Chapter 1
Guaranteeing Fair Service to Persistent Dependent Tasks*

Amotz Bar-Noy' Alain Mayer?

Abstract

We introduce a new scheduling problem that is motivated
by applications in the area of access and flow-control of
high-speed and wireless networks. An instance of the
problem consists of a set of persistent tasks that have to
be scheduled repeatedly. Each task has a demand to be
scheduled “as often as possible”. There is no ezplicit limit
on the number of tasks that can be scheduled concurrently.
However, such limits gets imposed implicitly by the fact
that some tasks are in conflict and cannot be scheduled
simultaneously. The conflicts are presented in the form
of a conflict graph. We define parameters that quantify
the fairness and regularity of a given schedule. We then
proceed to show lower bounds on these parameters, and
present fair and efficient scheduling algorithms for the
special case where the conflict graph is an interval graph.
Some of the results presented here extend to the case of
perfect graphs and circular-arc graphs as well.

1 Introduction

In this paper we consider a new form of a scheduling
problem which is characterized by two features:

Persistence of the tasks: A task does not simply go
away once it is scheduled. Instead, each task must
be scheduled infinitely many times. The goal is to
schedule every task as frequently as possible.

Dependence among the tasks: Some tasks conflict with
each other and hence cannot be scheduled concur-
rently. These conflicts are given by a conflict graph.
This graph imposes constraints on the sets of tasks
that may be scheduled concurrently. Note that these
constraints are not based simply on the cardinality of
the sets, but rather on the identity of the tasks within
the sets.

*Extended summary

fIBM — Research Division, T. J. Watson Research Center,
Yorktown Heights, NY 10598.
Email: {amotz, sbar,madhu}@watson.ibm.com.

fDept. of Computer Science, Columbia University, New
York, NY 10027. Email: mayer@cs.columbia.edu. Part of this
work was done while the author was at the IBM T. J. Watson
Research Center. Partially supported by an IBM Graduate
Fellowship, NSF grant CCR-93-16209, and CISE Institutional
Infrastructure Grant CDA-90-24735

Baruch Schieber’ Madhu Sudanf

We consider both the problems of allocation, i.e.,
how often should a task be scheduled and regularity,
i.e., how evenly spaced are lengths of the intervals
between successive scheduling of a specific task. We
present a more formal description of this problem
next and discuss our primary motivation immediately
afterwards. While all our definitions are presented for
general conflict graphs, our applications, bounds, and
algorithms are for special subclasses — namely, perfect
graphs, interval graphs and circular arc-graphs!.

Problem statement An instance of the scheduling
problem consists of a conflict graph G with n vertices.
The vertices of G are the tasks to be scheduled and
the edges of G define pairs of tasks that cannot be
scheduled concurrently. The output of the scheduling
algorithm is an infinite sequence of subsets of the
vertices, Iy, Is,..., where I; lists the tasks that are
scheduled at time t. Notice that for all ¢, I; must be
an independent set of G.

In the form above, it is hard to analyze the running
time of the scheduling algorithm. We consider instead
a finite version of the above problem and use it to
analyze the running time.

Input: A conflict graph G and a time t.

Output: An independent set I; denoting the set of tasks
scheduled at time unit t.

The objective of the scheduling algorithm is to
achieve a fair allocation and a regular schedule. We
next give some motivation and describe the context
of our work. As we will see, none of the existing
measures can appropriately capture the “goodness”
of a schedule in our framework. Hence we proceed to
introduce measures which allow for easier presentation
of our results.

TA graph is perfect if for all its induced subgraphs the size of
the maximum clique is equal to the chromatic number (cf. [11]).
A graph is an interval graph (circular-arc graph) if its vertices
correspond to intervals on a line (circle), and two vertices are
adjacent if the corresponding intervals intersect (cf. [20]).

1.1 Motivation

Session scheduling in high-speed local-area net-
works. MetaRing ([7]) is a recent high-speed local-
area ring-network that allows “spatial reuse”, i.e., con-
current access and transmission of user sessions, using
only minimal intermediate buffering of packets. The
basic operations in MetaRing can be approximated by
the following: if some node has to send data to some
other node a session is established between the source
and the destination. Sessions typically last for a while
and can be active only if they have exclusive use of
all the links in their routes. Hence, sessions whose
routes share at least one link are in conflict. These
conflicts need to be regulated by breaking the data
sent in a session into units of quotas that are trans-
mitted according to some schedule. This schedule has
to be efficient and fair. Efficient means that the total
number of quotas transmitted (throughput) is maxi-
mized whereas fair means that the throughput of each
session is maximized, and that the time between suc-
cessive activation of a session is minimized, so that
large buffers at the source nodes can be avoided. It
has been recognized ([5]) that the access and flow-
control in such a network should depend on locality in
the conflict graph. However, no firm theoretical ba-
sis for an algorithmic framework has been proposed
up to now. To express this problem as our scheduling
problem we create a circular-arc graph whose vertices
are the sessions, and in which vertices are adjacent if
the corresponding paths associated with the sessions
intersect in a link.

Time sharing in wireless networks. Most indoor
designs of wireless networks are based on a cellular ar-
chitecture with a very small cell size. (See, e.g., [13].)
The cellular architecture comprises two levels — a sta-
tionary level and a mobile level. The stationary level
consists of fixed base stations that are interconnected
through a backbone network. The mobile level consists
of mobile units that communicate with the base sta-
tions via wireless links. The geographic area within
which mobile units can communicate with a particu-
lar base station is referred to as a cell. Neighboring
cells overlap with each other, thus ensuring continuity
of communications. The mobile units communicate
among themselves, as well as with the fixed informa-
tion networks, through the base stations and the back-
bone network. The continuity of communications is a
crucial issue in such networks. A mobile user who
crosses boundaries of cells should be able to continue
its communication via the new base-station. To ensure
this, base-stations periodically need to transmit their
identity using the wireless communication. In some
implementations the wireless links use infra-red waves.

