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Abstra
tThis paper deals with approximating feedba
k sets in dire
ted graphs. We 
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ted graph with weights (ea
h of whi
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es (resp. edges),and is asked to �nd a subset of verti
es (resp. edges) with minimum total weight thatinterse
ts every dire
ted 
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alNP-Hard problems and have many appli
ations. We also 
onsider a generalization ofthese problems: subset-fvs and subset-fes, in whi
h the feedba
k set has to interse
tonly a subset of the dire
ted 
y
les in the graph. This subset 
onsists of all the 
y
lesthat go through a distinguished input subset of verti
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ontribution of our paper is a
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1 Introdu
tionThis paper deals with approximating feedba
k sets in dire
ted graphs. We 
onsider tworelated problems: the weighted feedba
k vertex set (fvs) problem, and the weighted feedba
kedge set problem (fes). In the fvs problem, one is given a dire
ted graph with weightson the verti
es, and is asked to �nd a subset of verti
es with minimum total weight thatinterse
ts every dire
ted 
y
le in the graph. In the fes problem, one is given a dire
tedgraph with weights on the edges, and is asked to �nd a subset of edges with minimumtotal weight that interse
ts every 
y
le in the graph. We assume that all weights are atleast 1. The unweighted versions of these problems are 
lassi
al NP-Hard problems, andappear in Karp's seminal paper [K72℄. The fes and fvs problems are redu
ible to oneanother (x2). These redu
tions preserve approximations, namely, feedba
k vertex sets aremapped to feedba
k edge sets with the same weight and vi
e-versa. Hen
e, these problemsare equally hard to approximate in polynomial time.The problem of �nding feedba
k sets arises in a variety of appli
ations. One of themost interesting and important appli
ations has to do with testing 
ir
uits. A 
ir
uit
an be modeled by a dire
ted graph where the verti
es represent gates (whi
h 
omputeboolean fun
tions) and the dire
ted edges represent wires that 
onne
t gates [LS91℄. Looselyspeaking, �nding a small feedba
k edge set in this graph helps to redu
e the hardwareoverhead required for testing the 
ir
uit using \s
an registers" [GGB89, KW90℄. Otherappli
ations have to do with eÆ
ient deadlo
k resolution, and analyzing manufa
turingpro
esses.We also 
onsider a generalization of the fes and fvs problems whi
h we 
all thesubset-fes and subset-fvs problems. In these problems, only a subset of the dire
ted
y
les in the graph is 
onsidered interesting. A feedba
k edge set with respe
t to the inter-esting 
y
les is a subset of edges that interse
ts every interesting 
y
le. Similarly, a feedba
kvertex set with respe
t to the interesting 
y
les is a subset of verti
es that interse
ts everyinteresting 
y
le. The interesting sets of 
y
les that we 
onsider are 
hara
terized by asubset of verti
es and edges. Namely, given a subset X (of spe
ial verti
es and edges), theset of interesting 
y
les 
hara
terized by X is the set of all 
y
les that interse
t X. In thesubset-fes (resp. subset-fvs) problem the goal is to �nd a minimum weight feedba
kedge (resp. vertex) set with respe
t to the interesting 
y
les. The subset-fvs (subset-fes)problem is NP-Hard even when the interesting 
y
les are 
hara
terized by a set X 
ontain-ing only two verti
es, as follows from the work of [YKCP83℄. (See also a remark at theend of the paper.) On the other hand, if X 
onsists of a single vertex then the subset-fesand the subset-fvs problems 
an be solved in polynomial time by 
omputing a minimum
ut. (This is not the 
ase in undire
ted graphs where the subset-fes and the subset-fvsproblems remain NP-Hard even if X 
onsists of a single vertex.)The motivation of this generalization is two-fold. First, in some of the appli
ations wemay only be interested in 
y
les that interse
t a subset of the verti
es and edges, e.g., when1



testing only part of a 
ir
uit. Se
ond, from the theoreti
al standpoint, it is interestingwhether the quality of the approximation depends on the size of the set that 
hara
terizesthe interesting subset of 
y
les.The relation between feedba
k set problems and multi
ut problems (�rst observed byLeighton and Rao [LR88℄), motivated many resear
hers to fo
us their attention on multi
utproblems. This problem was �rst de�ned by Hu [H63℄ as follows. Given a 
apa
itatednetwork, and a set of k sour
e-sink pairs, �nd a minimum 
apa
ity set of edges whoseremoval dis
onne
ts all the sour
e-sink pairs. This problem is NP-Hard in general. We de�nea dire
ted multi
ut problem in spe
ial type of networks whi
h we 
all 
ir
ular networks. Weshow that the subset feedba
k set problem is equivalent to the dire
ted multi
ut problemin su
h networks.An obvious lower bound on the 
ardinality of a minimum fes (fvs) is the maximumnumber of edge (vertex) disjoint dire
ted 
y
les in the graph. We assume here that thegraph is unweighted. We note that there are 
ertain families of graphs for whi
h a mini-max theorem relating the 
ardinality of a minimum feedba
k set with the maximum num-ber of disjoint dire
ted 
y
les exists. For example, it follows from the Lu

hesi-YoungerTheorem [LY78℄ that a minimax theorem for the edge version 
an be proved for dire
tedplanar graphs, and also an optimal fes 
an be 
omputed in polynomial time. (See [GW96℄for approximation algorithms for the vertex version.) For redu
ible 
ow graphs, minimaxtheorems exist for both edge [Ra90℄ and vertex [FG76℄ versions. In the edge version, Ra-ma
handran [Ra88℄ provides a polynomial time algorithm for �nding an optimal fes.The �rst approximation algorithm for the fes problem was given by Leighton andRao [LR88℄ (and followed by [KST90℄). Their approximation fa
tor is O(log2 n) in theunweighted 
ase, where n is the number of verti
es in the graph. Leighton and Rao a
hievethis bound by using an O(log n) approximation algorithm for a dire
ted separator thatsplits the graph into two (approximately) equal sized 
omponents. This separator is foundby approximating spe
ial 
uts whi
h are 
alled quotient 
uts.Re
ently, there has been mu
h progress in approximating the multi
ut problem in theundire
ted 
ase. Most notably, Garg, Vazirani and Yannakakis [GVY93℄ a
hieved a O(log k)approximation fa
tor for this problem. They introdu
ed a novel \sphere growing" te
hnique,re�ning and simplifying previous works of [LR88, KRAR95℄. A
tually, the O(log k) fa
tora
hieved in [GVY93℄ is with respe
t to the optimal fra
tional solution of the multi
utproblem. Garg, Vazirani and Yannakakis also show that this is the best one 
an hope for,by demonstrating a graph in whi
h the gap between the fra
tional and integral solution isindeed 
(log k). To the best of our knowledge, no approximation is known for the multi
utproblem in general dire
ted graphs.The �rst result we present is an approximation algorithm that a
hieves an O(log2 k)fa
tor for the subset feedba
k set problem. Re
all the equivalen
e established betweenthe subset feedba
k set problem, and the dire
ted minimum 
apa
ity multi
ut problem in2




