %.

L(v) «+ L(v) +1

V.S such that v € S: p(S) « p(S)/\1.
until p(v) < m™*2 for every v € V.
return({¢(v) : v € V'})

Figure 4: The integral multi cover approximation algorithm.

for every S € F. Due to efficient implementation considerations, as described in Section
5.2, we choose the stricter stopping condition.

Theorem 9: The function ¢ is a feasible cover of F.

Proof: Consider a subset S and an element v € S. When Algorithm approzimate_SC

terminates, p(S) < p(v) < m~*2. Since the attraction of S decreases by a factor of \; each

time an element belonging to S is chosen, we get that S is covered at least )‘fnlilm times,

e, D ywes l(v) > )‘fnl—ilm Consequently, ¢ defines a feasible cover for F. O

Theorem 10: The number of iterations of the algorithm is O (¢72 - nlnm).

Proof: Each element is chosen at most )‘fnlglm + 1 times. Since InA; > ¢/8, if ¢ <1, the

total number of iterations is O (€72 - nlum), as required. O

Let 7* denote the cost of an optimal fractional cover, and let 7*(v) denote the fractional
value assigned to vertex v in some fixed optimal solution.

Theorem 11: The cost of the function ¢ is at most (1 + €) times the cost of an optimal
fractional cover, namely, >,y ¢(v) - c(v) < (1 +¢) - 7"

Proof: We first show that

S e(w) - €(v) < Aﬁi ~[Oo+ )l + ] ()
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Let p;(S) and p;(v) denote the attraction of subset S and element v in the beginning
of the ith iteration of the algorithm. Suppose v; is the element chosen in the ith iteration.
We claim that

(5)

First, consider the sum >, 7*(v)p;(v),

> T (Wpilv) = Z(T*(v) > pi(5)>

Now, Equation (5) is proved as follows:

We now bound the ratio between p;(F) and p;11(F) at each iteration 7. The decrease in
p;i(F) is precisely (1 — )\il) - p;i(v;), and hence,

pin(F) _PilF) - (1 - z\%) pivi) f - Q=D epile) (1) - cfw)

pi(F) pi(F) - NP ST e (6)

where the last inequality follows from (5).

Let I denote the number of iterations of the algorithm, and let ¢ = Y1, ¢(v;)/I. We
claim that, for every p > 0,

1

(-5 < (55%) "

i—1 p-7t p-7t

To prove Equation (7) we consider the logarithms of both sides, and divide both sides by
I. The left hand side equals then,

%-log (Z_f[l <1_ ;(ti)) _ %.élog <1 _ ;(U;l)
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and by Jensen’s Inequality,

—2}0( )><1g(zédi—ﬁ?)):bg0 2%;5?»:A%<1_piJa

which finishes the proof of Equation (7).

By the initial assignment to p(S), it follows that p;(F) = m. Consider a vertex v for
which pr(v) > m~™2. Then, p;41(v) > m™*2/A1, and thus, pr41(F) > m™2/);. Hence,

1 < pr+1(F)
AmAeth = py(F)

We upper bound the same ratio using Equations (6) and (7), where p = /\l)‘il:
mﬂ mﬂm)§ﬁ<Lxh—ndm>g<th—nﬁf
i1 pl(}—) -1 )\17'* )\17'*

We get

I
1 S (1 _ ()\1 — 1)C>
)\1m)‘2+1 )\17'*

Take the natural logarithm of both hands. Because of Equation (5) C(Tv,f) < 1, for all
1 <4< 1I. Hence, 0 < % < 1, and we can apply the inequality z < —In(1 — z), for
0 <z<1, toget that

(A —1)C

M+ 1) lnm+In)\ >1T-
AT

Rearranging the terms we get

I

A
Zc(vi) =I-¢< [+ 1)lnm+In\]r*
=1 >\1 -1

which proves Equation (4). The fractional cover, ¢, is obtained by dividing the multiplicity,

£(v), by Aalnm o1 every element v. The resulting bound on the cost of the fractional cover
In A1
is
In >\1 In )\1 )\1

1
;C(U) Xlnm = A lnm )\1_1[(2+ YInm 4+ In |7

Since (InA;) < (A — 1), it follows that

1 In \;
<A |14 —
( + A9 + A9 lnm>

AS)

Substituting \; = 14+¢/4 and Ay = 4/¢, we get the stated bound for e <1, 1i.e., ¢ < (14¢)7*
a



5.2 Implementing the fractional Fvs algorithm

The Fvs problem naturally reduces to a Set Cover problem by defining the vertices of the
graph as elements and the simple directed cycles as the subsets of the set system. How-
ever, a naive implementation of algorithm approzimate_SC would take exponential time,
since the size of the set system might be exponential, and the algorithm requires attach-
ing an “attraction” p(S) to every subset S, updating these attractions, and calculating
p(v) = Y Ap(S)lv € S}, for every vertex v. In this section, we present a more involved
implementation that runs in polynomial time.