A. Bar-Noy, A. Mayer, B. Schieber, and M. Sudan

Therefore, two base-station whose cells overlap are in
conflict and cannot transmit their identity simulta-
neously. These conflicts have to be regulated by a
time-sharing scheme. This time sharing has to be effi-
cient and fair. Efficient means that the scheme should
accommodate the maximal number of base stations
whereas fair means that the time between two consec-
utive transmissions of the same base-station should
be less then the time it takes a user to cross its corre-
sponding cell. Once again this problem can be posed
as our graph-scheduling problem where the vertices of
the graph are the base-stations and an edge indicates
that the base stations have overlapping cells.

1.2 Relationship to past work

Scheduling problems that only consider either persis-
tence of the tasks or dependence among the tasks (but
not both) have been dealt with before.

The task of scheduling persistent tasks has been
studied in the work of Baruah et al. [2]. They consider
the problem of scheduling a set of n tasks with given
(arbitrary) frequencies on m machines. (Hence, m =1
yields an instance of our problem where the conflict
graph is a clique.) To measure “regularity” of a
schedule for their problem they introduce the notion
of P-fairness. A schedule for this problem is P-fair
(proportionate-fair) if at each time ¢ for each task @
the absolute value of the difference in the number of
times ¢ has been scheduled and f;t is strictly less than
1, where f; is the frequency of task i. They provide
an algorithm for computing a P-fair solution to their
problem. Their problem fails to capture our situation
due to two reasons. First, we would like to constrain
the sets of tasks that can be scheduled concurrently
according to the topology of the conflict graph and
not according to their cardinality. Moreover, in their
problem every “feasible” frequency requirement can
be scheduled in a P-fair manner. For our scheduling
problem we show that such a P-fair schedule cannot
always be achieved. To deal with feasible frequencies
that cannot be scheduled in a P-fair manner, we define
weaker versions of “regularity”.

The dependency property captures most of the
work done based on the well-known “Dining Philoso-
phers” paradigm, see for example [9], [18], [6], [1], [8],
and [4]. In this setting, Lynch [18] was the first to ex-
plicitly consider the response time for each task. The
goal of successive works was to make the response time
of a node to depend only on its local neighborhood in
the conflict graph. (See, e.g., [4].) While response time
in terms of a node’s degree is adequate for “one-shot”
tasks, it does not capture our requirement that a task

Guaranteeing Fair Service to Persistent Dependent Tasks

should be scheduled in a regular and fair fashion over
a period of time.

1.3 Notations and definitions

A schedule S is an infinite sequence of independent
sets I, Io,...,I;,... We use the notation S(i,t) to
represent the schedule: S(i,t) = 1 if i € I and

0 otherwise. Let fi(t) = Zf—:l S(i,T)/t. Let f; =
lim inft_,oo{fi(t)}. We refer to f; as the frequency of
the i-th task in schedule S.

DEFINITION 1.1. A wector of frequencies f =
(f1,..., fn) is feasible if there exists a schedule S such
that the frequency of the i-th task under schedule S is
at least f;.

DEFINITION 1.2. A schedule S realizes a vector of
frequencies f if the frequency of the i-th task under
schedule S is at least f;. AA schedule S c-approximates
a vector of frequencies f if the frequency of the i-th
task under schedule S is at least f;/c.

A measure of fairness Fairness is determined via a
partial order < that we define on the set of frequency
vectors.

DEFINITION 1.3. Given two frequency vectors f =
(fl;"';fn) a’ndg = (gla"'agn)a f < g (f is less fair
than §) if there exists an index j and a threshold f
such that f; < f < g; and for all i such that g; < f,

fi < gi-

DEFINITION 1.4. A vector of frequencies f is max-
min fair if no feasible vector g satisfies f < g.

Less formally, in a max-min fair frequency vector
one cannot increase the frequency of some task at
the expense of more frequently scheduled tasks. This
means that our goal is to let task ¢ have more of the
resource as long as we have to take the resource away
only from tasks which are better off, i.e., they have
more of the resource than task 4.

Measures of regularity Here, we provide two mea-
sures by which one can evaluate a schedule for its reg-
ularity. We call these measures the response time and
the drift.

Given a schedule S, the response time for task i,
denoted r;, is the largest interval of time for which the
i-th task waits between successive schedulings. More
precisely,

r; = max{t2 — t1|0 <t <ty s.t. Vt1<t<t25(i,t) = 0}

For any time ¢, the number of expected occurrences
of task 7 can be expressed as f;t. But note that if r; is

larger than 1/ f;, it is possible that, for some period of
time, a schedule allows a task to “drift away” from its
expected number of occurrences. In order to capture
this, we introduce a second measure for the regularity
of a schedule. We denote by d; the drift of a task
i. It indicates how much a schedule allows task ¢ to
drift away from its expected number of scheduled units
(based on its frequency):

di = max{|f; -t - > S(i,r)|}

r=1

Note that if a schedule S achieves drift d; < 1 for all
i, then it is P-fair as defined in [2].

Finally, a schedule achieves its strongest form of
regularity if each task i is scheduled every 1/f; time-
units (except for its first appearance). Hence we say
that a schedule is rigid if for each task i there exists
a starting point s; such that the task is scheduled on
exactly the time units s; + j(1/f;), for j =0,1,...

