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1 IntrodutionOne of the ontributions of omputational omplexity theory has been to re-examine the lassialnotion of what onstitutes a proof of a mathematial statement. The omplexity lass NP intro-dued the notion of an eÆiently veri�able proof. It asks that the proof, whih is a sequene ofwritten symbols, not only be veri�able, but be veri�able quikly, namely in polynomial time. Overthe last deade or so, researhers have furthered this avenue in many ways. One of the many notionsthat has been developed, and explored, allows the veri�er (of the laimed proof) to be probabilistiin its ations. The new veri�er is also allowed to err in its judgment, as long as it doesn't do sotoo often| proofs of false statements an be aepted with small probability. (This probability ismeasured over oin tosses made by the veri�er and not over any distribution over theorems/proofs.)As a tradeo�, the notion restrits the aess of the veri�er into the proof, allowing a veri�er toonly query or probe the proof in a small number of bits and studies the behavior of the numberof bits that are needed to be probed in any proof system as a funtion of the error probability.Suh a proof system, i.e., the veri�er and its assoiated format for valid proofs, is referred to as aprobabilistially hekable proof system | PCP, for short. Along with the development of this no-tion, the researh has also yielded a series of tehnial developments, whih have onstruted PCPveri�ers whih examine only a onstant number of bits, C, of a purported proof and rejet proofsof inorret statements with probability 12 . This onstant is a universal onstant, and independentof the length of the theorem or the proof. The new proof systems, do require valid proofs to belonger than traditional (deterministi) proof systems would allow for. However the size of the newproofs are only polynomially larger than the size of the traditional proofs.Apart from the inherent interest in the onstrution and performane of PCP systems, a majormotivating fator for the study of PCP systems is their use in the derivation of non-approximabilityresults for ombinatorial optimization problems. The theory of NP-ompleteness has been employedas an important tool in the analysis of the omplexity of �nding optimal solutions to disrete (orombinatorial) optimization problems. For many optimization problems, the NP-omplete or NP-hard ones, this theory an be used to show that no polynomial time solution solves this problemexatly, unless NP = P. However the possibility that solutions to these problems whih approximatethe optimum to within a relative error of � for every � > 0 may be found in polynomial time,remained open. A new onnetion uses the PCP onstrutions mentioned above to show thatfor many interesting problems, even suh approximate solutions an not be found in polynomialtime unless NP = P. This onnetion further serves to motivate the study of PCP systems and inpartiular, their eÆieny (for instane, the parameter C above) sine improved eÆieny translatesinto stronger non-approximability results.The prime motivation for the problem to be studied in this paper is these PCP onstrutionsand the ensuing hardness of approximation results. However, a full explanation of the details ofthese results is beyond the sope of this paper | in fat, we will not even attempt to formalize thede�nitions above. The interested reader is direted towards any of a number of surveys whih haveappeared on this topi.1 Fortunately, the problem to be studied in this paper an be formulatedleanly without referene to the above mentioned results and furthermore have an interesting im-pliation in a oding theoreti setting. We �rst desribe this setting and then proedd to formallyde�ne the problem of interest.Central to many of the onstrution of eÆient PCPs has been the onstrution and analysis1 It isn't possible to provide an exhaustive list of the dozen or so surveys available but if you are on the web hekout http://www-se.usd.edu/users/mihir/pp.html.