ir
ular networks. We are able to exploit the spe
ial stru
ture of su
h networks to �ndan O(log2 k) approximation fa
tor of the minimum 
apa
ity multi
ut. Our algorithm isbased on a novel de
omposition of the graph, and an adaptation of the undire
ted \spheregrowing" te
hnique of [GVY93℄ to dire
ted 
ir
ular networks.In a brilliant paper, Seymour [Se95℄ proved that the integrality gap in the 
ase of theunweighted fvs problem 
an be at most O(log �� log log ��), where �� denotes the optimalvalue of a fra
tional feedba
k set. A 
areful examination of Seymour's proof reveals thatall of his existential arguments 
an be made 
onstru
tive, and thus, with 
ertain othermodi�
ations, an algorithm for the unweighted fvs problem that a
hieves an approximationfa
tor of O(log �� log log ��) 
an be obtained. (Noti
e that in the unweighted 
ase �� < n.)The se
ond result we present is an extension of Seymour's proof to the weightedsubset-fvs problem. This results in an algorithm that a
hieves an approximation fa
tor ofO(minflog �� log log ��; log n log log ng), where, as before, �� denotes the 
ost of a minimumfra
tional subset feedba
k set, and n is the number of verti
es. This result is almost optimalwithin the primal-dual framework, sin
e the integrality gap is 
(log ��) [Se95℄.Both of our approximation algorithms re
ursively de
ompose a dire
ted graph as follows.A fra
tional (optimal) solution to a dire
ted feedba
k set problem indu
es a distan
e metri
on the edge (vertex) set of the graph. The approximation algorithm pi
ks (arbitrarily) avertex s 2 X, and 
ondu
ts a single-sour
e-shortest-paths algorithm from s with respe
t tothe distan
e metri
. The single-sour
e-shortest-paths algorithm de�nes layers with respe
tto the sour
e s, where ea
h layer is a dire
ted 
ut that partitions the graph into two parts.The approximation algorithm 
hooses a dire
ted 
ut, adds the 
ut to the feedba
k set, and
ontinues re
ursively in ea
h part. The re
ursion ends when the graph does not 
ontain anyinteresting 
y
les. Ea
h approximation algorithm applies a di�erent 
riterion for 
hoosingthe dire
ted 
ut that partitions the graph. However, both algorithms relate the weight ofthe 
ut to the 
ost of the fra
tional solution.The �rst step in all feedba
k set approximation algorithms requires the 
omputation ofan optimal fra
tional solution. Noti
e that the linear programming formulation of the fvsproblem may 
ontain an exponential number of 
onstraints. Nevertheless, an optimal solu-tion 
an be 
omputed in this 
ase in polynomial time by either using the Ellipsoid methodor interior point methods. In fa
t, it is possible to de
rease the number of 
onstraints to bepolynomial by redu
ing the fvs problem to a multi-
ommodity 
ow [GVY93℄. (But, thenthe linear program is not positive anymore.) Using general linear programming methods isusually undesirable, and algorithms that exploit the 
ombinatorial stru
ture of the problemare sought when possible. Sin
e we deal with approximation algorithms, we 
an a
tuallysettle for an approximate (initial) fra
tional solution, where the approximation bound is a
onstant.In Se
tion 5 we present a 
ombinatorial algorithm that �nds a (1 + ") approximationto the fra
tional fvs and subset-fvs problems. This algorithm is simple and also more3



eÆ
ient than general linear programming methods. The 
omplexity of our algorithm isO(n2M(n) log2 n) for any �xed ", where M(n) denotes the 
omplexity of matrix multipli
a-tion. Our algorithm is based on a greedy (1+") approximation algorithm for the (fra
tional)Set Cover Problem derived from a parallel algorithm for approximating positive linear pro-gramming by Luby and Nisan [LN93℄. We show how to adapt the approximate Set Coveralgorithm to the fvs and subset-fvs problem, in spite of the fa
t that the number of
onstraints in the 
orresponding Set Cover Problem is exponential. Plotkin, Shmoys andTardos [PST91℄ gave a general 
ombinatorial approximation algorithm for fra
tional pa
k-ing and 
overing problems. Their algorithm 
an also be applied to 
ompute an approximatefra
tional solution in our 
ase. Our algorithm for 
omputing an approximate fra
tional so-lution di�ers signi�
antly from the algorithm derived from [PST91℄: They use a Lagrangianrelaxation te
hnique on the dual problem, whereas we deal with the primal problem. The
omplexity of the approximation algorithm of [PST91℄ is better than our algorithm by afa
tor of O(n). However, we believe that our algorithm and its analysis are simpler.Independently, Klein et al. [KPRT93℄ present a network de
omposition for dire
tedgraphs 
alled symmetri
 multi
uts. Using a weighted version of their de
omposition theyderive an O(log2 k) approximation algorithm for �nding a minimum 
apa
ity subset ofedges that separates k given pairs of terminals. That is, for ea
h pair (si; ti) there isno 
y
le 
ontaining both si and ti. The NP-Hardness of �nding su
h a minimum 
apa
-ity 
ut follows from the redu
tion of the subset-fes problem to this problem as shownbelow. The de
omposition algorithm in [KPRT93℄ is essentially the same as our algo-rithm for approximating the minimum 
apa
ity multi
ut in 
ir
ular networks. In fa
t,we show in the sequel how our approximation algorithms 
an be applied to obtain anO(minflog �� log log ��; log n log log ng; log2 k) approximation algorithm for �nding a mini-mum 
apa
ity subset of edges that separates k given pairs of terminals, where �� is theoptimal fra
tional solution.To summarize, the results presented in this paper are:1. Redu
tions between the various problems 
onsidered in the paper (x2).2. A polynomial-time approximation algorithm for the multi
ut problem in 
ir
ular net-works that a
hieves an O(log2 k) approximation fa
tor, where k is the number ofsour
e-sink pairs. We apply this algorithm to approximate the weighted subset-fvsand weighted subset-fes problems and obtain an approximation fa
tor of O(log2 k),where k is the number of verti
es and edges that 
hara
terize the interesting 
y
les.(x3).3. A polynomial-time approximation algorithm for the weighted subset-fvsand weighted subset-fes problems that �nds a feedba
k set with weightO(minf�� log �� log log ��; �� log jV j log log jV jg), where �� is the 
ost of an optimumfra
tional feedba
k set (x4). We note that this algorithm a
hieves the same approx-4



imation fa
tor for the multi
ut problem in 
ir
ular networks sin
e this problem isequivalent to the subset feedba
k set problem.4. A (1+ ") fa
tor approximation (
ombinatorial) algorithm for the fra
tional fvs prob-lem (x5).2 The problems and redu
tions among themIn this se
tion we de�ne the problems that are 
onsidered in the paper. We des
ribe variousversions of these problems and dis
uss redu
tions among them. In all the redu
tions, afeasible solution is mapped to a feasible solution. Moreover, the 
ost of the feasible solutionsis preserved by the redu
tions, and therefore, an approximate solution to one problem 
anbe translated to an approximate solution to all other problems redu
ible to this problem.Most of the redu
tions 
an be performed in linear time, and therefore, these problems 
anbe regarded as di�erent representations of the same problem.2.1 The problemsLet G = (V;E) denote a dire
ted graph, where jV j = n. There are two natural weightfun
tions that are asso
iated with G: either weights on the edges, denoted by 
(e) fore 2 E, or weights on the verti
es, denoted by 
(v) for v 2 V . Let X denote a subset of theverti
es (edges) that are 
alled spe
ial verti
es (edges), and let jXj = k.The �rst problems we 
onsider are the minimum weight feedba
k vertex set (fvs),the minimum weight feedba
k edge set (fes) and their generalization to the subset-fvsand subset-fes problems. All these problems are de�ned in the introdu
tion. Anotherextension of the fvs problem that we 
onsider is the bla
kout-fvs problem. In thisproblem an additional subset of \bla
kout" verti
es, B, is given. We allow only feedba
kvertex sets that do not 
ontain any vertex of B. In the bla
kout-fvs problem a minimumweight feedba
k vertex set that does not 
ontain verti
es of B is sought.We 
onsider the problem of �nding minimum 
apa
ity multi
uts in dire
ted \
ir
ular"multi-
ommodity networks. A network N = �eV ; eE; 
(�); f(si; ti)gi=1;:::;k� is a quadruple,where: ( eV ; eE) is a dire
ted graph, 
(�) is a 
apa
ity fun
tion de�ned on the edges, andf(si; ti)gi=1;:::;k are pairs of verti
es 
alled sour
e-sink pairs. The 
apa
ity (or 
ost) of asubset of edges, eF � eE, is de�ned by 
( eF ) = Pee2eF 
(ee). A multi
ut in a network is asubset of edges, eF � eE, su
h that for every sour
e-sink pair, (si; ti), every path in N fromsi to ti 
ontains at least one edge of the set eF . We 
onsider spe
ial networks, whi
h we 
all
ir
ular networks. In 
ir
ular networks there is an in�nite 
apa
ity edge ti ! si for everysour
e-sink pair (si; ti), and this edge is the only edge that emanates from ti and the onlyone that enters si. We note that the last 
ondition, namely, that (si; ti) is the only edge5



