
Chapter 1Guaranteeing Fair Servi
e to Persistent Dependent Tasks�Amotz Bar-Noyy Alain Mayerz Baru
h S
hiebery Madhu SudanyAbstra
tWe introdu
e a new s
heduling problem that is motivatedby appli
ations in the area of a

ess and
ow-
ontrol ofhigh-speed and wireless networks. An instan
e of theproblem
onsists of a set of persistent tasks that have tobe s
heduled repeatedly. Ea
h task has a demand to bes
heduled \as often as possible". There is no expli
it limiton the number of tasks that
an be s
heduled
on
urrently.However, su
h limits gets imposed impli
itly by the fa
tthat some tasks are in
on
i
t and
annot be s
heduledsimultaneously. The
on
i
ts are presented in the formof a
on
i
t graph. We de�ne parameters that quantifythe fairness and regularity of a given s
hedule. We thenpro
eed to show lower bounds on these parameters, andpresent fair and eÆ
ient s
heduling algorithms for thespe
ial
ase where the
on
i
t graph is an interval graph.Some of the results presented here extend to the
ase ofperfe
t graphs and
ir
ular-ar
 graphs as well.1 Introdu
tionIn this paper we
onsider a new form of a s
hedulingproblem whi
h is
hara
terized by two features:Persisten
e of the tasks: A task does not simply goaway on
e it is s
heduled. Instead, ea
h task mustbe s
heduled in�nitely many times. The goal is tos
hedule every task as frequently as possible.Dependen
e among the tasks: Some tasks
on
i
t withea
h other and hen
e
annot be s
heduled
on
ur-rently. These
on
i
ts are given by a
on
i
t graph.This graph imposes
onstraints on the sets of tasksthat may be s
heduled
on
urrently. Note that these
onstraints are not based simply on the
ardinality ofthe sets, but rather on the identity of the tasks withinthe sets.�Extended summaryyIBM { Resear
h Division, T. J. Watson Resear
h Center,Yorktown Heights, NY 10598.Email: famotz,sbar,madhug�watson.ibm.
om.zDept. of Computer S
ien
e, Columbia University, NewYork, NY 10027. Email: mayer�
s.
olumbia.edu. Part of thiswork was done while the author was at the IBM T. J. WatsonResear
h Center. Partially supported by an IBM GraduateFellowship, NSF grant CCR-93-16209, and CISE InstitutionalInfrastru
ture Grant CDA-90-24735

We
onsider both the problems of allo
ation, i.e.,how often should a task be s
heduled and regularity,i.e., how evenly spa
ed are lengths of the intervalsbetween su

essive s
heduling of a spe
i�
 task. Wepresent a more formal des
ription of this problemnext and dis
uss our primary motivation immediatelyafterwards. While all our de�nitions are presented forgeneral
on
i
t graphs, our appli
ations, bounds, andalgorithms are for spe
ial sub
lasses { namely, perfe
tgraphs, interval graphs and
ir
ular ar
-graphs1.Problem statement An instan
e of the s
hedulingproblem
onsists of a
on
i
t graph G with n verti
es.The verti
es of G are the tasks to be s
heduled andthe edges of G de�ne pairs of tasks that
annot bes
heduled
on
urrently. The output of the s
hedulingalgorithm is an in�nite sequen
e of subsets of theverti
es, I1; I2; : : :, where It lists the tasks that ares
heduled at time t. Noti
e that for all t, It must bean independent set of G.In the form above, it is hard to analyze the runningtime of the s
heduling algorithm. We
onsider insteada �nite version of the above problem and use it toanalyze the running time.Input: A
on
i
t graph G and a time t.Output: An independent set It denoting the set of taskss
heduled at time unit t.The obje
tive of the s
heduling algorithm is toa
hieve a fair allo
ation and a regular s
hedule. Wenext give some motivation and des
ribe the
ontextof our work. As we will see, none of the existingmeasures
an appropriately
apture the \goodness"of a s
hedule in our framework. Hen
e we pro
eed tointrodu
e measures whi
h allow for easier presentationof our results.1A graph is perfe
t if for all its indu
ed subgraphs the size ofthe maximum
lique is equal to the
hromati
 number (
f. [11℄).A graph is an interval graph (
ir
ular-ar
 graph) if its verti
es
orrespond to intervals on a line (
ir
le), and two verti
es areadja
ent if the
orresponding intervals interse
t (
f. [20℄).1

2 A. Bar-Noy, A. Mayer, B. S
hieber, and M. Sudan1.1 MotivationSession s
heduling in high-speed lo
al-area net-works. MetaRing ([7℄) is a re
ent high-speed lo
al-area ring-network that allows \spatial reuse", i.e.,
on-
urrent a

ess and transmission of user sessions, usingonly minimal intermediate bu�ering of pa
kets. Thebasi
 operations in MetaRing
an be approximated bythe following: if some node has to send data to someother node a session is established between the sour
eand the destination. Sessions typi
ally last for a whileand
an be a
tive only if they have ex
lusive use ofall the links in their routes. Hen
e, sessions whoseroutes share at least one link are in
on
i
t. These
on
i
ts need to be regulated by breaking the datasent in a session into units of quotas that are trans-mitted a

ording to some s
hedule. This s
hedule hasto be eÆ
ient and fair. EÆ
ient means that the totalnumber of quotas transmitted (throughput) is maxi-mized whereas fair means that the throughput of ea
hsession is maximized, and that the time between su
-
essive a
tivation of a session is minimized, so thatlarge bu�ers at the sour
e nodes
an be avoided. Ithas been re
ognized ([5℄) that the a

ess and
ow-
ontrol in su
h a network should depend on lo
ality inthe
on
i
t graph. However, no �rm theoreti
al ba-sis for an algorithmi
 framework has been proposedup to now. To express this problem as our s
hedulingproblem we
reate a
ir
ular-ar
 graph whose verti
esare the sessions, and in whi
h verti
es are adja
ent ifthe
orresponding paths asso
iated with the sessionsinterse
t in a link.Time sharing in wireless networks. Most indoordesigns of wireless networks are based on a
ellular ar-
hite
ture with a very small
ell size. (See, e.g., [13℄.)The
ellular ar
hite
ture
omprises two levels { a sta-tionary level and a mobile level. The stationary level
onsists of �xed base stations that are inter
onne
tedthrough a ba
kbone network. The mobile level
onsistsof mobile units that
ommuni
ate with the base sta-tions via wireless links. The geographi
 area withinwhi
h mobile units
an
ommuni
ate with a parti
u-lar base station is referred to as a
ell. Neighboring
ells overlap with ea
h other, thus ensuring
ontinuityof
ommuni
ations. The mobile units
ommuni
ateamong themselves, as well as with the �xed informa-tion networks, through the base stations and the ba
k-bone network. The
ontinuity of
ommuni
ations is a
ru
ial issue in su
h networks. A mobile user who
rosses boundaries of
ells should be able to
ontinueits
ommuni
ation via the new base-station. To ensurethis, base-stations periodi
ally need to transmit theiridentity using the wireless
ommuni
ation. In someimplementations the wireless links use infra-red waves.