of error-orreting odes and probabilisti \error-detetion" algorithms for these error-orretingodes. These algorithms funtion as follows: Given a word w whih is supposed to be a odewordof some error-orreting ode, the algorithm probabilistially hooses a small (sometimes onstant)number of bits of the word w to examine, omputes a (simple) boolean funtion of these bits andoutputs a verdit ACCEPT/REJECT. The guarantee obtainable from suh algorithms is weakerthan the guarantee expeted from lassial error-detetion algorithms. In partiular, the guaranteesbehave as follows: Given a valid odeword, the algorithm must output ACCEPT with probability1. On the other hand if the input is far from any valid odeword (i.e., the distane is more thansome spei�ed onstant fration of the minimum distane of the ode), then the algorithm mustoutput REJECT with some positive probability, bounded away from 0. Most of the odes usedin these onstrutions are well-known ones, with Hadamard Codes and variants of Reed-Solomonbeing the most ommonly used ones. Muh of the tehnial development in this area is diretedtowards the onstrution and analysis of the probabilisti error-orreting algorithms. This area ofstudy, olletively referred to as testing in the PCP literature is the origin of the problem onsideredin this paper.It is a feature of the area that while tests are easy to speify, they are notoriously hard toanalyze, espeially to analyze well. Yet, good analyses are, for several reasons, worth strivingfor. There is, �rst, the inherent mathematial interest of getting the best possible analysis andunderstanding of a well-de�ned ombinatorial problem. But, there is a more pragmati reason:better analyses typially translate into improved (inreased) fators shown non-approximable inhardness of approximation results.The spei� problem onsidered here is alled the linearity testing problem. We wish to look ata partiular test, alled the BLR test, with was the �rst ever proposed. Our fous is the ase of mostimportane in appliations, when the underlying funtion maps between groups of harateristitwo. Several analyses have appeared, yet none is tight. Eah improved analysis implies improvedfators shown non-approximable in hardness of approximation results.Let us begin by desribing the linearity testing problem and past work more preisely.1.1 The ProblemThe linearity testing problem is a problem related to homomorphisms between groups. Let G;Hbe �nite groups. A funtion g : G! H is said to be linear if g(u) + g(v) = g(u+v) for all u; v 2 G.(That is, g is a group homomorphism.) We will use the notation u R G to represent a randomvariable u hosen uniformly at random from the (�nite) group G. Here are some basi de�nitions:Lin(G;H) | Set of all linear funtions of G to HDist(f; g) def= PruR G [ f(u) 6=g(u) ℄ | (relative) distane between f; g : G! HDist(f) def= minf Dist(f; g) : g 2 Lin(G;H) g | Distane of f to its losest linear funtion.The BLR Test. Blum, Luby and Rubinfeld [9℄ suggest a probabilisti method to \test" if afuntion f is really a linear funtion. This test, heneforth referred to as the BLR test, is thefollowing [9℄| Given a funtion f : G ! H, pik u; v 2 G at random and rejet if f(u) + f(v) 6=f(u+v). Let Err(f) def= Pru;v R G [ f(u) + f(v) 6=f(u+v) ℄denote the probability that the BLR test rejets f . The issue in linearity testing is to study howErr(f) behaves as a funtion of x = Dist(f). In partiular, one would like to derive good lower



bounds on Err(f) as a funtion of x.Rej(�). A onvenient way to apture the above issues is via the rejetion probability funtionRejG;H : [0; 1℄ ! [0; 1℄ of the test. It assoiates to any number x the minimum value of Err(f),taken over all funtions f of distane x from the spae of linear funtions. Thus,RejG;H(x) def= minf Err(f) : f : G! H s.t. Dist(f) = x g :The graph of RejG;H |namely RejG;H(x) plotted as a funtion of x| is alled the linearitytesting urve.2 This urve depends only on the groups G;H.By de�nition it follows that RejG;H(x) > 0 if x > 0. However it is not easy to see if any otherquantitative statements an be made about RejG;H(x) > 0 for larger values of x. The most generalproblem in linearity testing is to determine the funtion RejG;H(�) for given G;H. Muh of thework that has been done provides information about various aspets of this funtion.The knee of the urve. At �rst glane, it may be tempting to believe that RejG;H(�) will bea monotone non-dereasing funtion. One of the most surprising