that emanates from ti and the only one that enters si, is only used to show the equivalen
eof this problem to the subset-fes problem. However, our approximation algorithm is valideven if this 
ondition is not satis�ed.2.2 Redu
tions among the problemsIn this subse
tion we show redu
tions between the problems presented in Se
tion 2.1. Theseredu
tions preserve feasible solutions and their 
ost, and therefore, these problems areequally hard to approximate in polynomial time.Chara
terizing interesting 
y
lesThe subset, X � V [ E, de�ning the interesting 
y
les 
an be assumed to 
ontain onlyverti
es without loss of generality by the following redu
tion. Every edge u ! v 2 X issplit by adding a new vertex auv and by repla
ing u! v with u! auv and auv ! v. Addauv to X instead of the edge u! v. If a feedba
k vertex set is sought, then set w(auv) =1.If a feedba
k edge set is sought, then set w(u! auv) = w(auv ! v) = w(u! v). There is a1-1 
orresponden
e between the interesting 
y
les before and after the redu
tion. Moreover,there is a weight preserving 
orresponden
e between the �nite weighted feedba
k vertex setsbefore and after the redu
tion. (The same holds for feedba
k edge sets.) Conversely, wenote that the subset, X � V [E, de�ning the interesting 
y
les 
an be redu
ed to a subsetof edges by splitting the verti
es in X.FES � FVSConstru
t the \dire
ted line-graph", G0 = (V 0; E0), of G = (V;E) as follows: V 0 = E andan edge in E0 
onne
ts v1 ! v2 2 V 0 with v3 ! v4 2 V 0 if and only if v2 = v3. In theweighted version, the weight of the \vertex" v1 ! v2 2 V 0 equals the weight of an edgev1 ! v2 2 E. A subset of edges, E, is a feedba
k edge set of G if and only if it is a feedba
kvertex set of G0. Note that this redu
tion 
an be used to redu
e subset-fes problems tosubset-fvs problems as well.FVS � FESSplit every vertex, v 2 V , into two parts, v1 and v2; all the edges that enter v are 
onne
tedto v1, and all the edges that emanate from v emanate from v2. Add an edge v1 ! v2 for everyvertex v 2 V . All edges are given in�nite weight, ex
ept for the edges fv1 ! v2 : v 2 V gwhose weight is 
(v). There is a 1-1 
orresponden
e between the �nite weighted feedba
kedge sets of the new graph and the feedba
k vertex sets of the original graph. Note thatthis redu
tion 
an be used to redu
e subset-fvs problems to subset-fes problems as well.6



BLACKOUT-FVS � FVSBla
kout verti
es 
an be handled by assigning them in�nite weight. However, in 
ertain
ases, we may need the following redu
tion. Bypass the verti
es of the bla
kout verti
es, B,one by one as follows: For ea
h bla
kout vertex, v 2 B, 
onne
t edges between every twoverti
es that have a path of length two 
onne
ting them in whi
h v is the middle vertex.Remove the bla
kout vertex from the graph, and 
ontinue with the next vertex in B. Asubset of verti
es, U , is a feedba
k vertex set that does not 
ontain any vertex from B, ifand only if it is a feedba
k vertex set of the graph obtained by the redu
tion. Note thatthis is the only redu
tion that requires more than linear time.This redu
tion 
an also be extended to the 
ase in whi
h there is a subset X � E thatde�nes the interesting 
y
les. Namely, a 
y
le is interesting if only if it interse
ts X. Aproblem with the redu
tion arises when an edge of X is in
ident to a bla
kout vertex, sin
ebypassing the bla
kout vertex removes this edge. We over
ome this problem by adding anew bypassing edge to X if the path of length two from whi
h it originates 
ontains an edgeof X.SUBSET-FES � dire
ted multi
utsWe redu
e an instan
e of subset-fes where X � V to an instan
e of the minimummulti
utproblem in 
ir
ular networks, as follows. Constru
t the network N by breaking ea
h vertexu 2 X into a sour
e-sink pair (su; tu). Modify all edges entering u so that they enter tu,and modify all edges leaving u so that they leave su. The 
apa
ity of an edge is equalto its weight in the subset feedba
k set problem. Also, 
onne
t tu to su by an in�nite
apa
ity edge. Noti
e that we de�ned 
ir
ular networks in a way that makes this redu
tioninvertible. A subset-fes instan
e is obtained from a 
ir
ular network by 
oales
ing allsour
e-sink pairs.2.3 The relation between dire
ted multi
ut problemsKlein et al. [KPRT93℄ 
onsider the following dire
ted de
omposition problem. Given adire
ted graph G = (V;E) with edge 
apa
ities, and k terminal pairs (si; ti), �nd a multi
utthat separates the pairs of terminals. Namely, after the removal of the edges of the multi
uteither si is not rea
hable from ti, or vi
e versa. Klein et al. present an algorithm that �ndsan O(log2 k) approximation of the minimum 
apa
ity of su
h a multi
ut.The problem of �nding minimum 
apa
ity multi
uts in 
ir
ular networks is easily re-du
ible to the problem 
onsidered by [KPRT93℄, sin
e there are in�nite 
apa
ity edgesfrom ea
h sink to its 
orresponding sour
e. Hen
e, the result presented in Se
tion 3 
anbe obtained from the work of [KPRT93℄. Similarly, our algorithm presented in Se
tion 3
an be applied to the multi
ut problem 
onsidered by [KPRT93℄ to yield an alternative7



O(log2 k) approximation algorithm. In fa
t, both algorithms 
an be viewed as extensionsof the work of [GVY93℄ to dire
ted graphs. In Se
tion 4 we show how to extend the algo-rithm presented therein to the multi
ut problem 
onsidered by [KPRT93℄. This yields anO(minflog �� log log ��; log n log log ng) approximation algorithm for this problem. In 
aseminflog �� log log ��; log n log log ng = o(log2 k), this improves the O(log2 k) approximationof [KPRT93℄.2.4 Finding an optimal fra
tional solutionFeedba
k set problems belong to the 
lass of 
overing problems, where the elements 
or-respond to verti
es or edges, and the subsets 
orrespond to interesting 
y
les. A feedba
kset problem 
an be 
ast as a linear integer program, whose fra
tional relaxation 
an besolved eÆ
iently. We des
ribe the integer programming formulation for the 
ase of a subsetfeedba
k edge problem. (The vertex 
ase is similar.) There is a variable for ea
h edge edenoted by d(e). (The variable is d(v) for v 2 V in the vertex 
ase.)Minimize Xe2E 
(e) � d(e)subje
t to Xe2C d(e) � 1 for every interesting 
y
le C:d(e) 2 f0; 1g for every edge e 2 EAs 
an be seen from the formulation, in 
ase we relax the integrality 
ondition we geta fra
tional feedba
k edge set: a fun
tion d : E ! [0; 1℄ with the property that everyinteresting 
y
le is of length at least one.The (linear programming) dual of this 
overing problem is 
alled a pa
king problem,and in the 
ase of the feedba
k edge set problem, this means assigning a dual variableto all interesting 
y
les in the graph, su
h that for ea
h edge, the sum of the variables
orresponding to all the interesting 
y
les passing through that edge is at most the weightof the edge.The linear program has an exponential number of 
onstraints, but 
an be solved inpolynomial time through either the Ellipsoid method, or interior point methods [NN94℄.These methods 
an be applied here, sin
e a violated 
onstraint 
an be found in polynomialtime.As already mentioned, we 
an a
tually settle for an approximate solution of the abovelinear program. This 
an be a
hieved by either the algorithm des
ribed in Se
tion 5, orthrough the methods of [PST91℄. We note that Garg, Vazirani and Yannakakis [GVY93℄provide an equivalent LP formulation with polynomially many 
onstraints, however, their8