1.4 Results

In Section 2 we motivate our definition of max-min
fairness and show several of its properties. First, we
provide an equivalent alternate definition of feasibility
which shows that deciding feasibility of a frequency
vector is computable. We prove that every graph has a
unique max-min fair frequency vector. Then, we show
that the task of even weakly-approximating the max-
min fair frequencies on general graphs is NP-hard.
As we mentioned above many practical applications
of this problem arise from simpler networks, such
as buses and rings (i.e., interval conflict graphs and
circular-arc conflict graphs). For the case of perfect-
graphs (and hence for interval graphs), we describe
an efficient algorithm for computing max-min fair
frequencies. We prove that the period T of a schedule
realizing such frequencies satisfies T = 2°(") and that
there exist interval graphs such that 7" = 29(%)

The rest of our results deal with the problem of
finding the most “regular” schedule (under the above
mentioned measures) that realizes any feasible fre-
quency vector. Section 3 shows the existence of in-
terval graphs for which there is no P-fair schedule
that realizes their max-min fair frequencies. In Sec-
tion 4 we introduce an algorithm for computing a
schedule that realizes any given feasible frequencies
on interval graphs. The schedule computed by the
algorithm achieves response-time of [4/f;] and drift
of O(y/logTn¢). A slight modification of this algo-
rithm yields a schedule that 2-approximates the given
frequencies. The advantage of this schedule is that

it achieves a bound of 1 on the drift and hence a
bound of [2/f;] on the response time. In Section 5 we
present an algorithm for computing a schedule that
12-approximates any given feasible frequencies on in-
terval graphs and has the advantage of being rigid.
All algorithms run in polynomial time. In Section 6
we show how to transform any algorithm for comput-
ing a schedule that c-approximates any given feasi-
ble frequencies on interval graphs into an algorithm
for computing a schedule that 2c-approximates any
given feasible frequencies on circular-arc graphs. (The
response-time and drift of the resulting schedule are
doubled as well.) Finally, in Section 7 we list a num-
ber of open problems and sketch what additional prop-
erties are required to obtain solutions for actual net-
works. Due to space constraints some of the proofs are
either omitted or sketched in this extended summary.

2 Max-min Fair Allocation

Our definition for max-min fair allocation is based
on the definition used by Jaffe [14] and Bertsekas
and Gallager [3], but differs in one key ingredient
— namely our notion of feasibility. We study some
elementary properties of our definition in this section.
In particular, we show that the definition guarantees a
unique max-min fair frequency vector for every conflict
graph. We also show the hardness of computing the
frequency vector for general graphs. However, for the
special case of perfect graphs our notion turns out to
be the same as of [3].

The definition of [14] and [3] is considered the
traditional way to measure throughput fairness and
is also based on the partial order < as used in
our definition. The primary difference between our
definition and theirs is in the definition of feasibility.
Bertsekas and Gallager [3] use a definition, which we
call clique feasible, that is defined as follows:

A vector of frequencies (fi,..., fn) is clique
feasible for a conflict graph G,if > ;. fi <1
for all cliques C' in the graph G.

The notion of max-min fairness of Bertsekas and
Gallager [3] is now exactly our notion, with feasibility
replaced by clique feasibility.

The definition of [3] is useful for capturing the
notion of fractional allocation of a resource such as
bandwidth in a communication networks. However, in
our application we need to capture a notion of integral
allocation of resources and hence their definition does
not suffice for our purposes. It is easy to see that every
frequency vector that is feasible in our sense is clique

A. Bar-Noy, A. Mayer, B. Schieber, and M. Sudan

feasible. However, the converse is not true. Consider
the case where the conflict graph is the five-cycle. For
this graph the vector (1/2,1/2,1/2,1/2,1/2) is clique
feasible, but no schedule can achieve this frequency.

2.1 An alternate definition of feasibility
Given a conflict graph G, let Z denote the family of
all independent sets in G. For I € Z, let x(I) denote
the characteristic vector of I.

PROPOSITION 2.1. A wector of frequencies f s
feasible if and only if there exist weights {a;}iez, such

that) ;e ar =1 and) .o arx(I) = f.

The main impact of this assertion is that it shows
that the space of all feasible frequencies is well be-
haved (i.e., it is a closed, connected, compact space).
Immediately it shows that determining whether a fre-
quency vector is feasible is a computable task (a fact
that may not have been easy to see from the earlier
definition). We now use this definition to see the fol-
lowing connection:

PROPOSITION 2.2. Given a conflict graph G, the
notions of feasibility and clique feasibility are equiva-
lent if and only if G is perfect.

Proof (sketch): The proof is follows directly from well-
known polyhedral properties of perfect graphs. (See
[12], [16].) In the notation of Knuth [16] the space
of all feasible vectors is the polytope STAB(G) and
the space of all clique-feasible vectors is the polytope
QSTAB(G). The result follows from the theorem on
page 38 in [16] which says that a graph G is perfect if
and only if STAB(G) = QSTAB(G). |

2.2 Uniqueness and computability of max-
min fair frequencies
In the full paper we prove the following theorem.

THEOREM 2.3. There exists a unique maz-min fair
frequency vector.