features of RejG;H is that thisis not neessarily true. It turns out (and we will see suh an example presently) that there existgroups G;H suh that RejG;H(14) � 38 , but RejG;H(23 ) = 29 . The threshold of x = 14 turns out tobe signi�ant in this example and an important parameter that emerges in the study of linearitytesting is how low RejG;H(x) an be for x � 14 . In this paper we all this parameter, identi�edin [2, 6, 7, 8℄, the knee of the urve. Formally:KneeG;H def= minfRej(x) : x � 14 g :1.2 Error detetion in Hadamard odesIn this paper we look at the performane of the BLR test when the underlying groups are G =GF(2)n and H = GF(2) for some positive integer n. For notational simpliity we now drop thegroups G;H from the subsripts, writing Rej(x) and Knee| it is to be understood that we meanG = GF(2)n and H = GF(2).This speial ase is of interest beause of the following reason: In this ase the family of funtionsLin(GF(2)n;GF(2)) atually de�nes a Hadamard ode of blok length 2n. Notie that every linearfuntion l is spei�ed by a vetor � from GF(2)n suh that l(x) = h�; xi (where h�; xi =Pni=1 �ixidenotes the inner produt of vetors �; x). Thus we an assoiate with eah of the 2n linear funtionsl, a odeword whih is the 2n bit sequene (l(x) : x 2 GF(2)n). Any two distint odewords di�erin exatly 2n�1 positions, making this a (2n; 2n; 2n�1)-ode. For further details see MaWilliamsand Sloane [18, pages 48{49℄.For an arbitrary funtion f , the parameter Dist(f) simply measures its distane to the abovementioned Hadamard ode, normalized by 2n. Estimating Dist(f) is thus related to the lassialtask of error-detetion. The parameter Err(f) on the other hand simply de�nes a quantity that anbe estimated to fairly good auray by a probabilisti algorithm, whih probes f in a few plaes(or reads a few bits of the purported odeword). The algorithm repeats the following step severaltimes: It piks random x; y 2 GF(2)n and tests to see if f(x) + f(y) = f(x+y). At the end itreports the average number of times this test fails. It an be veri�ed easily that this provides an2 Atually the funtion RejG;H(x) is only de�ned for �nitely many values, namely the integral multiples of 1jGj ,and unde�ned for in�nitely many values. Thus the linearity testing urve is not really a urve in the real plane, butsimply desribes a funtion of �nitely many points.



estimate on Err(f), and the auray of this estimate improves with the number of iterations. Theadvantage of this algorithm is that it probes f in very few plaes in order to ompute its output(in partiular the number of probes an be independent of n). The aim of Linearity Testing is toturn this estimate on Err(f) into an estimate on Dist(f). This would thus yield an algorithm whihprobes f in few plaes and yet yields some reasonable estimates on Dist(f), and in partiular solvesthe earlier mentioned probabilisti error-detetion task. This is the ingredient whih makes thistest useful in the appliations to PCPs and motivates our study.1.3 Previous workThe �rst investigation of the shape of the linearity testing urve, by Blum, Luby and Rubinfeld [9℄,was in the general ontext where G;H are arbitrary �nite groups. Their analysis showed thatRejG;H(x) � 29 x [9℄. (They indiate that this is an improvement of their original analysis obtainedjointly with Coppersmith.) Interest in the tightness of the analysis begins with Bellare, Goldwasser,Lund and Russell [6℄ in the ontext of improving the performane of PCP systems. They showedthat RejG;H(x) � 3x� 6x2. It turns out that, with very little e�ort, the result of [9℄ an be usedto show that RejG;H(x) � 29 for x � 13 . This laim appears in Bellare and Sudan [8℄, withoutproof. A proof is inluded in the appendix of this paper, for the sake of ompleteness. Of the threebounds above, the last two bounds superede the �rst, so that the following theorem aptures thestate of knowledge.Theorem 1.1 [6, 9, 10℄ Let G;H be arbitrary �nite groups. Then:(1) RejG;H(x) � 3x� 6x2.