Therefore, two base-station whose
ells overlap are in
on
i
t and
annot transmit their identity simulta-neously. These
on
i
ts have to be regulated by atime-sharing s
heme. This time sharing has to be eÆ-
ient and fair. EÆ
ient means that the s
heme shoulda

ommodate the maximal number of base stationswhereas fair means that the time between two
onse
-utive transmissions of the same base-station shouldbe less then the time it takes a user to
ross its
orre-sponding
ell. On
e again this problem
an be posedas our graph-s
heduling problem where the verti
es ofthe graph are the base-stations and an edge indi
atesthat the base stations have overlapping
ells.1.2 Relationship to past workS
heduling problems that only
onsider either persis-ten
e of the tasks or dependen
e among the tasks (butnot both) have been dealt with before.The task of s
heduling persistent tasks has beenstudied in the work of Baruah et al. [2℄. They
onsiderthe problem of s
heduling a set of n tasks with given(arbitrary) frequen
ies onm ma
hines. (Hen
e, m = 1yields an instan
e of our problem where the
on
i
tgraph is a
lique.) To measure \regularity" of as
hedule for their problem they introdu
e the notionof P -fairness. A s
hedule for this problem is P -fair(proportionate-fair) if at ea
h time t for ea
h task ithe absolute value of the di�eren
e in the number oftimes i has been s
heduled and fit is stri
tly less than1, where fi is the frequen
y of task i. They providean algorithm for
omputing a P -fair solution to theirproblem. Their problem fails to
apture our situationdue to two reasons. First, we would like to
onstrainthe sets of tasks that
an be s
heduled
on
urrentlya

ording to the topology of the
on
i
t graph andnot a

ording to their
ardinality. Moreover, in theirproblem every \feasible" frequen
y requirement
anbe s
heduled in a P -fair manner. For our s
hedulingproblem we show that su
h a P -fair s
hedule
annotalways be a
hieved. To deal with feasible frequen
iesthat
annot be s
heduled in a P -fair manner, we de�neweaker versions of \regularity".The dependen
y property
aptures most of thework done based on the well-known \Dining Philoso-phers" paradigm, see for example [9℄, [18℄, [6℄, [1℄, [8℄,and [4℄. In this setting, Lyn
h [18℄ was the �rst to ex-pli
itly
onsider the response time for ea
h task. Thegoal of su

essive works was to make the response timeof a node to depend only on its lo
al neighborhood inthe
on
i
t graph. (See, e.g., [4℄.) While response timein terms of a node's degree is adequate for \one-shot"tasks, it does not
apture our requirement that a task

Guaranteeing Fair Servi
e to Persistent Dependent Tasks 3should be s
heduled in a regular and fair fashion overa period of time.1.3 Notations and de�nitionsA s
hedule S is an in�nite sequen
e of independentsets I1; I2; : : : ; It; : : : We use the notation S(i; t) torepresent the s
hedule: S(i; t) = 1 if i 2 It and0 otherwise. Let f (t)i = Pt�=1 S(i; �)=t. Let fi =lim inft!1ff (t)i g. We refer to fi as the frequen
y ofthe i-th task in s
hedule S.Definition 1.1. A ve
tor of frequen
ies f̂ =(f1; : : : ; fn) is feasible if there exists a s
hedule S su
hthat the frequen
y of the i-th task under s
hedule S isat least fi.Definition 1.2. A s
hedule S realizes a ve
tor offrequen
ies f̂ if the frequen
y of the i-th task unders
hedule S is at least fi. A s
hedule S
-approximatesa ve
tor of frequen
ies f̂ if the frequen
y of the i-thtask under s
hedule S is at least fi=
.A measure of fairness Fairness is determined via apartial order � that we de�ne on the set of frequen
yve
tors.Definition 1.3. Given two frequen
y ve
tors f̂ =(f1; : : : ; fn) and ĝ = (g1; : : : ; gn), f̂ � ĝ (f̂ is less fairthan ĝ) if there exists an index j and a threshold fsu
h that fj < f � gj and for all i su
h that gi � f ,fi � gi.Definition 1.4. A ve
tor of frequen
ies f̂ is max-min fair if no feasible ve
tor ĝ satis�es f̂ � ĝ.Less formally, in a max-min fair frequen
y ve
torone
annot in
rease the frequen
y of some task atthe expense of more frequently s
heduled tasks. Thismeans that our goal is to let task i have more of theresour
e as long as we have to take the resour
e awayonly from tasks whi
h are better o�, i.e., they havemore of the resour
e than task i.Measures of regularity Here, we provide two mea-sures by whi
h one
an evaluate a s
hedule for its reg-ularity. We
all these measures the response time andthe drift.Given a s
hedule S, the response time for task i,denoted ri, is the largest interval of time for whi
h thei-th task waits between su

essive s
hedulings. Morepre
isely,ri = maxft2 � t1j0 � t1 < t2 s.t. 8t1<t<t2S(i; t) = 0g:For any time t, the number of expe
ted o

urren
esof task i
an be expressed as fit. But note that if ri is

larger than 1=fi, it is possible that, for some period oftime, a s
hedule allows a task to \drift away" from itsexpe
ted number of o