Now, we turn to the issue of the computability
of the max-min fair frequencies. While we do not
know the exact complexity of computing max-min fair
frequencies? it does seem to be a very hard task in gen-
eral. In particular, we consider the problem of com-
puting the smallest frequency assigned to any vertex
by a max-min allocation and show the following:

THEOREM 2.4. There exists an € > 0, such that
given a conflict graph on n vertices approzimating the

ZIn particular, we do not know if deciding whether a fre-

quency vector is feasible is in NP U coNP

Guaranteeing Fair Service to Persistent Dependent Tasks

smallest frequency assigned to any vertez in a max-min
fair allocation, to within a factor of n, is NP-hard.

Proof (sketch): We relate the computation of max-min
fair frequencies in a general graph to the computation
of the fractional chromatic number of a graph. The
fractional chromatic number problem (cf. [17]) is
defined as follows: To each independent set I in the
graph, assign a weight wy, so as to minimize the
quantity >, wy, subject to the constraint that for
every vertex v in the graph, the quantity >, wr is
at least 1. The quantity), wy is called the fractional
chromatic number of the graph. Observe that if the
wy’s are forced to be integral, then the fractional
chromatic number is the chromatic number of the
graph.

The following claim shows a relationship between
the fractional chromatic number and the assignment
of feasible frequencies.

CraM 2.5. Let (f1, fa,..., fn) be a feasible assign-
ment of frequencies to the vertices in a graph G. Then
1/(min; f;) is an upper bound on the fractional chro-
matic number of the graph. Conversely, if k is the
fractional chromatic number of a graph, then a sched-
ule that sets the frequency of every vertex to be 1/k is
feasible.

The above claim, combined with the hardness of
computing the fractional chromatic number [17], suf-
fices to show the NP-hardness of deciding whether a
given assignment of frequencies is feasible for a given
graph. To show that the claim also implies the hard-
ness of approximating the smallest frequency in the
max-min fair frequency vector we inspect the Lund-
Yannakakis construction a bit more closely. Their con-
struction yields a graph in which every vertex partic-
ipates in a clique of size k such that deciding if the
(fractional) chromatic number is &k or kn is NP-hard.
In the former case, the max-min fair frequency assign-
ment is 1/k to every vertex. In the latter case at least
some vertex will have frequency smaller that 1/(kn¢).
Thus this implies that approximating the smallest fre-
quency in the max-min fair frequencies to within a
factor of n¢ is NP-hard. a

2.3 Max-min fair frequencies on perfect
graphs

We now turn to perfect graphs. We show how to com-
pute in polynomial time max-min fair frequencies for
this class of graphs and give bounds on the period of
a schedule realizing such frequencies. As our main fo-
cus of the subsequent sections will be interval graphs,
we will give our algorithms and bounds first in terms

Figure 1: An interval graph for which T = 2%(%),

of this subclass and then show how to generalize the
results to perfect graphs.

We start by describing an algorithm for computing
max-min fair frequencies on interval graphs. As
we know that clique-feasibility equals feasibility (by
Proposition 2.2), we can use an adaptation of [3]:

Algorithm 1: Let C be the collection of maximal
cliques in the interval graph. (Notice that C has at
most n elements and can be computed in polynomial
time.) For each clique C' € C the algorithm maintains
a residual capacity which is initially 1. To each vertex
the algorithm associates a label assigned/unassigned.
All vertices are initially unassigned. Dividing the
residual capacity of a clique by the number of unas-
signed vertices in this clique yields the relative residual
capacity. Iteratively, we consider the clique with the
smallest current relative residual capacity and assign
to each of the clique’s unassigned vertices this capacity
as its frequency. For each such vertex in the clique we
mark it assigned and subtract its frequency from the
residual capacity of every clique that contains it. We
repeat the process till every vertex has been assigned
some frequency.

It is not hard to see that Algorithm 1 correctly
computes max-min fair frequencies in polynomial-
time. We now use its behavior to prove a tight bound
on the period of a schedule for an interval graph. The
following theorem establishes this bound. (See also
Figure 1.)

THEOREM 2.6. Let f; = pi/q; be the frequencies
in a maz-min fair schedule for an interval graph G,
where p; and q; are relatively prime. Then, the period
for the schedule T = lem}—,{q;} satisfies T = 290,

Furthermore, there exist interval graphs for which T =
29(n)

It is clear that Algorithm 1 works for all graphs
where clique feasibility determines feasibility, i.e., per-
fect graphs. However, the algorithm does not remain
computationally efficient. Still, Theorem 2.6 can be
directly extended to the class of perfect graphs. We
now use this fact to describe a polynomial-time algo-
rithm for assigning max-min fair frequencies to perfect
graphs.

Algorithm 2: This algorithm maintains the labelling
procedure assigned/unassigned of Algorithm 1. At
each phase, the algorithm starts with a set of assigned
frequencies and tries to find the largest f such that
all unassigned vertices can be assigned the frequency
f- To compute f in polynomial time, the algorithm
uses the fact that deciding if a given set of frequencies
is feasible is reducible to the task of computing the
size of the largest weighted clique in a graph with
weights on vertices. The latter task is well known to
be computable in polynomial-time for perfect graphs.
Using this decision procedure the algorithm performs
a binary search to find the largest achievable f. (The
binary search does not have to be too refined due
to Theorem 2.6). Having found the largest f, the
algorithm finds a set of vertices which are saturated
under f as follov;zs: Let € be some small number, for
instance e = 27" is sufficient. Now it raises, one at a
time, the frequency of each unassigned vertex to f +e,
while maintaining the other unassigned frequencies
at f. If the so obtained set of frequencies is not
feasible, then it marks the vertex as assigned and its
frequency is assigned to be f. The algorithm now
repeats the phase until all vertices have been assigned
some frequency.