(2) KneeG;H � 29 .As indiated above, an improved lower bound for the knee would lead to better PCP systems. Butin this general setting, we an do no better. The following example of Coppersmith [10℄ shows thatthe above value is in fat tight in the ase of general groups. Let m be divisible by three. Let fbe a funtion from Znm to Zm suh that f(u) = 3k, if u1 2 f3k � 1; 3k; 3k + 1g. Then, Dist(f) = 23 .Furthermore, f(u) + f(v) 6= f(u+v) only if u1 = v1 = 1 (mod 3), or u1 = v1 = �1 (mod 3), i.e.Err(f) = 29 .This leads into our researh. We note that the problem to whih linearity testing is applied inthe proof system onstrutions of [2, 6, 7, 8℄ is that of testing Hadamard odes (in the �rst threeworks) and the long ode (in the last work). But this orresponds to the above problem in thespeial ase where G = GF(2)n and H = GF(2). (G is regarded as an additive group in the obviousway. Namely, the elements are viewed as n-bit strings or vetors over GF(2), and operations areomponent-wise over GF(2).) For this ase, the example of Coppersmith does not apply, and wean hope for better results.1.4 New results and tehniquesAs pointed out earlier we fous on the ase where the domain and range are of harateristi twoand in partiular G = GF(2)n and H = GF(2). We provide two new analyses of Rej(x) in thisase.Fourier analysis. We establish a new onnetion between linearity testing and Fourier analy-sis. We provide an interpretation of Dist(f) and Err(f) in terms of the Fourier oeÆients of anappropriate transformation of f . We use this to ast the linearity testing problem in the language



of Fourier series. This enables us to use Fourier analysis to study the BLR test. The outome isthe following:Theorem 1.2 For every real number x � 12 , Rej(x) � x.Apart from lending a new perspetive to the linearity testing problem, the result exhibits a featurewhih distinguishes it from all previous results. Namely, it shows that Rej(x) ! 12 as x ! 12 .3(Aording to the previous analysis, namely Theorem 1.1, Rej(x) may have been bounded aboveby 29 for all x � �, where � is the larger root of the equation 3z � 6z2 = 29 .) Furthermore we anshow that the analysis is tight (to within o(1) fators) at x = 12 � o(1).This result an also be ombined with Part (1) of Theorem 1.1 to show thatKnee � 13 . Howeverthis is not tight. So we fous next on �nding the right value of the knee.Combinatorial analysis. The analysis to �nd the knee is based on ombinatorial tehniques.It leads us to an isoperimetri problem about a 3-regular hypergraph on the verties of the n-dimensional hyperube. We state and prove a Summation Lemma whih provides a tight isoperi-metri inequality for this problem. We then use it to provide the following exat value of the kneeof Rej(x).Theorem 1.3 Knee = 45128 .Tightness of the analysis. We provide examples to indiate that, besides the knee value, thelower bounds on Rej(x) as indiated by our and previous results are tight for a number of points.In partiular, the urve is tight for x � 516 , and the bound at x = 12 � o(1) is mathed up to withino(1) fators (i.e., there exist funtions fn : GF(2)n ! GF(2) suh that as n goes to 1, Err(fn) andDist(fn) go to 12).Other results. The isoperimetri inequality underlying Theorem 1.3 turns out to reveal otherfats about Rej(x) as well. In partiular it helps establish a tight upper bound on Err(f) as afuntion of Dist(f). This result is presented in Setion 3.Also, while the main fous of this paper has been the BLR test, we also present in Setion 5a more general result about testing for total degree one in harateristi two. The purpose is tofurther illustrate the strength and elegane of the Fourier analysis tehnique, as well as its moregeneral appliability to the problem of analyzing program testers.Graph. Figure 1 summarizes the results of this work. The points f (Dist(f);Err(f)) : f g lie inthe white region of the �rst graph. The dark shaded region represents the forbidden area beforeour work, and the light shaded region represents what we add to the forbidden area. Note we bothextend the lower bound and provide upper bounds. The dots are atual omputer onstrutedexamples; they indiate that perhaps the lower bound may be improved, but not by muh.4 Inpartiular, the knee value is tight. Furthermore the upper bound is tight.The seond graph indiates lower bounds on Rej(x). The line 29 x represents the result of [9℄.The parabola is the urve 3x� 6x2 representing the result of [6℄. The urve 23 x when x � 13 and 29when x > 13 represents the result of [8℄. Our additions are the 45 degree line of x and the horizontalline at 45128 for the new knee value.3 Note that Dist(f) � 12 for all f : G ! H beause we are working over GF(2), so only the portion x 2 [0; 12 ℄ ofthe urve is interesting.4 More preisely, we have a randomized proedure that with high probability an onstrut, for eah plotted point,a funtion f suh that (Dist(f); Err(f)) is arbitrarily lose to the point in question.