urren
es. In order to
apturethis, we introdu
e a se
ond measure for the regularityof a s
hedule. We denote by di the drift of a taski. It indi
ates how mu
h a s
hedule allows task i todrift away from its expe
ted number of s
heduled units(based on its frequen
y):di = maxt fjfi � t� tXr=1S(i; r)jg:Note that if a s
hedule S a
hieves drift di < 1 for alli, then it is P-fair as de�ned in [2℄.Finally, a s
hedule a
hieves its strongest form ofregularity if ea
h task i is s
heduled every 1=fi time-units (ex
ept for its �rst appearan
e). Hen
e we saythat a s
hedule is rigid if for ea
h task i there existsa starting point si su
h that the task is s
heduled onexa
tly the time units si + j(1=fi), for j = 0; 1; : : :1.4 ResultsIn Se
tion 2 we motivate our de�nition of max-minfairness and show several of its properties. First, weprovide an equivalent alternate de�nition of feasibilitywhi
h shows that de
iding feasibility of a frequen
yve
tor is
omputable. We prove that every graph has aunique max-min fair frequen
y ve
tor. Then, we showthat the task of even weakly-approximating the max-min fair frequen
ies on general graphs is NP-hard.As we mentioned above many pra
ti
al appli
ationsof this problem arise from simpler networks, su
has buses and rings (i.e., interval
on
i
t graphs and
ir
ular-ar

on
i
t graphs). For the
ase of perfe
t-graphs (and hen
e for interval graphs), we des
ribean eÆ
ient algorithm for
omputing max-min fairfrequen
ies. We prove that the period T of a s
hedulerealizing su
h frequen
ies satis�es T = 2O(n) and thatthere exist interval graphs su
h that T = 2
(n).The rest of our results deal with the problem of�nding the most \regular" s
hedule (under the abovementioned measures) that realizes any feasible fre-quen
y ve
tor. Se
tion 3 shows the existen
e of in-terval graphs for whi
h there is no P -fair s
hedulethat realizes their max-min fair frequen
ies. In Se
-tion 4 we introdu
e an algorithm for
omputing as
hedule that realizes any given feasible frequen
ieson interval graphs. The s
hedule
omputed by thealgorithm a
hieves response-time of d4=fie and driftof O(plogTn�). A slight modi�
ation of this algo-rithm yields a s
hedule that 2-approximates the givenfrequen
ies. The advantage of this s
hedule is that

4 A. Bar-Noy, A. Mayer, B. S
hieber, and M. Sudanit a
hieves a bound of 1 on the drift and hen
e abound of d2=fie on the response time. In Se
tion 5 wepresent an algorithm for
omputing a s
hedule that12-approximates any given feasible frequen
ies on in-terval graphs and has the advantage of being rigid.All algorithms run in polynomial time. In Se
tion 6we show how to transform any algorithm for
omput-ing a s
hedule that
-approximates any given feasi-ble frequen
ies on interval graphs into an algorithmfor
omputing a s
hedule that 2
-approximates anygiven feasible frequen
ies on
ir
ular-ar
 graphs. (Theresponse-time and drift of the resulting s
hedule aredoubled as well.) Finally, in Se
tion 7 we list a num-ber of open problems and sket
h what additional prop-erties are required to obtain solutions for a
tual net-works. Due to spa
e
onstraints some of the proofs areeither omitted or sket
hed in this extended summary.2 Max-min Fair Allo
ationOur de�nition for max-min fair allo
ation is basedon the de�nition used by Ja�e [14℄ and Bertsekasand Gallager [3℄, but di�ers in one key ingredient{ namely our notion of feasibility. We study someelementary properties of our de�nition in this se
tion.In parti
ular, we show that the de�nition guarantees aunique max-min fair frequen
y ve
tor for every
on
i
tgraph. We also show the hardness of
omputing thefrequen
y ve
tor for general graphs. However, for thespe
ial
ase of perfe
t graphs our notion turns out tobe the same as of [3℄.The de�nition of [14℄ and [3℄ is
onsidered thetraditional way to measure throughput fairness andis also based on the partial order � as used inour de�nition. The primary di�eren
e between ourde�nition and theirs is in the de�nition of feasibility.Bertsekas and Gallager [3℄ use a de�nition, whi
h we
all
lique feasible, that is de�ned as follows:A ve
tor of frequen
ies (f1; : : : ; fn) is
liquefeasible for a
on
i
t graph G, ifPi2C fi � 1for all
liques C in the graph G.The notion of max-min fairness of Bertsekas andGallager [3℄ is now exa
tly our notion, with feasibilityrepla
ed by
lique feasibility.The de�nition of [3℄ is useful for
apturing thenotion of fra
tional allo
ation of a resour
e su
h asbandwidth in a
ommuni
ation networks. However, inour appli
ation we need to
apture a notion of integralallo
ation of resour
es and hen
e their de�nition doesnot suÆ
e for our purposes. It is easy to see that everyfrequen
y ve
tor that is feasible in our sense is
lique

feasible. However, the
onverse is not true. Considerthe
ase where the
on
i
t graph is the �ve-
y
le. Forthis graph the ve
tor (1=2; 1=2; 1=2; 1=2; 1=2) is
liquefeasible, but no s
hedule
an a
hieve this frequen
y.2.1 An alternate de�nition of feasibilityGiven a
on
i
t graph G, let I denote the family ofall independent sets in G. For I 2 I, let �(I) denotethe
hara
teristi
 ve
tor of I .Proposition 2.1. A ve
tor of frequen
ies f̂ isfeasible if and only if there exist weights f�IgI2I, su
hthat PI2I �I = 1 and PI2I �I�(I) = f̂ .The main impa
t of this assertion is that it showsthat the spa
e of all feasible frequen
ies is well be-haved (i.e., it is a
losed,
onne
ted,
ompa
t spa
e).Immediately it shows that determining whether a fre-quen
y ve
tor is feasible is a
omputable task (a fa
tthat may not have been easy to see from the earlierde�nition). We now use this de�nition to see the fol-lowing
onne
tion:Proposition 2.2. Given a
on
i
t graph G, thenotions of feasibility and
lique feasibility are equiva-lent if and only if G is perfe
t.Proof (sket
h): The proof is follows dire
tly from well-known polyhedral properties of perfe
t graphs. (See[12℄, [16℄.) In the notation of Knuth [16℄ the spa
eof all feasible ve
tors is the polytope STAB(G) andthe spa
e of all
lique-feasible ve
tors is the polytopeQSTAB(G). The result follows from the theorem onpage 38 in [16℄ whi
h says that a graph G is perfe
t ifand only if STAB(G) = QSTAB(G). 22.2 Uniqueness and
omputability of max-min fair frequen
iesIn the full paper we prove the following theorem.Theorem 2.3. There exists a unique max-min fairfrequen
y ve
tor.Now, we turn to the issue of the
omputabilityof the max-min fair frequen
ies. While we do notknow the exa
t
omplexity of
omputing max-min fairfrequen
ies2 it does seem to be a very hard task in gen-eral. In parti
ular, we
onsider the problem of
om-puting the smallest frequen
y assigned to any vertexby a max-min allo
ation and show the following:Theorem 2.4. There exists an � > 0, su
h thatgiven a
on
i
t graph on n verti
es approximating the2In parti
ular, we do not know if de
iding whether a fre-quen
y ve
tor is feasible is in NP [
oNP