LP is not positive, and therefore, the te
hniques des
ribed in Se
tion 5 are not appli
ableto this formulation.3 The �rst SUBSET-FVS approximation algorithmIn this se
tion we show how to �nd a subset feedba
k edge set of a weighted dire
ted graphG = (V;E), where the interesting 
y
les are de�ned by a set of spe
ial verti
es X � V ,su
h that jXj = k. The subset-fes problem is 
onsidered for ease of presentation, but theredu
tion from the subset-fvs problem to the subset-fes problem des
ribed in Se
tion2.2 implies that the results presented in this se
tion hold for the subset-fvs problem aswell. The weight of the feedba
k edge set found by the algorithm is O(�� �log2 jXj), where ��is the weight of an optimal fra
tional feedba
k set. Therefore, we obtain an approximationfa
tor whi
h is independent of the weight of the optimum (fra
tional) feedba
k edge set.We apply the redu
tion to the dire
ted multi
ut problem in 
ir
ular networks givenin Se
tion 2.2. Let N = �eV ; eE; 
(�); f(si; ti)gi=1;:::;k� be the dire
ted network obtained byredu
ing the subset-fes instan
e to a multi
ut problem instan
e. Let �� denote the 
ost ofan optimal fra
tional multi
ut in N . We show how to �nd a multi
ut of 
ost O(�� � log2 k).3.1 OverviewOur algorithm uses the undire
ted sphere growing te
hnique of Garg, Vazirani and Yan-nakakis [GVY93℄. They used it to approximate the multi
ut problem in undire
ted net-works. As we explain below, the appli
ation of this te
hnique to the dire
ted 
ase does notseem to be trivial.To gain some intuition, let us �rst des
ribe the algorithm for the undire
ted 
ase givenby [GVY93℄. The algorithm 
onsists of two stages. In the �rst stage, the fra
tional multi
utproblem is solved (exa
tly) in polynomial time by any polynomial-time linear programmingalgorithm. We regard the output values, d(e), as a distan
e fun
tion, where d(e) denotesthe distan
e between the tail and head of edge e. Note that the distan
e between si and ti isat least one. In the se
ond stage we grow radial spheres around the sour
es. We start froms1 and grow a radial sphere around it. (A radial sphere of radius r in
ludes the subgraphindu
ed by all the verti
es at distan
e at most r from s1.) We look for the sphere with thesmallest radius su
h that the 
ut separating it from the rest of the graph 
an be \
harged"to the 
ut edges and the edges inside the sphere. (The exa
t notion of the 
harging s
heme isomitted.) Garg, Vazirani and Yannakakis [GVY93℄ show that under an appropriate 
hoi
eof parameters, the radius of the sphere is bounded by 1=2. We add the 
ut 
orrespondingto this sphere to the multi
ut. Note that this 
ut separates s1 from t1. Moreover, sin
e nosour
e-sink pair (si; ti) 
an appear inside a sphere (be
ause its radius is at most 1=2, andthe graph is undire
ted), in 
ase there exist some index 1 � j � k, su
h that either sj or9



tj is in the sphere, the respe
tive sour
e-sink pair is also separated. Thus, after taking this
ut we 
an \throw away" all verti
es in the sphere, and all edges that tou
h them. Thisensures that we will not \
harge" these edges in subsequent iterations, in whi
h we growspheres around other sour
es that are not yet separated.Suppose that we wish to apply the same paradigm to the dire
ted 
ase. Consider asphere of radius r around si. This sphere in
ludes all verti
es of distan
e r from si. In theappli
ation we fa
e the following two problems: (1) The sphere may in
lude a sink tj whosesour
e pair is outside the sphere. In order to separate si from ti, and tj from sj, we have totake both in
oming and outgoing 
uts; i.e., the edges going out from, and the edges 
ominginto the sphere. However, we 
annot \
harge" the edges in the sphere for both 
uts. (2)The sphere may in
lude a sour
e-sink pair (sj ; tj), for j 6= i. This may happen althoughthe distan
e from sj to tj is at least one; sin
e, in a dire
ted graph, both sj and tj maybe at distan
e at most r from si. In this 
ase, even after separating si from ti, we 
annot\throw away" the verti
es in the sphere. Thus we have to resort to \
harging" the sameedges more than on
e.We over
ome these problems as follows. For the �rst problem, we note that in 
ir
ularnetworks, all edges e = ti ! si, for i = 1; : : : ; k, have in�nite 
apa
ity edge. This impliesthat all these edges have zero length. Thus, while growing a radial sphere around a sour
e wenever en
ounter the situation where a sink is in the sphere while its sour
e mate is outside.To over
ome the se
ond problem, we limit the number of times ea
h edge is 
harged. Thisis done by growing disjoint spheres, one around si, and the other around ti. (The latteris a \reversed" sphere.) We may 
hoose either sphere for the 
ut, and we will 
hoose theone that 
ontains fewer sour
e-sink pairs. This guarantees that an edge is 
harged only alogarithmi
 number of times.Below, we des
ribe the algorithm in detail. First, we des
ribe how to grow the spheres.Then, we des
ribe how to break the problem into small subproblems, su
h that ea
h edgeis \
harged" at most a logarithmi
 number of times.3.2 The sphere growing pro
edureIn this subse
tion, we present an adaptation of the region growing pro
edure of Garg, Vazi-rani and Yannakakis [GVY93℄. The pro
edure of [GVY93℄ deals with undire
ted networks,whereas our pro
edure deals with dire
ted 
ir
ular networks (as de�ned in Se
tion 2.1).Let fd(e)ge2eE denote a fra
tional multi
ut of the network N , and let �� denote the 
ostof this fra
tional multi
ut. We show how to grow a sphere from a sour
e, si0 .Regard the values, d(e), as a distan
e fun
tion, where d(e) denotes the distan
e betweenthe tail and head of edge e. De�ne dist(u; v) as the length of the shortest path from u tov. Order the verti
es in as
ending distan
e from si0 . Namely, v0 = si0 , and dist(v0; vi+1) �dist(v0; vi), for 1 � i < n. 10



We use the following notation: `i 4= dist(v0; vi)Ai 4= fv0; v1; :::; vigFor a set Ai, i � 0, de�ne the weight, wt(Ai), as follows:wt(Ai) 4= ��k + Xe2Ai�Ai 
(e) � d(e) + Xe=(vj!vk)2Ai�(eV�Ai) 
(e) � (`i+1 � `j)The \
redit" for the 
ut of the sphere Ai is given by " �wt(Ai), for some parameter " > 0to be �xed in the analysis. De�ne a stopping index � by:� 4= minni : 
(
ut(Ai; Ai)) � " � wt(Ai)o :A� is the sphere found by the sphere growing pro
edure, sin
e its 
ut 
an be 
harged to" � wt(A�).The following 
laim follows Garg et al. [GVY93, Lemma 4.1℄.Claim 1: The radius of the sphere A�, denoted `�, satis�es `� < ln(k + 1)=".3.3 Computing the multi
utWe show how to use the sphere growing pro
edure to 
ompute the multi
ut. This is doneby breaking up the problems into subproblems, ea
h of size at most (k � 1)=2. We setthe sphere growing parameter to " = 2 ln(k + 1). Using this parameter, we grow a spherearound s1. Re
all that if this sphere in
ludes a sink ti, it also in
ludes its mate si. We alsogrow another \reversed" sphere around t1. (A \reversed" sphere is a sphere 
omputed inthe network given by 
ipping the dire
tions of the edges.) Note that if this sphere in
ludesa sour
e si, it also in
ludes its mate ti. Sin
e the radius of ea
h su
h sphere is less than1=2, they are disjoint. Hen
e, one of them in
ludes less than (k � 1)=2 sour
e-sink pairs.Suppose that this is the sphere around s1. The other possibility is analogous. We add theedges going out from this sphere to the multi
ut. This separates all sour
es in the spherewhose mate is not in this sphere. To separate the pairs in
luded in the sphere we haveto solve the subproblem given by the network indu
ed by the verti
es inside the sphere.This subproblem has no more than (k � 1)=2 sour
e-sink pairs. Now, if there are morethan (k� 1)=2 sour
e-sink pairs outside the sphere, we 
hoose one su
h pair and repeat thepro
ess. When we end the pro
ess we are left with subproblems ea
h of whi
h 
onsists ofat most (k� 1)=2 pairs and whose total size is bounded by the size of the original problem.For a detailed des
ription of the pro
ess see Figure 1.11