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Figure 1: The points (Dist(f);Err(f)) in the plane, and the suessive lower bounds. See text fordisussion.1.5 Appliation to MaxSNP hardnessAs mentioned earlier, the onstrution of PCP systems have led to new results showing the non-approximability of many ombinatorial optimization problems. This surprising onnetion, initiatedby Feige, Goldwasser, Lov�asz, Safra and Szegedy [11℄, showed how to turn the results on onstru-tions of eÆient PCP systems into results whih showed that for ertain ombinatorial optimizationproblems �nding an � approximate solution is also an NP-hard task. A subsequent result, due toArora, Lund, Motwani, Sudan and Szegedy [2℄ managed to use a similar idea to show that ananalogous result holds for a large olletion of problems alled MaxSNP hard problems. The resultsays that for every MaxSNP hard problem, there is a onstant � > 0, suh that the task of �ndingsolutions whih approximate the optimum to within a relative error of � for this problem, is alsoNP-hard. Subsequently, initiated by the work of Bellare, Goldwasser, Lund and Russell [6℄, a seriesof works have improved the above results by onstruting more eÆient PCP systems and therebyshowing stronger hardness of approximation results for MaxSNP hard problems.Usage of the linearity test in the onstrution of eÆient PCPs, and thene in the derivation ofhardness of approximability results for MaxSNP problems, begins in [2℄ and ontinues in [6, 8, 7℄.In the �rst three ases, it is used to test the Hadamard ode; in the last ase, to test a di�erentode alled the long ode. In all ases the underlying problem is the one we have onsidered above,namely linearity testing with G = GF(2)n and H = GF(2).The MaxSNP hardness result of [6℄ used only two things: The lower bound Rej(x) � 3x� 6x2of Theorem 1.1, and the best available lower bound k on the knee. They were able to express thenon-approximability fator for Max-3SAT as an inreasing funtion g1(k) depending solely on k.The lower bound on the knee that they used was Knee � 16 derived from Part (1) of Theorem 1.1and [9℄. Their �nal result was that approximating Max-3SAT within 113112 � 1:009 is NP-hard.Improved proof systems were built by [8℄. Again, their non-approximability fator had the form



g2(k) for some funtion g2 depending only on the best available lower bound k on the knee. TheyusedKnee � 29 to show that approximating Max-3SAT within 7473 � 1:014 is NP-hard. Theorem 1.3would yield diret improvements to the results of [6, 8℄ with no hange in the underlying proofsystems or onstrution. However, better proof systems are now known, namely the long ode basedones of [7℄. The analysis in the latter uses both our results (namely Theorem 1.3 and Theorem 1.2).They show that approximating Max-3SAT within 1:038 is NP-hard. They also exploit our analysesto derive strong non-approximability results for other MaxSNP problems (like Max-2SAT andMax-Cut) and for Vertex Cover.Thus, the appliations of [6, 8℄ motivated our onsideration of the linearity testing problem. Inthe proess we proved more than these works needed. But, interestingly, later [7℄ found our resultsuseful in the same ontext.1.6 Relationship to other workAs mentioned earlier, there are a variety of problems whih are studied under the label of testing.In partiular, a variety of tasks address the issue of testing variants of Reed-Solomon odes. Thesetests, referred to in the literature as low-degree tests are used in a variety of ways in proof systems.We briey explain, �rst, what are the other problems and results in low degree testing and whythey di�er from ours; seond how the usage of these in proof systems is di�erent from the usage oflinearity tests.Low degree testing. We are given a funtion f : F n ! F , where F is a �eld, and we aregiven a positive integer d. In the low individual degree testing problem we are asked to determinewhether f is lose to some polynomial p of degree d in eah of its n variables. When speialized tothe ase of d = 1, this task is referred to as multi-linearity testing. In the low total degree testingproblem we are asked to determine whether f is lose to some polynomial p of total degree d in itsn variables.5 Multi-linearity tests were studied by [4, 11℄. Low individual degree tests were studiedby [3, 5, 12, 19℄. Total degree tests were studied by [2, 13, 14, 20℄.What we are looking at, namely linearity