3 Non-existence of P-fair allocations

Here we show that a P-fair scheduling realizing max-
min fair frequencies need not exist for every interval
graph.

THEOREM 3.1. There exist interval graphs G for
which there is no P-fair schedule that realizes their
maz-min frequency assignment.

In order to prove this theorem we construct such
a graph G as follows. We choose a parameter k and
for every permutation 7 of the elements {1,...,k}, we
define an interval graph G.. We show a necessary con-
dition that 7 must satisfy if G; has a P-fair schedule.
Lastly we show that there exists a permutation 7 of
12 elements which does not satisfy this condition.

Given a permutation 7 on k elements, G consists
of 3k intervals. For i € {1,...,k}, we define the

A. Bar-Noy, A. Mayer, B. Schieber, and M. Sudan

A1) B(1) c@)
A_(Z) B(2) C_(l)
A_(S) B(3) C_(2)
A_(4) B(4) C_(4)

Figure 2: The graph G, for 7 = (3,1, 2,4)

intervals A(i) = (i — 1,4], B(i) = (i, k + m(i) + 1] and
C(i) = (k+i+1,k+i+2]. Observe that the max-min
frequency assignment to G, is the following: All the
tasks B(i) have frequency 1/k; all the tasks A(7) have
frequency (k — 4 + 1)/k; and all the tasks C(i) have
frequency i/k. (See Figure 2.)

We now observe the properties of a P-fair schedule
for the tasks in G,. (i) The time period is k. (ii)
The schedule is entirely specified by the schedule for
the tasks B(i). (iii) This schedule is a permutation
o of k elements, where (i) is the time unit for which
B(i) is scheduled. To see what kind of permutations o
constitute P-fair schedules of GG; we define the notion
of when a permutation is fair for another permutation.

DEFINITION 3.1. A permutation o1 is fair for a
permutation oo if for all t,5, 1 < ¢, < k, 01 and
o2 satisfy the conditions cond;; defined as follows:

%—1<|{l:02(l)gi,al(l)gj}|<%+1.

CrAM 3.2. If a permutation o is a P-fair schedule
for G then o is fair for the identity permutation and
for permutation 7.

Let w =(1,3,4,7,8,9,11,5,12,10, 2, 6) be a permu-
tation on 12 elements. In the full paper we show that
no permutation o is fair to both 7 and the identity.

4 Realizing frequencies exactly

In this section we first show how to construct a
schedule that realizes any feasible set of frequencies
(and hence in particular max-min frequencies) exactly
on an interval graph. We prove its correctness and
demonstrate a bound of [4/f;] on the response time
for each interval i. We then proceed to introduce
a potential function that is used to yield a bound
of O(nz*) on the drift for every interval. We also
prove that if the feasible frequencies are of the form
1/2%, then the drift of the schedule can be bounded
by 1 and thus the waiting time can be bounded by
[2/fi]. We use this property to give an algorithm for

Guaranteeing Fair Service to Persistent Dependent Tasks

computing a schedule that 2-approximates any feasible
set of frequencies with high regularity.

Input to the Algorithm: A unit of time ¢ and a conflict
graph G which is an interval graph. Equivalently, a set
I={L,...,I,} of intervals on the unit interval [0, 1]
of the z-coordinate, where I; = [i.s,i.e] for 1 <i < n.
Every interval I; has a frequency f; = p;/q; with the
following constraint: »_, J fi < 1foral 0 <z < 1.
For simplicity, we assume from now on that these
constraints on the frequencies are met with equality
and that ¢t <T = LCM{¢;}.

Output of the Algorithm: An independent set I; which
is the set of tasks scheduled for time ¢ such that the
scheduled S, given by {I;}1 ; realizes frequencies f;.

The algorithm is recursive. Let s; denote the
number of times a task ¢ has to appear in T time
units, i.e., s; = T'p;/q;. The algorithm has log T levels
of recursion. (Recall that log7" is O(n) for max-min
fair frequencies.) In the first level we decide on the
occurrences of the tasks in each half of the period.
That is, for each task we decide how many of its
occurrences appear in the first half of the period and
how many in the second half. This yields a problem
of a recursive nature in the two halves. In order to
find the schedule at time ¢, it suffices to solve the
problem recursively in the half which contains ¢. (Note
that in case T' is odd one of the halves is longer than
the other.) Clearly, if a task has an even number of
occurrences in 71" it would appear the same number of
times in each half in order to minimize the drift. The
problem is with tasks that have an odd number of
occurrences s;. Clearly, each half should have at least
|si] of the occurrences. The additional occurrence
has to be assigned to a half in such a way that both
resulting sub-problems would still be feasible. This is
the main difficulty of the assignment and is solved in
the procedure Sweep.

Procedure Sweep: In this procedure we compute
the assignment of the additional occurrence for all
tasks that have an odd number of occurrences. The
input to this procedure is a set of intervals I1,..., I,
(with odd s;’s) with the restriction that each clique in
the resulting interval graph is of even size. (Later, we
show how to overcome this restriction.) The output
is a partition of these intervals into two sets such
that each clique is equally divided among the sets.
This is done by a sweep along the z-coordinate of
the intervals. During the sweep every interval will
be assigned a variable which at the end is set to 0
or 1 (i.e., first half of the period or second half of the
period). Suppose that we sweep point . We say that

an interval I; is active while we sweep point z if z € ;.
The assignment rules are as follows.

For each interval I; that starts at x:

If the current number of active intervals is even:
A new variable is assigned to I; (I; is unpaired).
If the current number of active intervals is odd:
I; is paired to the currently unpaired interval I;
and it is assigned the negation of I;’s variable.
Thus no matter what value is later assigned to this
variable, I; and I; will end up in opposite halves.