Guaranteeing Fair Servi
e to Persistent Dependent Tasks 5smallest frequen
y assigned to any vertex in a max-minfair allo
ation, to within a fa
tor of n�, is NP-hard.Proof (sket
h): We relate the
omputation of max-minfair frequen
ies in a general graph to the
omputationof the fra
tional
hromati
 number of a graph. Thefra
tional
hromati
 number problem (
f. [17℄) isde�ned as follows: To ea
h independent set I in thegraph, assign a weight wI , so as to minimize thequantity PI wI , subje
t to the
onstraint that forevery vertex v in the graph, the quantity PI3v wI isat least 1. The quantityPI wI is
alled the fra
tional
hromati
 number of the graph. Observe that if thewI 's are for
ed to be integral, then the fra
tional
hromati
 number is the
hromati
 number of thegraph.The following
laim shows a relationship betweenthe fra
tional
hromati
 number and the assignmentof feasible frequen
ies.Claim 2.5. Let (f1; f2; : : : ; fn) be a feasible assign-ment of frequen
ies to the verti
es in a graph G. Then1=(mini fi) is an upper bound on the fra
tional
hro-mati
 number of the graph. Conversely, if k is thefra
tional
hromati
 number of a graph, then a s
hed-ule that sets the frequen
y of every vertex to be 1=k isfeasible.The above
laim,
ombined with the hardness of
omputing the fra
tional
hromati
 number [17℄, suf-�
es to show the NP-hardness of de
iding whether agiven assignment of frequen
ies is feasible for a givengraph. To show that the
laim also implies the hard-ness of approximating the smallest frequen
y in themax-min fair frequen
y ve
tor we inspe
t the Lund-Yannakakis
onstru
tion a bit more
losely. Their
on-stru
tion yields a graph in whi
h every vertex parti
-ipates in a
lique of size k su
h that de
iding if the(fra
tional)
hromati
 number is k or kn� is NP-hard.In the former
ase, the max-min fair frequen
y assign-ment is 1=k to every vertex. In the latter
ase at leastsome vertex will have frequen
y smaller that 1=(kn�).Thus this implies that approximating the smallest fre-quen
y in the max-min fair frequen
ies to within afa
tor of n� is NP-hard. 22.3 Max-min fair frequen
ies on perfe
tgraphsWe now turn to perfe
t graphs. We show how to
om-pute in polynomial time max-min fair frequen
ies forthis
lass of graphs and give bounds on the period ofa s
hedule realizing su
h frequen
ies. As our main fo-
us of the subsequent se
tions will be interval graphs,we will give our algorithms and bounds �rst in terms

Figure 1: An interval graph for whi
h T = 2
(n).of this sub
lass and then show how to generalize theresults to perfe
t graphs.We start by des
ribing an algorithm for
omputingmax-min fair frequen
ies on interval graphs. Aswe know that
lique-feasibility equals feasibility (byProposition 2.2), we
an use an adaptation of [3℄:Algorithm 1: Let C be the
olle
tion of maximal
liques in the interval graph. (Noti
e that C has atmost n elements and
an be
omputed in polynomialtime.) For ea
h
lique C 2 C the algorithm maintainsa residual
apa
ity whi
h is initially 1. To ea
h vertexthe algorithm asso
iates a label assigned/unassigned.All verti
es are initially unassigned. Dividing theresidual
apa
ity of a
lique by the number of unas-signed verti
es in this
lique yields the relative residual
apa
ity. Iteratively, we
onsider the
lique with thesmallest
urrent relative residual
apa
ity and assignto ea
h of the
lique's unassigned verti
es this
apa
ityas its frequen
y. For ea
h su
h vertex in the
lique wemark it assigned and subtra
t its frequen
y from theresidual
apa
ity of every
lique that
ontains it. Werepeat the pro
ess till every vertex has been assignedsome frequen
y.It is not hard to see that Algorithm 1
orre
tly
omputes max-min fair frequen
ies in polynomial-time. We now use its behavior to prove a tight boundon the period of a s
hedule for an interval graph. Thefollowing theorem establishes this bound. (See alsoFigure 1.)Theorem 2.6. Let fi = pi=qi be the frequen
iesin a max-min fair s
hedule for an interval graph G,where pi and qi are relatively prime. Then, the periodfor the s
hedule T = l
mni=1fqig satis�es T = 2O(n).Furthermore, there exist interval graphs for whi
h T =2
(n).