First, we modify the input graph G = (V, E)) by splitting each vertex v € V into a “left”
vertex v’ and a “right” vertex v”, where the incoming edges into v now enter v, and the
outgoing edges from v now leave v”. In addition there is a directed edge from v' to v”, and
a self loop on v”. The new graph is denoted by G’ = (V', E').

We redefine the Set Cover problem that corresponds to the Fvs problem on G. Consider
the set of all simple and non-simple directed cycles in G’ of length |V’| that contain at
least one “left” vertex. Every such cycle in G’ corresponds to a simple directed cycle in
G by eliminating the self loops and merging all adjacent “left” and “right” vertices. (In
case the resulting cycle is non-simple, pick any simple sub-cycle in it.) Conversely, every
simple directed cycle in G has at least one corresponding cycle of length |V'| in G’ that
contains a “left” vertex. Clearly, this correspondence is not one-to-one, and cycles in G
may have several corresponding closed paths in G’. Nevertheless, the problem of covering
with “left” vertices all cycles of length |V’| in G’ that contain a “left” vertex is equivalent
to the original FvS problem. The “redundancy” in G’ facilitates efficient implementation
as described below.

Let A denote the adjacency matrix of graph G', and let B = AlY’'l. The entry B(v',v)
equals the number of cycles of length |V'| that contain v'. Thus, B(v',v') equals p(v')
after initialization in the approzimate_SC algorithm. Intermediate values of p(v') can be
computed as follows. Suppose that vertex v/ € V' is chosen at some iteration. Update
the value of the entry A(v',v"), which corresponds to edge v' — v”, by dividing it by A;.
Consequently, the attraction of every cycle that contains v is divided by A¥, where k denotes
the number of times v is contained in the cycle. Note that this deviation from the algorithm,
namely, dividing the attraction of a cycle by A¥ (for k > 1) instead of A;, is immaterial,
since it suffices to cover cycles of length |[V'| in G’ in which each “left” vertex appears at
most once. Hence, the updated entry B(v',v') equals the new value of p(v'). Note that
the value m denoting the total number of subsets in the set system can be replaced by

2n

any upper bound on it, e.g., m < (2n) This completes the description of an efficient

implementation of the approximate Set Cover algorithm for the Fvs problem.
The number of cycles considered by the above algorithm is at most (2n)?". Hence, the

number of iterations of the algorithm is at most O(s =% - n?logn). The complexity of each
iteration is dominated by the complexity of computing the matrix B which is O(M (n) log n),
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where M (n) denotes the complexity of matrix multiplication. Hence, the complexity of the
algorithm is O(e2n?M (n) log®n).

6 Remark: the NP-hardness of the problems

In [YKCP83] Yannakakis et al. show that the following DCUT problem is NP-Hard.
Input: A directed graph H = (N, F'), a directed graph G = (V, E) with positive weights
w(e) associated with each edge e € E, a 1-1 mapping f : N — V, and an integer k.
Question: Is there a subset S C F such that: ) cqw(e) <k, and if (u,v) € F, then there
is no directed path from f(u) to f(v) in (V,E — 5).

It is easy to see that the problem of finding minimum capacity multicuts in circular
networks is a special case of the DCUT problem. In this special case the vertices of the
“pattern graph” H = (N, F) correspond to the terminals in the multicut problem, and the
set of edges F' consists of a directed edge from each source to its corresponding sink.

Since the multicut problem in circular networks is easily reducible to the symmetric
multicut problem considered by [KPRT93], the symmetric multicut problem is also NP-
Hard.

In the NP-Hardness proof of [YKCP83], the problem is first reduced to the case where
the “pattern graph” H has no vertex with both incoming and outgoing edges. This is done
by splitting each vertex v in H with both incoming and outgoing edges into two vertices
Ui and Uy such that all the edges coming into v are now coming into w;,, and all the
edges going out from u are now going out from wuey,s. Accordingly, the vertex v in G that
corresponds to w is split into v;;, and v, all edges originally coming into v are set to enter
Vin, and all edges originally going out from v are set leave vyys. Also, vgy is connected to
vip, by an infinite capacity edge.

Then, it is proved that for such modified “pattern graphs”, if H is not a complete bi-
partite graph, then the DCUT problem is NP-Hard even if H consists of only four vertices
and all the weights are one. This implies that the multicut problem in circular networks
is NP-Hard even if there are only two pairs of terminals and all the weights are one. Con-
sequently, the SUBSET-FES problem is NP-Hard even if there are only two special vertices
and all the weights are one.

We note that in order for the NP-Hardness proof in [YKCP83] to apply for the case
where the original “pattern graph” H counsists of vertices with both incoming and outgoing
edges, (and in particular to the multicut problem in circular networks and to the SUBSET-FES
problem), we have to consider the special case in which the graph G contains infinite capacity
edges between pairs of vertices. (These are the pairs of vertices that are constructed by
splitting vertices in the original graph G.) Although the construction in [YKCP83] does
not consider this special case, it is easy to see that by a minor change in their construction,
this case is covered as well.
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