For each interval I; that ends at z:

If the current number of active intervals is even:
Nothing is done.
If the current number of active intervals is odd:
If I; is paired with I;:
I; is now being paired with the currently un-
paired interval I,. Also, I;’s variable is matched
with the negation of I’s variable. This will en-
sure that I; and I} are put in opposite halves,
or equivalently, I; and I are put in the same
halves.
If I; is unpaired:
Assign arbitrarily 0 or 1 to I;’s variable.

These operations ensure that whenever the number
of active intervals is even, then exactly half of the
intervals will be assigned 0 and half will be assigned
1; this will be proven later.

Recall that we assumed that the size of each clique
is even. Let us show how to overcome this restriction.
For this we need the following simple lemma. For
z € [0, 1], denote by C,, the set of all the input intervals
(with odd and even s;’s) that contain z; C, will be
referred to as a clique.

LEMMA 4.1. The period T is even if and only if
[{i : I; € C As;is odd}| is even for every clique C.

This lemma implies that if T" is even then the size of
each clique in the input to procedure Sweep is indeed
even. If T is odd, then a dummy interval I,,;1 which
extends over all other intervals and which has exactly
one occurrence is added to the set I before calling
Sweep. Again, by Lemma 4.1, we are sure that in
this modified set I the size of all cliques is even. This
would increase the period by one. The additional time
unit will be allotted only to the dummy interval and
thus can be ignored. We note that to produce the
schedule at time t we just have to follow the recursive
calls that include ¢ in their period. Since there are
no more than log7 such calls, the time it takes to
produce this schedule is polynomial in n for max-min
fair frequencies.

LEMMA 4.2. The algorithm produces a correct
schedule for every feasible set of frequencies.

LeMMA 4.3. If the set of frequencies is of the form
1/2¢ then the drift can be bounded by 1 and hence the
response time can be bounded by [2/ f;].

Proof: Since our algorithm always divides even s; into
equal halves, the following invariant is maintained: At
any recursive level, whenever s; > 1, then s; is even.
Also note that 7' = 2* where min; f; = 1/2* and thus
we can express each f; as 2¥i7%. Now, following the
algorithm, it can be easily shown that there is at least
one occurrence of task ¢ in each time interval of size
2k=¥i Hence Y,_, S(i,r) = |5t and P-fairness
follows. m|

LEMMA 4.4. The response time for every interval
I; is bounded by [4/fi].

Proof: The proof is based on the Lemma 4.3. This
lemma clearly implies the case in which the frequencies
are powers of two. Moreover, in case the frequencies
are not powers of two, we can virtually partition
each task into two tasks with frequencies p; and r;
respectively, so that f; = p; + r;, p; is a power of
two, and r; < p;. Then, the schedule of the task with
frequency p; has drift 1. This implies that its response
time is [2/p;] < [4/fi]- m|

We remark that it can be shown that the bound of
the above lemma is tight for our algorithm.

We summarize the results in this section in the
following theorem:

THEOREM 4.5. Given an arbitrary interval graph
as conflict graph, the algorithm exactly realizes any
feasible frequency-vector and guarantees that r; <

[4/f:l.

4.1 Bounding the drift

Since the algorithm has O(logT') levels of recursion
and each level may increase the drift by one, clearly
the maximum drift is bounded by O(logT). In this
section we prove that we can decrease the maximum
drift to be O(y/log T'nf), for any fixed €, where n is the
number of tasks. By Theorem 2.6 this implies that in
the worst case the drift for a max-min fair frequencies
is bounded by O(n3%¢).

Our method to get a better drift is based on the
following observation: At each recursive step of the
algorithm two sets of tasks are produced such that
each set has to be placed in a different half of the
time-interval currently considered. However, we are
free to choose which set goes to which half. We are

A. Bar-Noy, A. Mayer, B. Schieber, and M. Sudan

using this degree of freedom to decrease the drift. To
make the presentation clearer we assume that 1" is a
power of two and that the time units are 0,...,7 — 1.

Consider a sub-interval of size T'/27 starting after
time ty = i-T/2/ —1 and ending at t,, = (i+1)-T/27 -1,
for 0 < i < 2 — 1. In the first j recursion levels we
already fixed the number of occurrences of each task
up to ty. Given this number, the drift d, at time ¢, is
fixed. Similarly, the drift d, at time ¢, is also fixed.
At the next recursion level we split the occurrences
assigned to the interval [t; + 1,¢,], and thus fixing
the drift d,, at time t,, = (&7 + ¢,)/2. Optimally,
we would like the drifts after the next recursion level
at each time unit ¢t € [t; + 1,¢,] to be the weighted
average of the drifts dy and d,. In other words, let
a = (t —tg)/(tr — te), then, we would like the drift
at time t to be ad, + (1 — a)d;. In particular, we
would like the drift at ¢,, to be (d¢ +d,.)/2. This drift
can be achieved for t,, only if the occurrences in the
interval [t; + 1,¢,] can be split equally. However, in
case we have an odd number of occurrences to split,
the drift at ¢, is (d¢ + d,-)/2 £ 1/2, depending on
our decision in which half interval to put the extra
occurrence. Note that the weighted average of the
drifts of all other points changes accordingly. That
is, if the new d,, is (d¢ +d,)/2 + x, for x € {£1/2},
then the weighted averagein t € [t, + 1, (¢, +t¢)/2] is
ad, +(1—a)de+2azx, where a = (t—t,)/(t,—tr) < 1/2,
and the weighted average in ¢t € [(¢t, + t¢)/2 + 1,¢t,] is
ad,+(1—a)di+(2—2a)x, where a = (t—t,)/(t,—te) >
1/2.