breaking-iteration (N; k; fd(e)ge2N )N 0 = Nk0 = ki = 0while k0 > (k � 1)=2 dobegini = i+ 1Let (sj ; tj) denote a sour
e-sink pair in N 0.Compute a sphere around sj and a \reversed" sphere around tj .Let Ri be the sphere with the least number of sour
e-sink pairs.N 0 = the network indu
ed by the verti
es of N that do not belong to Ri.k0 = the number of sour
e-sink pairs in N 0.endi = i+ 1Ri = the verti
es in N 0.Return R1; R2; : : : ; RiFigure 1: Breaking into subproblemsAs explained above we asso
iate a 
ut 
(Rj) with ea
h sele
ted sphere Rj . Re
all thatif Rj is a sphere around a sour
e, then 
(Rj) = 
ut(Rj ; Rj), and if Rj is a \reversed"sphere around a sink, then 
(Rj) = 
ut(Rj ; Rj). Let fRjgj denote all sele
ted spheres
omputed re
ursively, until no sphere 
ontains a sour
e-sink pair. The set of edges [j
(Rj)is a multi
ut.We analyze the 
ost of the multi
ut, [j
(Rj). Fix a network, N , with n verti
es andk sour
e-sink pairs. Let 
ut(n; k) denote the maximum 
ost of the multi
ut found by ourpro
edure. Let R1; : : : ; Rr denote the spheres sele
ted in the top level of the pro
ess (i.e., inbreaking into subproblems with no more than (k � 1)=2 pairs). Let nj denote the numberof verti
es in Rj , and kj denote the number of sour
e-sink pairs in Rj. Then, 
ut(n; k)satis�es the following re
urren
e inequality:
ut(n; k) � ( 0 if k = 0Prj=1 
(
(Rj)) +Prj=1 
ut(nj ; kj) otherwiseWhere Prj=1 nj = n, Prj=1 kj = k � r, and 0 � kj < k=2, for every j.Claim 2: If " = 2 ln(k + 1), then 
ut(n; k) � 4 � ln(2) � �� � log2(k + 1).Proof: We �rst show that the 
ost of the 
uts 
hosen in ea
h level of the re
ursionis bounded by 2"��. The spheres R1; : : : ; Rr are disjoint, and hen
e, the subprobelms inea
h level are disjoint. To bound the sum of the weights of the subproblems, 
onsider, for12



example, the top level: Prj=1wt(Rj) � �� + r � ��=k � 2 � ��. The additional " fa
tor is theratio between the 
apa
ity of the 
ut 
(Rj) and wt(Rj).The re
ursion depth is bounded by log k, be
ause kj � (k � 1)=2. Hen
e, 
ut(n; k) isbounded by 2"�� � log k, whi
h is bounded by 4 � ln(2) � �� � log2(k + 1). 2A more 
areful analysis of 
ut(n; k) shows that the 4 � ln(2) fa
tor 
an be improved to2 � ln(2) � �1 + 12 log(k+1)�1�. This value is at most 4 � ln(2), and tends to 2 � ln(2) as k grows.4 The se
ond SUBSET-FVS approximation algorithmIn this se
tion we des
ribe an algorithm for approximating the minimumweight subset-fvsof a weighted dire
ted graph G = (V;E). The redu
tions from subset-fes to subset-fvsshown in Se
tion 2.2 imply that the results of this se
tion hold for the subset-fes problemas well. The algorithm presented in this se
tion is an algorithmi
 adaptation of Seymour'spaper [Se95℄, whi
h we extend to the weighted subset feedba
k set problem. The presentedalgorithm is not the most eÆ
ient implementation of Seymour's ideas, however, it is simplerthan the more eÆ
ient implementation presented in [ENRS95℄Let d(v) denote the fra
tional value of vertex v 2 V in the solution produ
ed by thelinear programming formulation of the subset-fvs problem, and let �� denote the value ofthe optimal fra
tional subset-fvs. Without loss of generality we 
an assume that d(v) = 0,for all spe
ial verti
es v 2 X. (This 
an be obtained by splitting spe
ial verti
es into twoverti
es.)4.1 Modifying the graphWe �rst show how to modify the fra
tional solution so that all values atta
hed to verti
esare integral multiples of 1=2n. This modi�
ation in
reases the 
ost of the fra
tional solutionby at most a fa
tor of 4. We de�ne the following fra
tional subset-fvs d0:d0(v) = ( 0 if d(v) < 1=2n2 � d(v) otherwise.The following proposition is immediate.Proposition 3: The fun
tion d0 is a feasible subset-fvs and its weight is at most 2��.We now round up ea
h value of d0 to the nearest integral multiple of 1=2n. This 
learlypreserves feasibility, and in
reases the 
ost by at most a fa
tor of two. Let us denote thenew fra
tional subset-fvs by d00. Its 
ost is at most 4��. Sin
e these modi�
ations inthe fra
tional solution 
hanged the value of the fra
tional feedba
k set by only a 
onstant13



multipli
ative fa
tor, we 
an hen
eforth rename d00 and 
all it d, and also let �� be the
hanged value of the fra
tional feedba
k set.We now modify the graph as follows. All non-spe
ial verti
es v for whi
h d(v) = 0 aremarked as bla
kout verti
es, and we delete them from the graph by using the redu
tionbla
kout-fvs � fvs des
ribed in se
tion 2.2. This redu
tion is needed for the stronglypolynomial bounds a
hieved in Se
tion 4.4.Next, we \equalize" the graph G into graph H as follows. For ea
h non-spe
ial vertexv, we repla
e it by a dire
ted 
hain of verti
es v1 ! : : : ! v` where ` = d(v) � 2n. By theabove dis
ussion, ` is a positive integer. Set the weight of ea
h vertex vi, 1 � i � `, to 
(v).For ea
h edge u ! v 2 E(G), we add a dire
ted edge from the last vertex of u's 
hain tothe �rst vertex of v's 
hain. The girth of a graph is de�ned to be the length of a shortest
y
le in the graph. Here, we modify the de�nition of the girth with respe
t to the graph Has follows: the girth of H, denoted by girth(H), equals the minimum, over all interesting
y
les, of the number of non-spe
ial verti
es in the 
y
le. The next lemma summarizes theproperties of the graph H.Lemma 4: [Se95℄ Graph H has the following properties:(i) There is a 1-1 
orresponden
e between the interesting 
y
les of G and H. There is also aweight preserving 
orresponden
e between the (fra
tional) feedba
k vertex sets of G and H.(ii) The girth of H satis�es:girth(H) � wt(V (H))�� ; where wt(V (H)) is the total weight of the verti
es in H.Proof: Property (i) follows from the \equalizing" transformation. Any subset-fvs of G
an be transformed into an subset-fvs of H by assigning the value of ea
h vertex v 2 V (G)to the �rst vertex in v's 
hain. All other verti
es are assigned value zero. Conversely, givenan subset-fvs of H, 
onstru
t an subset-fvs of G by assigning ea
h vertex v 2 V (G) thesum of the values of the verti
es in its 
orresponding 
hain in H.Property (ii) follows by observing thatwt(V (H)) = Xv2V (G) 
(v) � d(v) � 2n = 2n � ��and that ea
h interesting 
y
le C 2 H 
ontains at leastXv2 �C d(v) � 2n � 2nnon-spe
ial verti
es, where �C is the 
y
le in G 
orresponding to C. Sin
e C is an arbitraryinteresting 
y
le in H girth(H) � wt(V (H))��14



2 The above lemma implies that the problem of �nding an subset-fvs in an arbitrarygraph G is equivalent to �nding an subset-fvs in a graph H with the property that itsgirth, and the weight of its optimal (fra
tional) subset-fvs are inversely related. Noti
ethat by assigning ea
h non-spe
ial vertex in H the value 1=girth(H), we obtain a near-optimal fra
tional subset-fvs of H. Therefore, we 
onsider H to be \equalized".4.2 The algorithmWe present the algorithm for approximating the subset-fvs problem in the graph H.Seymour [Se95℄ de�nes the fun
tion � as follows:�(x) = ( 0 if x < 14x � ln(4x) � ln log(4x) otherwise.The algorithm for approximating the optimal weighted subset-fvs pro
eeds re
ursivelyas follows. The graph is �rst partitioned into strongly 
onne
ted 
omponents. If a strongly
onne
ted 
omponent la
ks verti
es of X, then an empty set is a valid feedba
k vertex setwith respe
t to this 
omponent. Otherwise, a dire
ted separator S is 
omputed (separately)for all strongly 
onne
ted 
omponents 
ontaining at least one vertex of X. We hen
eforthassume that H is strongly 
onne
ted. A dire
ted separator partitions the verti
es of H intothree disjoint subsets: A;S; and B, su
h that there are no dire
ted edges from A to B. Thedire
ted separator is 
omputed by the pro
edure separator (H = (V;E); 
(�); g) depi
tedin Figure 2. (The parameters to this pro
edure are the graph H, the weight fun
tion 
(�),and a lower bound on the girth of H.) We add the verti
es of S to the subset-fvs, andre
ursively 
ompute a subset-fvs of the subgraphs indu
ed by A and B. In Pro
edureseparator, we perform a Breadth-First-Sear
h (BFS) starting from a spe
ial vertex v0. Thedistan
e dist(v0; u) used in the BFS is the minimum, over all paths from v0 to u, of thenumber of non-spe
ial verti
es along a path. It is important that in Pro
edure separator,the BFS starts from a spe
ial vertex. This ensures that the BFS 
ontains at least g layers.Theorem 5 : Suppose that the girth of graph H is at least g. The algorithm �nds asubset-fvs of H whose weight is at most ��wt(V (H))g �.Combining Theorem 5 with Lemma 4 and setting g = girth(H) yields the following 
orol-lary.Corollary 6: Let H denote the dire
ted graph obtained by modifying the graph G as des
ribedin subse
tion 4.1. Let U � V (H) denote the subset-fvs of H, found by the algorithm. Let�U � V (G) denote the subset-fvs of G that 
orresponds to U . Then,wt( �U ) � �(��) � 4�� � ln(4��) � ln log(4��):15