6 A. Bar-Noy, A. Mayer, B. S
hieber, and M. SudanIt is
lear that Algorithm 1 works for all graphswhere
lique feasibility determines feasibility, i.e., per-fe
t graphs. However, the algorithm does not remain
omputationally eÆ
ient. Still, Theorem 2.6
an bedire
tly extended to the
lass of perfe
t graphs. Wenow use this fa
t to des
ribe a polynomial-time algo-rithm for assigning max-min fair frequen
ies to perfe
tgraphs.Algorithm 2: This algorithm maintains the labellingpro
edure assigned/unassigned of Algorithm 1. Atea
h phase, the algorithm starts with a set of assignedfrequen
ies and tries to �nd the largest f su
h thatall unassigned verti
es
an be assigned the frequen
yf . To
ompute f in polynomial time, the algorithmuses the fa
t that de
iding if a given set of frequen
iesis feasible is redu
ible to the task of
omputing thesize of the largest weighted
lique in a graph withweights on verti
es. The latter task is well known tobe
omputable in polynomial-time for perfe
t graphs.Using this de
ision pro
edure the algorithm performsa binary sear
h to �nd the largest a
hievable f . (Thebinary sear
h does not have to be too re�ned dueto Theorem 2.6). Having found the largest f , thealgorithm �nds a set of verti
es whi
h are saturatedunder f as follows: Let � be some small number, forinstan
e � = 2�n2 is suÆ
ient. Now it raises, one at atime, the frequen
y of ea
h unassigned vertex to f+�,while maintaining the other unassigned frequen
iesat f . If the so obtained set of frequen
ies is notfeasible, then it marks the vertex as assigned and itsfrequen
y is assigned to be f . The algorithm nowrepeats the phase until all verti
es have been assignedsome frequen
y.3 Non-existen
e of P-fair allo
ationsHere we show that a P -fair s
heduling realizing max-min fair frequen
ies need not exist for every intervalgraph.Theorem 3.1. There exist interval graphs G forwhi
h there is no P-fair s
hedule that realizes theirmax-min frequen
y assignment.In order to prove this theorem we
onstru
t su
ha graph G as follows. We
hoose a parameter k andfor every permutation � of the elements f1; : : : ; kg, wede�ne an interval graph G�. We show a ne
essary
on-dition that � must satisfy if G� has a P-fair s
hedule.Lastly we show that there exists a permutation � of12 elements whi
h does not satisfy this
ondition.Given a permutation � on k elements, G�
onsistsof 3k intervals. For i 2 f1; : : : ; kg, we de�ne the

A(1)

A(2)

A(3)

A(4)

C(1)

C(2)

C(3)

C(4)

B(1)

B(2)

B(3)

B(4)Figure 2: The graph G� for � = (3; 1; 2; 4)intervals A(i) = (i� 1; i℄, B(i) = (i; k + �(i) + 1℄ andC(i) = (k+ i+1; k+ i+2℄. Observe that the max-minfrequen
y assignment to G� is the following: All thetasks B(i) have frequen
y 1=k; all the tasks A(i) havefrequen
y (k � i + 1)=k; and all the tasks C(i) havefrequen
y i=k. (See Figure 2.)We now observe the properties of a P-fair s
hedulefor the tasks in G�. (i) The time period is k. (ii)The s
hedule is entirely spe
i�ed by the s
hedule forthe tasks B(i). (iii) This s
hedule is a permutation� of k elements, where �(i) is the time unit for whi
hB(i) is s
heduled. To see what kind of permutations �
onstitute P-fair s
hedules of G� we de�ne the notionof when a permutation is fair for another permutation.Definition 3.1. A permutation �1 is fair for apermutation �2 if for all i; j, 1 � i; j � k, �1 and�2 satisfy the
onditions
ondij de�ned as follows:ijk � 1 < jfl : �2(l) � i; �1(l) � jgj < ijk + 1 :Claim 3.2. If a permutation � is a P-fair s
hedulefor G� then � is fair for the identity permutation andfor permutation �.Let � = (1; 3; 4; 7; 8; 9; 11; 5; 12; 10; 2; 6) be a permu-tation on 12 elements. In the full paper we show thatno permutation � is fair to both � and the identity.4 Realizing frequen
ies exa
tlyIn this se
tion we �rst show how to
onstru
t as
hedule that realizes any feasible set of frequen
ies(and hen
e in parti
ular max-min frequen
ies) exa
tlyon an interval graph. We prove its
orre
tness anddemonstrate a bound of d4=fie on the response timefor ea
h interval i. We then pro
eed to introdu
ea potential fun
tion that is used to yield a boundof O(n 12+�) on the drift for every interval. We alsoprove that if the feasible frequen
ies are of the form1=2i, then the drift of the s
hedule
an be boundedby 1 and thus the waiting time
an be bounded byd2=fie. We use this property to give an algorithm for

Guaranteeing Fair Servi
e to Persistent Dependent Tasks 7
omputing a s
hedule that 2-approximates any feasibleset of frequen
ies with high regularity.Input to the Algorithm: A unit of time t and a
on
i
tgraphG whi
h is an interval graph. Equivalently, a setI = fI1; : : : ; Ing of intervals on the unit interval [0; 1℄of the x-
oordinate, where Ii = [i:s; i:e℄ for 1 � i � n.Every interval Ii has a frequen
y fi = pi=qi with thefollowing
onstraint: PIi3x fi � 1 for all 0 � x � 1.For simpli
ity, we assume from now on that these
onstraints on the frequen
ies are met with equalityand that t � T = LCMfqig.Output of the Algorithm: An independent set It whi
his the set of tasks s
heduled for time t su
h that thes
heduled S, given by fItgTt=1 realizes frequen
ies fi.The algorithm is re
ursive. Let si denote thenumber of times a task i has to appear in T timeunits, i.e., si = Tpi=qi. The algorithm has logT levelsof re
ursion. (Re
all that logT is O(n) for max-minfair frequen
ies.) In the �rst level we de
ide on theo

urren
es of the tasks in ea
h half of the period.That is, for ea
h task we de
ide how many of itso

urren
es appear in the �rst half of the period andhow many in the se
ond half. This yields a problemof a re
ursive nature in the two halves. In order to�nd the s
hedule at time t, it suÆ
es to solve theproblem re
ursively in the half whi
h
ontains t. (Notethat in
ase T is odd one of the halves is longer thanthe other.) Clearly, if a task has an even number ofo

urren
es in T it would appear the same number oftimes in ea
h half in order to minimize the drift. Theproblem is with tasks that have an odd number ofo

urren
es si. Clearly, ea
h half should have at leastbsi
 of the o

urren
es. The additional o

urren
ehas to be assigned to a half in su
h a way that bothresulting sub-problems would still be feasible. This isthe main diÆ
ulty of the assignment and is solved inthe pro
edure Sweep.Pro
edure Sweep: In this pro
edure we
omputethe assignment of the additional o

urren
e for alltasks that have an odd number of o

urren
es. Theinput to this pro
edure is a set of intervals I1; : : : ; Im(with odd si's) with the restri
tion that ea
h
lique inthe resulting interval graph is of even size. (Later, weshow how to over
ome this restri
tion.) The outputis a partition of these intervals into two sets su
hthat ea
h
lique is equally divided among the sets.This is done by a sweep along the x-
oordinate ofthe intervals. During the sweep every interval willbe assigned a variable whi
h at the end is set to 0or 1 (i.e., �rst half of the period or se
ond half of theperiod). Suppose that we sweep point x. We say that