Consider now the two sets of tasks S; and Ss that
we have to assign to the two sub-intervals (of the
same size) at level k of the recursion. For each of the
possible two assignments, we compute a “potential”
based on the resulting drifts at time t,,. For a given
possibility let D[t,,,, k] denote the resulting drift of
the i-th task at t,, after k recursion levels. Define
the potential of t,, after k levels as POT (t,, k) =
S D(tm,i,j)?, for some fixed even constant ¢. We
choose the possibility with the lowest potential.

THEOREM 4.6. Using the policy described above
the mazimum drift is bounded by O(\/logT - n¢), for
any fized €.

5 Realizing frequencies rigidly

In this section we show how to construct a schedule
that 12-approximates any feasible frequency-vector in
a rigid fashion on an interval graph. We reduce
our Rigid Schedule problem to the Dynamic Storage
Allocation problem. The Dynamic Storage Allocation

Guaranteeing Fair Service to Persistent Dependent Tasks

problem is defined as follows. We are given objects to
be stored in a computer memory. Each object has
two parameters: (i) its size in terms of number of
cells needed to store it, (ii) the time interval in which
it should be stored. Each object must be stored in
adjacent cells. The problem is to find the minimal
size memory that can accommodate at any given time
all of the objects that are needed to be stored at that
time. The Dynamic Storage Allocation problem is a
special case of the multi-coloring problem on intervals
graphs which we now define.

A multi-coloring of a weighted graph G with the
weight function w : V — A, is a function F : V — 2V
such that for all v € V the size of F(v) is w(v), and
such that if (v,u) € E then F(v) N F(u) = . The
multi-coloring problem is to find a multi-coloring with
minimal number of colors. This problem is known to
be an NP-Hard problem [10].

Two interesting special cases of the Multi-Coloring
problem are when the colors of a vertex either must
be adjacent or must be “spread well” among all colors.
We call the first case the AMC problem and the second
case the CMC problem. More formally, in a solution
to AMC if F(u) = {z1 < -+ < &1}, then z;41 = x;+1
for all 1 < i < k. Whereas in a solution to CMC which
uses T colors, if F(u) = {z; < --- < x} then (i) &k
divides T, and (ii) #j41 = «; + T/k for all 1 < i <k,
and ¢ + T/k — T = ;.

It is not hard to verify that for interval graphs the
AMC problem is equivalent to the Dynamic Storage
Allocation problem described above. Simply associate
each object with a vertex in the graph and give it a
weight equal to the number of cells it requires. Put an
edge between two vertices if their time intervals inter-
sect. The colors assigned to a vertex are interpreted
as the cells in which the object is stored.

On the other hand, the CMC problem corresponds
to the Rigid Schedule problem as follows. First, we
replace the frequency f(v) by a weight w(v). Let
k(v) = [—log, f(v)], and let k = max,cy{k(v)}, then
w(v) = 28k Clearly, w(v)/2* > f(v)/2.

Now, assume that the output for the CMC problem
uses T colors and let the colors of v be {z1 < --- <z}
where o — z1 = A. We interpret this as follows: v
is scheduled in times x1 + ¢A for all ¢ > 0. It is not
difficult to verify that this is indeed a solution to the
Rigid Scheduling problem.

Although Dynamic Storage Allocation problem is
a special case of the multi-coloring problem it is
still known to be an NP-Hard problem [10] and
for similar reasons the Rigid Scheduling problem is

also NP-Hard. Therefore, we are looking for an
approximation algorithm. In what follows we present
an approximation algorithm that produces a rigid
scheduling that 12-approximates the given frequencies.
For this we consider instances of the AMC and CMC
problems in which the input weights are powers of two.

DEFINITION 5.1. A solution for an instance of
AMC is both aligned and contiguous if for all v € V
Fw)={j-w),...,(i+1) - w(v)—1} for some j > 0.

In [15], Kierstead presents an algorithm for AMC
that has an approximation factor 3. A careful inspec-
tion of this algorithm shows that it produces solutions
that are both aligned and contiguous for all instances
in which the weights are power of two.

We show how to translate a solution for such an
instance of the AMC problem that is both aligned and
contiguous into a solution for an instance of the CMC
problem with the same input weights.

For 0 < x < 2F, let () be the k-bit number whose
binary representation is the inverse of the binary
representation of x.

LEMMA 5.1. For 1 <i <k and 0 <j < 2Icf'i —
A, {7 (j29),...,m(j2' + 20 — 1)} = {x(j2),7(2) +
A, w(52Y) + (28 = 1)A}.

Consider an instance of the CMC problem in which
all the input weights are powers of two. Apply the
solution of Kierstead [15] to solve the AMC instance
with the same input. This solution is both aligned and
contiguous, and uses at most 37" colors where 7" is the
number of colors needed by an optimal coloring. Let
T > 3T’ be the smallest power of 2 that is greater
than 7'. It follows that 7" < 67'. Applying the
transformation of Lemma 5.1 on the output of the
solution to AMC yields a solution to CMC with at
most 1" colors. This in turn, yields an approximation
factor of at most 12 for the Rigid Scheduling problem,
since w(v)/T > f(v)/2.

THEOREM 5.2. The above algorithm computes a
rigid schedule that 12-approzimates any feasible
frequency-vector on an interval graph.