separator (H = (V;E); 
(�); g)Choose a vertex v0 2 X.Constru
t \layers" starting from v0 as follows:For i = 1; : : : ; (g � 1) de�neLi 4= fu 2 V �X : dist(v0; u) = ig.Lg 4= V (H)� [j<gLj.i = 0repeati = i+ 1Ai 4= fu 2 V : dist(v0; u) < ig.Bi 4= V �Ai � Li:until wt(Li) � � (wt(V (H))=g) � � (wt(Ai)=g) � � (wt(Bi)=g).return(Ai; Li; Bi)Figure 2: The dire
ted separator algorithm.Hen
e, an O(log �� log log ��)-approximation algorithm is obtained.4.3 Proof of Theorem 5We begin with the following lemma of Seymour [Se95, Lemma 2.3℄.Lemma 7: Let ` > 0 be a real number. For 0 � x � 1, let y(�) be a real-valued 
ontinuousfun
tion of x, su
h that y(0) � 0, y(1) � 1, and for all h 2 [0; 1℄ � I, where I � [0; 1℄ issome �nite subset of [0; 1℄, y(�) is di�erentiable, and dydx �����x=h � 1̀ . Then, there exists h with1=4 < h < 3=4, h 62 I, su
h that`dydx �����x=h � �(`)� �(`y(h))� �(`(1� y(h))):The following 
laim establishes that pro
edure separator (H = (V;E); 
(�); g) is su

ess-ful in �nding a dire
ted separator. We use the same notation as in the pro
edure.Claim 8: There exists a layer, Li, that satis�es:wt(Li) � ��wt(V (H))g �� ��wt(Ai)g �� ��wt(Bi)g � :
16



Proof: De�ne the fun
tion y(x) in the interval [0; 1℄ as follows:y(x) 4= 1wt(V (H)) � (wt(Ai) + (gx � i+ 1) � wt(Li))where i = dgxe.The fun
tion y(x) satis�es the requirements of Lemma 7, for ` = wt(V (H))=g. (Re
allthat all weights are greater than 1. This guarantees that dydx jx=h � 1̀ .) Therefore, thereexists an h 2 (1=4; 3=4), h =2 f1=g; 2=g; : : : ; 1g for whi
h`dydx �����x=h � �(`)� �(`y)� �(`(1� y)):De�ne i = dghe. We 
laim that the following three equations hold:wt(Li) = `dydx �����x=h (1)wt(Ai)g � ` � y(h) (2)wt(Bi)g � ` � (1� y(h)) (3)Proof of (1) follows from the fa
t that dydx jx=h = g�wt(Li)wt(V (H)) , and from the de�nition of `.Proofs of (2) and (3) follow from the observation thatwt(Ai) � y(h) � wt(V (H)) � wt(V (H))� wt(Bi):Sin
e the fun
tion �(�) is monotone non-de
reasing, the 
laim follows. 2We have established that pro
edure separator (H = (V;E); 
(�); g) is su

essful in �ndinga dire
ted separator.The proof of the theorem follows by indu
tion on jV (H)j. The indu
tion basis is imme-diate. Assume that it holds for graphs with less than jV (H)j verti
es. Sin
e the separatorS de
omposes the graph into two subgraphs A and B, we obtain the following re
urren
e:wt(subset-fvs(H)) � wt(subset-fvs(A)) + wt(subset-fvs(B)) + wt(S);where subset-fvs(G) denotes the subset feedba
k vertex set found by the algorithm ongraph G. Sin
e girth(A) � girth(H), and jV (Aj) < jV (H)j, it follows by the indu
-tion hypothesis that wt(subset-fvs(A)) � � (wt(A)=g). Similarly, wt(subset-fvs(B)) �� (wt(B)=g). Therefore,wt(subset-fvs(A)) + wt(subset-fvs(B)) + wt(S) � � (wt(A)=g) + � (wt(B)=g) + wt(S):17



By the de�nition of S, it follows that the right hand side of the previous equation is boundedby ��wt(V (H))g �. Consequently,wt(subset-fvs(H)) � ��wt(V (H))g �and the theorem follows. 2The role of the fun
tion y(x) is very similar to the region growing pro
edures in the worksof [LR88, KRAR95, GVY93℄. Seymour's re�ned analysis improves the stopping 
ondition,and the re
urren
e equation obtained by the de
omposition s
heme has a smaller upperbound.4.4 Strongly polynomial approximation bounds and running timesThe approximation bounds obtained in Corollary 6 may be very weak, in 
ases wherethe 
ost of an optimal fra
tional subset feedba
k vertex set, ��, is super-polynomial inn = jV (G)j. To over
ome this problem we \trun
ate" the vertex weights to obtain asubset-fvs of weight O(�� � lnn � log log n).We trun
ate the vertex weights as follows. Let IN 4= fv 2 V : 
(v) � ��=ng and letOUT 4= fv 2 V : 
(v) > �� � ng. We add all verti
es of IN to the subset-fvs. This in
reasesthe total weight of the approximate subset-fvs by at most ��. All non-spe
ial verti
es ofOUT are marked as bla
kout verti
es. This 
an be done sin
e it is guaranteed that noneof the verti
es in OUT parti
ipates in an integral optimal subset-fvs. The latter followsby observing that the ratio between the values of an optimal integral subset-fvs and anoptimal fra
tional subset-fvs is at most n. (Given a fra
tional subset-fvs, if one roundsup to 1 all values that are bigger than or equal to 1=n, and rounds down to 0 all othervalues, then a feasible integral subset-fvs is obtained.)In the remaining graph the ratio between the maximum and minimumweights of verti
esis bounded by n2. (Had we in
reased the weight of a bla
kout vertex to in�nity, the ratiowould have been mu
h higher.) Hen
e, after normalizing the vertex weights, the 
ost of anoptimal fra
tional subset-fvs is a polynomial in n, and the modi�ed (equalized) graph,H, is also of polynomial size. Therefore, the algorithm �nds an subset-fvs of weight atmost O(�� lnn log logn).4.5 Finding multi
uts that separate pairs of terminalsWe now turn to the de
omposition problem 
onsidered in Klein et al. [KPRT93℄ de�nedas follows. Given a dire
ted graph G = (V;E) with edge 
apa
ities, and k terminalpairs (si; ti), �nd a multi
ut that separates the pairs of terminals. Namely, after theremoval of the edges of the multi
ut either si is not rea
hable from ti, or vi
e versa.18