an interval Ii is a
tive while we sweep point x if x 2 Ii.The assignment rules are as follows.For ea
h interval Ii that starts at x:If the
urrent number of a
tive intervals is even:A new variable is assigned to Ii (Ii is unpaired).If the
urrent number of a
tive intervals is odd:Ii is paired to the
urrently unpaired interval Ijand it is assigned the negation of Ij 's variable.Thus no matter what value is later assigned to thisvariable, Ii and Ij will end up in opposite halves.For ea
h interval Ii that ends at x:If the
urrent number of a
tive intervals is even:Nothing is done.If the
urrent number of a
tive intervals is odd:If Ii is paired with Ij :Ij is now being paired with the
urrently un-paired interval Ik . Also, Ij 's variable is mat
hedwith the negation of Ik's variable. This will en-sure that Ij and Ik are put in opposite halves,or equivalently, Ii and Ik are put in the samehalves.If Ii is unpaired:Assign arbitrarily 0 or 1 to Ii's variable.These operations ensure that whenever the numberof a
tive intervals is even, then exa
tly half of theintervals will be assigned 0 and half will be assigned1; this will be proven later.Re
all that we assumed that the size of ea
h
liqueis even. Let us show how to over
ome this restri
tion.For this we need the following simple lemma. Forx 2 [0; 1℄, denote by Cx the set of all the input intervals(with odd and even si's) that
ontain x; Cx will bereferred to as a
lique.Lemma 4.1. The period T is even if and only ifjfi : Ii 2 C ^ si is oddgj is even for every
lique C.This lemma implies that if T is even then the size ofea
h
lique in the input to pro
edure Sweep is indeedeven. If T is odd, then a dummy interval In+1 whi
hextends over all other intervals and whi
h has exa
tlyone o

urren
e is added to the set I before
allingSweep. Again, by Lemma 4.1, we are sure that inthis modi�ed set I the size of all
liques is even. Thiswould in
rease the period by one. The additional timeunit will be allotted only to the dummy interval andthus
an be ignored. We note that to produ
e thes
hedule at time t we just have to follow the re
ursive
alls that in
lude t in their period. Sin
e there areno more than logT su
h
alls, the time it takes toprodu
e this s
hedule is polynomial in n for max-minfair frequen
ies.

8 A. Bar-Noy, A. Mayer, B. S
hieber, and M. SudanLemma 4.2. The algorithm produ
es a
orre
ts
hedule for every feasible set of frequen
ies.Lemma 4.3. If the set of frequen
ies is of the form1=2i then the drift
an be bounded by 1 and hen
e theresponse time
an be bounded by d2=fie.Proof: Sin
e our algorithm always divides even si intoequal halves, the following invariant is maintained: Atany re
ursive level, whenever si > 1, then si is even.Also note that T = 2k, where mini fi = 1=2k and thuswe
an express ea
h fi as 2 i�k. Now, following thealgorithm, it
an be easily shown that there is at leastone o

urren
e of task i in ea
h time interval of size2k� i . Hen
e Ptr=1 S(i; r) = b t2k� i
 and P -fairnessfollows. 2Lemma 4.4. The response time for every intervalIi is bounded by d4=fie.Proof: The proof is based on the Lemma 4.3. Thislemma
learly implies the
ase in whi
h the frequen
iesare powers of two. Moreover, in
ase the frequen
iesare not powers of two, we
an virtually partitionea
h task into two tasks with frequen
ies pi and rirespe
tively, so that fi = pi + ri, pi is a power oftwo, and ri < pi. Then, the s
hedule of the task withfrequen
y pi has drift 1. This implies that its responsetime is d2=pie � d4=fie. 2We remark that it
an be shown that the bound ofthe above lemma is tight for our algorithm.We summarize the results in this se
tion in thefollowing theorem:Theorem 4.5. Given an arbitrary interval graphas
on
i
t graph, the algorithm exa
tly realizes anyfeasible frequen
y-ve
tor and guarantees that ri �d4=fie.4.1 Bounding the driftSin
e the algorithm has O(log T) levels of re
ursionand ea
h level may in
rease the drift by one,
learlythe maximum drift is bounded by O(log T). In thisse
tion we prove that we
an de
rease the maximumdrift to be O(plogTn�), for any �xed �, where n is thenumber of tasks. By Theorem 2.6 this implies that inthe worst
ase the drift for a max-min fair frequen
iesis bounded by O(n 12+�).Our method to get a better drift is based on thefollowing observation: At ea
h re
ursive step of thealgorithm two sets of tasks are produ
ed su
h thatea
h set has to be pla
ed in a di�erent half of thetime-interval
urrently
onsidered. However, we arefree to
hoose whi
h set goes to whi
h half. We are

using this degree of freedom to de
rease the drift. Tomake the presentation
learer we assume that T is apower of two and that the time units are 0; : : : ; T � 1.Consider a sub-interval of size T=2j starting aftertime t` = i�T=2j�1 and ending at tr = (i+1)�T=2j�1,for 0 � i � 2j � 1. In the �rst j re
ursion levels wealready �xed the number of o

urren
es of ea
h taskup to t`. Given this number, the drift d` at time t` is�xed. Similarly, the drift dr at time tr is also �xed.At the next re
ursion level we split the o

urren
esassigned to the interval [t` + 1; tr℄, and thus �xingthe drift dm at time tm = (t` + tr)=2. Optimally,we would like the drifts after the next re
ursion levelat ea
h time unit t 2 [t` + 1; tr℄ to be the weightedaverage of the drifts d` and dr. In other words, let� = (t � t`)=(tr � t`), then, we would like the driftat time t to be �dr + (1 � �)d`. In parti
ular, wewould like the drift at tm to be (d`+ dr)=2. This drift
an be a
hieved for tm only if the o

urren
es in theinterval [t` + 1; tr℄
an be split equally. However, in
ase we have an odd number of o

urren
es to split,the drift at tm is (d` + dr)=2 � 1=2, depending onour de
ision in whi
h half interval to put the extrao