6 Circular-Arc graphs

In this section we show how to transform any algo-
rithm A for computing a schedule that c-approximates
any given feasible frequency-vector on interval graphs
into an algorithm A’ for computing a schedule that
2c-approximates any given feasible frequencies on
circular-arc graphs.

10

Let f be a feasible frequency-vector on a circular-
arc graph G.

Step 1: Find the maximum clique C in G.

Let G' = G — C. Note that G' is an interval graph.
Let ¢1 and ¢g» be the frequency-vectors resulting from
restricting f to the vertices of G' and C, respectively.
Note that ¢; and g» are feasible on G’ and C, respec-
tively.

Step 2: Using A, find schedules S; and S, that c-
approximate g1 and ¢, on G' and C, respectively.

Step 3: Interleave S; and Ss.

Clearly, the resulting schedule 2c-approximates f
on the circular-arc graph G.

7 Future research

Many open problems remain. The exact complexity
of computing a max-min fair frequency assignment in
general graphs is not known and there is no characteri-
zation of when such an assignment is easy to compute.
All the scheduling algorithms in the paper use the in-
herent linearity of interval or circular-arc graphs. It
would be interesting to find scheduling algorithms for
the wider class of perfect graphs. The algorithm for in-
terval graphs that realizes frequencies exactly exhibits
a considerable gap in its drift. It is not clear from
which direction this gap can be closed.

Our algorithms assume a central scheduler that
makes all the decisions. Both from theoretical and
practical point of view it is important to design
scheduling algorithms working in more realistic envi-
ronments such as high-speed local-area networks and
wireless networks (as mentioned in Section 1.1). The
distinguishing requirements in such an environment
include a distributed implementation via a local sig-
naling scheme, a conflict graph which may change with
time, and restrictions on space per node and size of a
signal. The performance measures and general setting,
however, remain the same. A first step towards such
algorithms has been recently carried out by Mayer,
Ofek and Yung in [19].

Acknowledgment. We would like to thank Don
Coppersmith and Moti Yung for many useful discus-
sions.

References

[1] B. AwWErRBUCH AND M. SAKS, A Dining Philoso-
phers Algorithm with Polynomial Response Time.
Proc. 31st IEEE Symp. on Foundations of Computer
Science (1990), 65-75.

A. Bar-Noy, A. Mayer, B. Schieber, and M. Sudan

[2] S. BaruaH, N. CoHeEN, C. PLAXTON, AND
D. VARVEL, Proportionate Progress: A Notion of
Fairness in Resource Allocation. Proc. 25th ACM
Symp. on Theory of Computing (1993), 345-354.

[3] D. BERTSEKAS AND R. GALLAGER, Data Networks.
Prentice Hall (1987).

[4] J. BAR-ILAN AND D. PELEG, Distributed Resource
Allocation Algorithms. Proc. 6th International Work-
shop on Distributed Algorithms (1992), 277-291.

[6] J. CHEN, I. CIDON, AND Y. OFEK, A Local Fairness
Algorithm for Gigabit LANs/MANs with Spatial
Reuse. IEEE J. on Selected Areas in Communication,
11(8):1183-1192 (1993).

[6] K. CuANDY AND J. MiSrA, The Drinking Philoso-
phers Problem. ACM Trans. on Programming Lan-
guages and Systems, 6:632-646 (1984).

[7] I. CipoN AND Y. OFEK, MetaRing — A Full-Duplex
Ring with Fairness and Spatial Reuse. IEEE Trans.
on Communications, 41(1):110-120 (1993).

[8] M. CHOY AND A. SINGH, Efficient Fault Tolerant Al-
gorithms for Resource Allocation in Distributed Sys-
tem. Proc. 24th ACM Symp. on Theory of Computing
(1992), 593-602.

[9] E. W. DIJKSTRA, Hierarchical Ordering of Sequential
Processes. Acta Informatica, 1:115-138 (1971).

[10] M. GAREY AND D. JounsoN, Computers and
Intractability, a Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[11] M. GoruMmBIc, Algorithmic Graph Theory and Per-
fect Graphs. Acadmeic Press, New York, 1980.

[12] M. GROTSCHEL, L. LOvASZ AND A.SCHRIJVER, Geo-
metric Algorithms and Combinatorial Optimization.
Springer- Verlag, Berlin, 1987.

[13] D. J. GoobpMAN, Cellular Packet Communica-
tions. IEEE Trans. on Communications, 38:1272—
1280 (1990).

[14] J. JAFFE, Bottleneck Flow Control. IEEE Trans. on
Communications, 29(7):954-962 (1981).

[15] H. A. KIERSTEAD, A Polynomial Time Approxima-
tion Algorithm for Dynamic Storage Allocation. Dis-
crete Mathematics, 88:231-237 (1991).

[16] D. E. KNuTH, The Sandwich Theorem, The Elec-
tronic Journal of Combinatorics, 1:1-48, (1994).

[17] C. LuND AND M. YANNAKAKIS, On the Hardness of
Approximating Minimization Problems. Proc. 25th
ACM Symp. on Theory of Computing (1993), 286—
293.

[18] N. LyNcH, Fast Allocation of Nearby Resources in
a Distributed System. Proc. 12th ACM Symp. on
Theory of Computing (1980), 70-81.

[19] A. MAYER, Y. OFEK, AND M. YUNG, Distributed
Scheduling Algorithm for Fairness with Minimum
Delay. To be submitted to ACM Sigcomm’95.

[20] A. TUCKER, Matrix characterizations of circular-arc
graphs. Pacific Journal of Mathematics, 39:535-545,
(1971).