Klein et al. present an algorithm that �nds an O(log2 k) approximation of the minimum
apa
ity of su
h a multi
ut. The algorithm given in this se
tion 
an be extended to getan O(minflog �� log log ��; log n log log ng) approximation algorithm for this de
ompositionproblem as follows.First, redu
e the multi
ut problem to a version of the subset-fvs problem in whi
hthe interesting 
y
les are 
y
les that pass through a pair of terminals. (Note that ouralgorithm does not 
onsider this version of the subset-fvs problem.) Let �� denote theoptimal fra
tional solution of this subset-fvs problem. Equalize the graph as des
ribedin Subse
tion 4.1 to obtain a graph H with an inverse relation between the length of theinteresting 
y
les and the 
ost ��. Let g denote the length of the shortest interesting 
y
leafter equalizing the graph.The graph H is de
omposed by removing verti
es until there are no terminal pairs withboth ends in the same strongly 
onne
ted 
omponent of H. Suppose that the terminal pair(si; ti) is in the same strongly 
onne
ted 
omponent of H. Assume without loss of generalitythat g is even and the shortest path from si to ti 
ontains g=2 non-terminal verti
es. (Eitherthis holds or the shortest path from ti to si 
ontains g=2 non-terminal verti
es.) The 
ut thatseparates the pair is 
omputed by the pro
edure 
ut (H = (V;E); (si; ti); 
(�); g) depi
tedin Figure 3. (The parameters to this pro
edure are the graph H, the terminal pair (si; ti),the weight fun
tion 
(�), and a lower bound on the girth of H.)
ut (H = (V;E); (si; ti); 
(�); g)Constru
t \layers" starting from si as follows:For j = 1; : : : ; (g=2 � 1) de�neLj 4= fv 2 V : dist(si; v) = jg.Lg=2 4= V � [j<g=2Lj.j = 0repeatj = j + 1Aj 4= fv 2 V : dist(si; v) < jg.Bj 4= V �Aj � Lj:until wt(Lj) � � (2wt(V (H))=g) � � (2wt(Aj)=g) � � (2wt(Bj)=g).return(Aj; Lj ; Bj)Figure 3: The algorithm for 
omputing the 
ut.It is not diÆ
ult to see that the same analysis holds for this version of the algorithmalso, and hen
e, an O(minflog �� log log ��; log n log log ng) approximation algorithm for thisproblem is obtained.
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5 Approximating the fra
tional optimal solutionIn this se
tion we show that an approximation by a (1 + ") fa
tor to the fra
tional fvsand subset-fvs problems 
an be 
omputed eÆ
iently by a 
ombinatorial algorithm. Ouralgorithm is based on a (1 + ")-approximation algorithm for the more general (fra
tional)Set Cover problem whi
h is derived from a parallel algorithm for approximating positivelinear programming by Luby and Nisan [LN93℄. An important feature of the Set Coveralgorithm is that the dependen
e of its 
omplexity on the number of sets in the set systemis only logarithmi
.The (fra
tional) Set Cover Problem is de�ned as follows. Let (V;F ; 
(�)) be a set system,where V is a universal set, F is a 
olle
tion of subsets of elements from V , and 
(�) is anon-negative 
ost fun
tion asso
iated with ea
h element of V . Let jV j = n and jFj = m. A
over of all the subsets in F is a 
olle
tion of fra
tions of the elements in V su
h that thesum of the fra
tions 
hosen from the elements in ea
h subset S 2 F is at least one. The goalis to �nd a minimum 
ost fra
tional 
over. (The 
ost of a fra
tion element is the respe
tivefra
tion of its 
ost.) In the literature, this problem is also referred to as the Hitting Setproblem. We note that in the integer version of this problem a 
over must in
lude wholeelements rather than fra
tions.We represent Feedba
k Set problems as Set Cover problems by viewing the 
y
les as thesubsets in the set system, and the verti
es as elements.In Se
tion 5.2, we present an implementation of the Set Cover algorithm for Feedba
k Setproblems that uses a su

in
t representation of the set of 
y
les in the graph, whi
h might beexponentially large. The algorithm is presented for the fra
tional fvs problem. However,it 
an be easily modi�ed to handle the 
overing problem asso
iated with a subset-fvsproblem.5.1 A (1 + ")-approximation Set Cover algorithmThe algorithm asso
iates an attra
tion fun
tion p(�) with ea
h subset, where initially, p(S) =1 for ea
h S 2 F . The attra
tion of the set system is denoted by p(F) and is equal toPS2F p(S). De�ne the attra
tion p(v) of an element v 2 V to be PS:v2S p(S).The approximate SC algorithm depi
ted in Figure 4 
omputes a multi-
over of F , i.e., a
over that may 
ontain an element several times. Let `(v) denote the multipli
ity of elementv 2 V in the multi-
over 
omputed by the algorithm. The fra
tional 
over is derived bynormalizing the values of `(v) as follows:'(v) 4= `(v) � ln�1�2 lnmNote that the stopping 
ondition of the repeat loop 
an be repla
ed by p(S) � m��2 ,20



approximate SC (V;F ; 
(�); ")If " > 1 then " = 1.De�ne: �1 4= 1 + "=4 and �2 = 4="8v 2 V : `(v) = 0.8S 2 F : p(S) = 1.repeatChoose an element in fv 2 V : p(v) > m��2g that minimizes the ratio 
(v)p(v) .`(v) `(v) + 18S su
h that v 2 S: p(S) p(S)=�1.until p(v) � m��2 for every v 2 V .return(f`(v) : v 2 V g)Figure 4: The integral multi 
over approximation algorithm.for every S 2 F . Due to eÆ
ient implementation 
onsiderations, as des
ribed in Se
tion5.2, we 
hoose the stri
ter stopping 
ondition.Theorem 9: The fun
tion ' is a feasible 
over of F .Proof: Consider a subset S and an element v 2 S. When Algorithm approximate SCterminates, p(S) � p(v) � m��2 . Sin
e the attra
tion of S de
reases by a fa
tor of �1 ea
htime an element belonging to S is 
hosen, we get that S is 
overed at least �2 lnmln�1 times,i.e., Pv:v2S `(v) � �2 lnmln�1 . Consequently, ' de�nes a feasible 
over for F . 2Theorem 10: The number of iterations of the algorithm is O �"�2 � n lnm�.Proof: Ea
h element is 
hosen at most �2 lnmln�1 + 1 times. Sin
e ln�1 � "=8, if " � 1, thetotal number of iterations is O �"�2 � n lnm�, as required. 2Let �� denote the 
ost of an optimal fra
tional 
over, and let ��(v) denote the fra
tionalvalue assigned to vertex v in some �xed optimal solution.Theorem 11: The 
ost of the fun
tion ' is at most (1 + �) times the 
ost of an optimalfra
tional 
over, namely, Pv2V '(v) � 
(v) � (1 + ") � ��.Proof: We �rst show thatXv2V 
(v) � `(v) � �1�1 � 1 [(�2 + 1) lnm+ ln�1℄ �� (4)21



Let pi(S) and pi(v) denote the attra
tion of subset S and element v in the beginningof the ith iteration of the algorithm. Suppose vi is the element 
hosen in the ith iteration.We 
laim that 
(vi)pi(vi) � ��pi(F) (5)First, 
onsider the sum Pv ��(v)pi(v),Xv ��(v)pi(v) = Xv  ��(v) XS:v2S pi(S)!= XS  pi(S)Xv2S ��(v)!� pi(F)Now, Equation (5) is proved as follows:��pi(F) � Pv ��(v)
(v)Pv ��(v)pi(v)� minv ��(v)
(v)��(v)pi(v)= 
(vi)pi(vi)We now bound the ratio between pi(F) and pi+1(F) at ea
h iteration i. The de
rease inpi(F) is pre
isely �1� 1�1� � pi(vi), and hen
e,pi+1(F)pi(F) = pi(F)� �1� 1�1� � pi(vi)pi(F) = 1� (�1 � 1) � pi(vi)�1 � pi(F) � 1� (�1 � 1) � 
(vi)�1 � �� ; (6)where the last inequality follows from (5).Let I denote the number of iterations of the algorithm, and let �
 = PIi=1 
(vi)=I. We
laim that, for every � > 0, IYi=1�1� 
(vi)� � ��� � �1� �
� � ���I (7)To prove Equation (7) we 
onsider the logarithms of both sides, and divide both sides byI. The left hand side equals then,1I � log IYi=1�1� 
(vi)� � ���! = 1I � IXi=1 log�1� 
(vi)� � ���
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and by Jensen's Inequality,1I � IXi=1 log�1� 
(vi)� � ��� � log0�PIi=1 �1� 
(vi)���� �I 1A = log 1� PIi=1 
(vi)� � �� � I ! = log�1� �
� � ��� ;whi
h �nishes the proof of Equation (7).By the initial assignment to p(S), it follows that p1(F) = m. Consider a vertex v forwhi
h pI(v) > m��2 . Then, pI+1(v) > m��2=�1, and thus, pI+1(F) > m��2=�1. Hen
e,1�1m�2+1 � pI+1(F)p1(F)We upper bound the same ratio using Equations (6) and (7), where � = �1�1�1 :pI+1(F)p1(F) = IYi=1 pi+1(F)pi(F) � IYi=1�1� (�1 � 1)
(vi)�1�� � � �1� (�1 � 1)�
�1�� �I :We get 1�1m�2+1 � �1� (�1 � 1)�
�1�� �I :Take the natural logarithm of both hands. Be
ause of Equation (5) 
(vi)�� � 1, for all1 � i � I. Hen
e, 0 < (�1�1)�
�1�� < 1, and we 
an apply the inequality x � � ln(1 � x), for0 � x < 1, to get that (�2 + 1) lnm+ ln�1 � I � (�1 � 1)�
�1��Rearranging the terms we getIXi=1 
(vi) = I � �
 � �1�1 � 1 [(�2 + 1) lnm+ ln�1℄ ��whi
h proves Equation (4). The fra
tional 
over, ', is obtained by dividing the multipli
ity,`(v), by �2 lnmln�1 , for every element v. The resulting bound on the 
ost of the fra
tional 
overis ' = IXi=1 
(vi) � ln�1�2 lnm � ln�1�2 lnm � �1�1 � 1 [(�2 + 1) lnm+ ln�1℄ ��Sin
e (ln�1) � (�1 � 1), it follows that'�� � �1 �1 + 1�2 + ln�1�2 lnm�Substituting �1 = 1+"=4 and �2 = 4=", we get the stated bound for " � 1, i.e., ' � (1+")��.2 23