urren
e. Note that the weighted average of thedrifts of all other points
hanges a

ordingly. Thatis, if the new dm is (d` + dr)=2 + x, for x 2 f�1=2g,then the weighted average in t 2 [t` + 1; (tr + t`)=2℄ is�dr+(1��)d`+2�x, where � = (t�t`)=(tr�t`) � 1=2,and the weighted average in t 2 [(tr + t`)=2 + 1; tr℄ is�dr+(1��)d`+(2�2�)x, where � = (t�t`)=(tr�t`) >1=2.Consider now the two sets of tasks S1 and S2 thatwe have to assign to the two sub-intervals (of thesame size) at level k of the re
ursion. For ea
h of thepossible two assignments, we
ompute a \potential"based on the resulting drifts at time tm. For a givenpossibility let D[tm; i; k℄ denote the resulting drift ofthe i-th task at tm after k re
ursion levels. De�nethe potential of tm after k levels as POT (tm; k) =Pni=1D(tm; i; j)�, for some �xed even
onstant �. We
hoose the possibility with the lowest potential.Theorem 4.6. Using the poli
y des
ribed abovethe maximum drift is bounded by O(plogT � n�), forany �xed �.5 Realizing frequen
ies rigidlyIn this se
tion we show how to
onstru
t a s
hedulethat 12-approximates any feasible frequen
y-ve
tor ina rigid fashion on an interval graph. We redu
eour Rigid S
hedule problem to the Dynami
 StorageAllo
ation problem. The Dynami
 Storage Allo
ation

Guaranteeing Fair Servi
e to Persistent Dependent Tasks 9problem is de�ned as follows. We are given obje
ts tobe stored in a
omputer memory. Ea
h obje
t hastwo parameters: (i) its size in terms of number of
ells needed to store it, (ii) the time interval in whi
hit should be stored. Ea
h obje
t must be stored inadja
ent
ells. The problem is to �nd the minimalsize memory that
an a

ommodate at any given timeall of the obje
ts that are needed to be stored at thattime. The Dynami
 Storage Allo
ation problem is aspe
ial
ase of the multi-
oloring problem on intervalsgraphs whi
h we now de�ne.A multi-
oloring of a weighted graph G with theweight fun
tion w : V ! N , is a fun
tion F : V ! 2Nsu
h that for all v 2 V the size of F (v) is w(v), andsu
h that if (v; u) 2 E then F (v) \ F (u) = ;. Themulti-
oloring problem is to �nd a multi-
oloring withminimal number of
olors. This problem is known tobe an NP-Hard problem [10℄.Two interesting spe
ial
ases of the Multi-Coloringproblem are when the
olors of a vertex either mustbe adja
ent or must be \spread well" among all
olors.We
all the �rst
ase the AMC problem and the se
ond
ase the CMC problem. More formally, in a solutionto AMC if F (u) = fx1 < � � � < xkg, then xi+1 = xi+1for all 1 � i < k. Whereas in a solution to CMC whi
huses T
olors, if F (u) = fx1 < � � � < xkg then (i) kdivides T , and (ii) xi+1 = xi + T=k for all 1 � i < k,and xk + T=k � T = x1.It is not hard to verify that for interval graphs theAMC problem is equivalent to the Dynami
 StorageAllo
ation problem des
ribed above. Simply asso
iateea
h obje
t with a vertex in the graph and give it aweight equal to the number of
ells it requires. Put anedge between two verti
es if their time intervals inter-se
t. The
olors assigned to a vertex are interpretedas the
ells in whi
h the obje
t is stored.On the other hand, the CMC problem
orrespondsto the Rigid S
hedule problem as follows. First, werepla
e the frequen
y f(v) by a weight w(v). Letk(v) = d� log2 f(v)e, and let k = maxv2V fk(v)g, thenw(v) = 2k�k(v). Clearly, w(v)=2k � f(v)=2.Now, assume that the output for the CMC problemuses T
olors and let the
olors of v be fx1 < � � � < xkgwhere x2 � x1 = �. We interpret this as follows: vis s
heduled in times x1 + i� for all i � 0. It is notdiÆ
ult to verify that this is indeed a solution to theRigid S
heduling problem.Although Dynami
 Storage Allo
ation problem isa spe
ial
ase of the multi-
oloring problem it isstill known to be an NP-Hard problem [10℄ andfor similar reasons the Rigid S
heduling problem is

also NP-Hard. Therefore, we are looking for anapproximation algorithm. In what follows we presentan approximation algorithm that produ
es a rigids
heduling that 12-approximates the given frequen
ies.For this we
onsider instan
es of the AMC and CMCproblems in whi
h the input weights are powers of two.Definition 5.1. A solution for an instan
e ofAMC is both aligned and
ontiguous if for all v 2 VF (v) = fj �w(v); : : : ; (j+1) �w(v)�1g for some j � 0.In [15℄, Kierstead presents an algorithm for AMCthat has an approximation fa
tor 3. A
areful inspe
-tion of this algorithm shows that it produ
es solutionsthat are both aligned and
ontiguous for all instan
esin whi
h the weights are power of two.We show how to translate a solution for su
h aninstan
e of the AMC problem that is both aligned and
ontiguous into a solution for an instan
e of the CMCproblem with the same input weights.For 0 � x < 2k, let �(x) be the k-bit number whosebinary representation is the inverse of the binaryrepresentation of x.Lemma 5.1. For 1 � i � k and 0 � j < 2k�i =�, f�(j2i); : : : ; �(j2i + 2i � 1)g = f�(j2i); �(j2i) +�; : : : ; �(j2i) + (2i � 1)�g.Consider an instan
e of the CMC problem in whi
hall the input weights are powers of two. Apply thesolution of Kierstead [15℄ to solve the AMC instan
ewith the same input. This solution is both aligned and
ontiguous, and uses at most 3T 0
olors where T 0 is thenumber of
olors needed by an optimal
oloring. LetT � 3T 0 be the smallest power of 2 that is greaterthan T 0. It follows that T � 6T 0. Applying thetransformation of Lemma 5.1 on the output of thesolution to AMC yields a solution to CMC with atmost T
olors. This in turn, yields an approximationfa
tor of at most 12 for the Rigid S
heduling problem,sin
e w(v)=T � f(v)=2.Theorem 5.2. The above algorithm
omputes arigid s
hedule that 12-approximates any feasiblefrequen
y-ve
tor on an interval graph.6 Cir
ular-Ar
 graphsIn this se
tion we show how to transform any algo-rithm A for
omputing a s
hedule that
-approximatesany given feasible frequen
y-ve
tor on interval graphsinto an algorithm A0 for
omputing a s
hedule that2
-approximates any given feasible frequen
ies on
ir
ular-ar
 graphs.

10 A. Bar-Noy, A. Mayer, B. S
hieber, and M. SudanLet f̂ be a feasible frequen
y-ve
tor on a
ir
ular-ar
 graph G.Step 1: Find the maximum
lique C in G.Let G0 = G�C. Note that G0 is an interval graph.Let ĝ1 and ĝ2 be the frequen
y-ve
tors resulting fromrestri
ting f̂ to the verti
es of G0 and C, respe
tively.Note that ĝ1 and ĝ2 are feasible on G0 and C, respe
-tively.Step 2: Using A, �nd s
hedules S1 and S2 that
-approximate ĝ1 and ĝ2 on G0 and C, respe
tively.Step 3: Interleave S1 and S2.Clearly, the resulting s
hedule 2
-approximates f̂on the
ir
ular-ar
 graph G.7 Future resear
hMany open problems remain. The exa
t
omplexityof
omputing a max-min fair frequen
y assignment ingeneral graphs is not known and there is no
hara
teri-zation of when su
h an assignment is easy to
ompute.All the s
heduling algorithms in the paper use the in-herent linearity of interval or
ir
ular-ar
 graphs. Itwould be interesting to �nd s
heduling algorithms forthe wider
lass of perfe
t graphs. The algorithm for in-terval graphs that realizes frequen
ies exa
tly exhibitsa
onsiderable gap in its drift. It is not
lear fromwhi
h dire
tion this gap
an be
losed.Our algorithms assume a
entral s
heduler thatmakes all the de
isions. Both from theoreti
al andpra
ti
al point of view it is important to designs
heduling algorithms working in more realisti
 envi-ronments su
h as high-speed lo
al-area networks andwireless networks (as mentioned in Se
tion 1.1). Thedistinguishing requirements in su
h an environmentin
lude a distributed implementation via a lo
al sig-naling s
heme, a
on
i
t graph whi
h may
hange withtime, and restri
tions on spa
e per node and size of asignal. The performan
e measures and general setting,however, remain the same. A �rst step towards su
halgorithms has been re
ently
arried out by Mayer,Ofek and Yung in [19℄.A
knowledgment. We would like to thank DonCoppersmith and Moti Yung for many useful dis
us-sions.Referen
es[1℄ B. Awerbu
h and M. Saks, A Dining Philoso-phers Algorithm with Polynomial Response Time.Pro
. 31st IEEE Symp. on Foundations of ComputerS
ien
e (1990), 65{75.

[2℄ S. Baruah, N. Cohen, C. Plaxton, andD. Varvel, Proportionate Progress: A Notion ofFairness in Resour
e Allo
ation. Pro
. 25th ACMSymp. on Theory of Computing (1993), 345{354.[3℄ D. Bertsekas and R. Gallager, Data Networks.Prenti
e Hall (1987).[4℄ J. Bar-Ilan and D. Peleg, Distributed Resour
eAllo
ation Algorithms. Pro
. 6th International Work-shop on Distributed Algorithms (1992), 277{291.[5℄ J. Chen, I. Cidon, and Y. Ofek, A Lo
al FairnessAlgorithm for Gigabit LANs/MANs with SpatialReuse. IEEE J. on Sele
ted Areas in Communi
ation,11(8):1183{1192 (1993).[6℄ K. Chandy and J. Misra, The Drinking Philoso-phers Problem. ACM Trans. on Programming Lan-guages and Systems, 6:632{646 (1984).[7℄ I. Cidon and Y. Ofek, MetaRing { A Full-DuplexRing with Fairness and Spatial Reuse. IEEE Trans.on Communi
ations, 41(1):110{120 (1993).[8℄ M. Choy and A. Singh, EÆ
ient Fault Tolerant Al-gorithms for Resour
e Allo
ation in Distributed Sys-tem. Pro
. 24th ACM Symp. on Theory of Computing(1992), 593{602.[9℄ E. W. Dijkstra, Hierar
hi
al Ordering of SequentialPro
esses. A
ta Informati
a, 1:115{138 (1971).[10℄ M. Garey and D. Johnson, Computers andIntra
tability, a Guide to the Theory of NP-Completeness, W. H. Freeman, San Fran
is
o, 1979.[11℄ M. Golumbi
, Algorithmi
 Graph Theory and Per-fe
t Graphs. A
admei
 Press, New York, 1980.[12℄ M. Gr�ots
hel, L. L�ovasz and A.S
hrijver, Geo-metri
 Algorithms and Combinatorial Optimization.Springer-Verlag, Berlin, 1987.[13℄ D. J. Goodman, Cellular Pa
ket Communi
a-tions. IEEE Trans. on Communi
ations, 38:1272{1280 (1990).[14℄ J. Jaffe, Bottlene
k Flow Control. IEEE Trans. onCommuni
ations, 29(7):954{962 (1981).[15℄ H. A. Kierstead, A Polynomial Time Approxima-tion Algorithm for Dynami
 Storage Allo
ation. Dis-
rete Mathemati
s, 88:231{237 (1991).[16℄ D. E. Knuth, The Sandwi
h Theorem, The Ele
-troni
 Journal of Combinatori
s, 1:1{48, (1994).[17℄ C. Lund and M. Yannakakis, On the Hardness ofApproximating Minimization Problems. Pro
. 25thACM Symp. on Theory of Computing (1993), 286{293.[18℄ N. Lyn
h, Fast Allo
ation of Nearby Resour
es ina Distributed System. Pro
. 12th ACM Symp. onTheory of Computing (1980), 70{81.[19℄ A. Mayer, Y. Ofek, and M. Yung, DistributedS
heduling Algorithm for Fairness with MinimumDelay. To be submitted to ACM Sig
omm'95.[20℄ A. Tu
ker, Matrix
hara
terizations of
ir
ular-ar
graphs. Pa
i�
 Journal of Mathemati
s, 39:535{545,(1971).