5.2 Implementing the fra
tional fvs algorithmThe fvs problem naturally redu
es to a Set Cover problem by de�ning the verti
es of thegraph as elements and the simple dire
ted 
y
les as the subsets of the set system. How-ever, a naive implementation of algorithm approximate SC would take exponential time,sin
e the size of the set system might be exponential, and the algorithm requires atta
h-ing an \attra
tion" p(S) to every subset S, updating these attra
tions, and 
al
ulatingp(v) = Pfp(S)jv 2 Sg, for every vertex v. In this se
tion, we present a more involvedimplementation that runs in polynomial time.First, we modify the input graph G = (V;E) by splitting ea
h vertex v 2 V into a \left"vertex v0 and a \right" vertex v00, where the in
oming edges into v now enter v0, and theoutgoing edges from v now leave v00. In addition there is a dire
ted edge from v0 to v00, anda self loop on v00. The new graph is denoted by G0 = (V 0; E0).We rede�ne the Set Cover problem that 
orresponds to the fvs problem on G. Considerthe set of all simple and non-simple dire
ted 
y
les in G0 of length jV 0j that 
ontain atleast one \left" vertex. Every su
h 
y
le in G0 
orresponds to a simple dire
ted 
y
le inG by eliminating the self loops and merging all adja
ent \left" and \right" verti
es. (In
ase the resulting 
y
le is non-simple, pi
k any simple sub-
y
le in it.) Conversely, everysimple dire
ted 
y
le in G has at least one 
orresponding 
y
le of length jV 0j in G0 that
ontains a \left" vertex. Clearly, this 
orresponden
e is not one-to-one, and 
y
les in Gmay have several 
orresponding 
losed paths in G0. Nevertheless, the problem of 
overingwith \left" verti
es all 
y
les of length jV 0j in G0 that 
ontain a \left" vertex is equivalentto the original fvs problem. The \redundan
y" in G0 fa
ilitates eÆ
ient implementationas des
ribed below.Let A denote the adja
en
y matrix of graph G0, and let B = AjV 0j. The entry B(v0; v0)equals the number of 
y
les of length jV 0j that 
ontain v0. Thus, B(v0; v0) equals p(v0)after initialization in the approximate SC algorithm. Intermediate values of p(v0) 
an be
omputed as follows. Suppose that vertex v0 2 V 0 is 
hosen at some iteration. Updatethe value of the entry A(v0; v00), whi
h 
orresponds to edge v0 ! v00, by dividing it by �1.Consequently, the attra
tion of every 
y
le that 
ontains v is divided by �k1 , where k denotesthe number of times v is 
ontained in the 
y
le. Note that this deviation from the algorithm,namely, dividing the attra
tion of a 
y
le by �k1 (for k � 1) instead of �1, is immaterial,sin
e it suÆ
es to 
over 
y
les of length jV 0j in G0 in whi
h ea
h \left" vertex appears atmost on
e. Hen
e, the updated entry B(v0; v0) equals the new value of p(v0). Note thatthe value m denoting the total number of subsets in the set system 
an be repla
ed byany upper bound on it, e.g., m � (2n)2n. This 
ompletes the des
ription of an eÆ
ientimplementation of the approximate Set Cover algorithm for the fvs problem.The number of 
y
les 
onsidered by the above algorithm is at most (2n)2n. Hen
e, thenumber of iterations of the algorithm is at most O("�2 � n2 log n). The 
omplexity of ea
hiteration is dominated by the 
omplexity of 
omputing the matrix B whi
h is O(M(n) log n),24



where M(n) denotes the 
omplexity of matrix multipli
ation. Hen
e, the 
omplexity of thealgorithm is O("�2n2M(n) log2 n).6 Remark: the NP-hardness of the problemsIn [YKCP83℄ Yannakakis et al. show that the following DCUT problem is NP-Hard.Input: A dire
ted graph H = (N;F ), a dire
ted graph G = (V;E) with positive weightsw(e) asso
iated with ea
h edge e 2 E, a 1-1 mapping f : N ! V , and an integer k.Question: Is there a subset S � E su
h that: Pe2S w(e) � k, and if (u; v) 2 F , then thereis no dire
ted path from f(u) to f(v) in (V;E � S).It is easy to see that the problem of �nding minimum 
apa
ity multi
uts in 
ir
ularnetworks is a spe
ial 
ase of the DCUT problem. In this spe
ial 
ase the verti
es of the\pattern graph" H = (N;F ) 
orrespond to the terminals in the multi
ut problem, and theset of edges F 
onsists of a dire
ted edge from ea
h sour
e to its 
orresponding sink.Sin
e the multi
ut problem in 
ir
ular networks is easily redu
ible to the symmetri
multi
ut problem 
onsidered by [KPRT93℄, the symmetri
 multi
ut problem is also NP-Hard.In the NP-Hardness proof of [YKCP83℄, the problem is �rst redu
ed to the 
ase wherethe \pattern graph" H has no vertex with both in
oming and outgoing edges. This is doneby splitting ea
h vertex u in H with both in
oming and outgoing edges into two verti
esuin and uout su
h that all the edges 
oming into u are now 
oming into uin, and all theedges going out from u are now going out from uout. A

ordingly, the vertex v in G that
orresponds to u is split into vin and vout, all edges originally 
oming into v are set to entervin, and all edges originally going out from v are set leave vout. Also, vout is 
onne
ted tovin by an in�nite 
apa
ity edge.Then, it is proved that for su
h modi�ed \pattern graphs", if H is not a 
omplete bi-partite graph, then the DCUT problem is NP-Hard even if H 
onsists of only four verti
esand all the weights are one. This implies that the multi
ut problem in 
ir
ular networksis NP-Hard even if there are only two pairs of terminals and all the weights are one. Con-sequently, the subset-fes problem is NP-Hard even if there are only two spe
ial verti
esand all the weights are one.We note that in order for the NP-Hardness proof in [YKCP83℄ to apply for the 
asewhere the original \pattern graph" H 
onsists of verti
es with both in
oming and outgoingedges, (and in parti
ular to the multi
ut problem in 
ir
ular networks and to the subset-fesproblem), we have to 
onsider the spe
ial 
ase in whi
h the graphG 
ontains in�nite 
apa
ityedges between pairs of verti
es. (These are the pairs of verti
es that are 
onstru
ted bysplitting verti
es in the original graph G.) Although the 
onstru
tion in [YKCP83℄ doesnot 
onsider this spe
ial 
ase, it is easy to see that by a minor 
hange in their 
onstru
tion,this 
ase is 
overed as well. 25
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