testing over GF(2), is a variant of the total degreetesting problem in whih the degree is d = 1, F is set to GF(2), and the onstant term of thepolynomial p is fored to 0. Even though a signi�ant amount of work has been put into theanalysis of the low degree tests by the above mentioned works, the analysis does not appear to betight for any ase. In partiular one annot use those results to derive the results we obtain here.In fat the tightness of the result obtained here raises the hope that similar tehniques an be usedto improve the analysis in the above testers.The role of testing in PCP systems. An important tool in the onstrution of proof systemsis a tool referred to as reursion [3℄. Roughly, the tool provides an analog of the proess ofonstrution of onatenated error-orreting odes, to the realm of PCPs. A PCP proof systemonstruted by reursion onsists of several levels of di�erent atomi PCPs. The PCP at eah levelof reursion typially uses some form of low-degree testing, the kind di�ering from level to level.The use of multi-linearity testing was initiated by Babai, Fortnow and Lund [4℄. For eÆienyreasons, researhers beginning with Babai, Fortnow, Levin and Szegedy [5℄ then turned to lowindividual degree testing. This testing is used in the \higher" levels of the reursion. Linearitytesting showed up for the �rst time in the lowest level of the reursion, in the heking of the5 To illustrate the di�erene between individual and total degree, note that f(x1; : : : ; xn) = x1x2 is multi-linearbut not linear.



Hadamard ode in [2℄. The proof systems of [7℄ use all these di�erent testers, but, as we explained,the �nal non-approximability fators obtained an be expressed only in terms of the shape of thelinearity testing urve.Reent work. Kiwi [16℄ provides improved analysis for the linearity testing problem over all�nite �elds. He obtains this result by providing another new interpretation of the linearity testingproblem, this time by relating it to a weight enumeration problem of a linear ode studied as afuntion of the minimum distane of its dual ode.H�astad [15℄ has shown a tester for a di�erent ode, namely the \long ode" of [7℄, and ananalysis for the test is again based on a Fourier Transform based approah. The analysis oneagain provides signi�ant improvements to non-approximability results for the lique problem.1.7 DisussionThe main argument behind the analysis of the BLR test given in [9℄ is the following: given f takingvalues from one �nite group G into another �nite group, start by de�ning a funtion gf whosevalue at u is Pluralityf f(u+v)� f(v) : v 2 G g.6 Then, show that if Err(f) is suÆiently small,three things happen. First, an overwhelming majority of the values ff(u+v)�f(v) : v 2 Gg agreewith gf (u), seond, gf is linear, and last, gf is lose to f . This argument is alled the pluralityargument. The assumption that the rejetion probability of the test is small seems to be an essentialomponent of this argument.The arguments used in most of the previous works on low-degree testing are based on theplurality argument. So far, these type of arguments have been unable to show a non-trivial relationbetween the probability that a given funtion fails a test, and its distane from a family of low-degree polynomials, when the probability that the test fails is high (i.e., larger than 12). Our disreteFourier analysis approah does not exhibit the properties disussed above, and this may be one ofthe reasons for its suess.Our approah was somewhat inspired by the oding theoreti statement of the linearity testingproblem; however the �nal analysis does not bring this out learly. Kiwi's [16℄ approah brings theonnetion out muh more expliitly and suggests that further exploration of the relationship tooding theory may prove fruitful.2 Fourier Analysis of the Linearity TestIn this setion we prove Theorem 1.2 and disuss how tight it is.Conventions. In the rest of this work, unless expliitly said otherwise, F denotes GF(2). Further-more, whenever we write Lin it is to be understood that we are referring to Lin(F n; F ). Throughoutthis setion, if an element b of F appears as an exponent, e.g. (�1)b, it is to be understood as areal number. Thus (�1)b takes the value 1 or �1 depending on whether b is 0 or 1 respetively.The main result of this setion is based on an appliation of disrete Fourier analysis tehniquesto the study of the BLR test. More preisely, we view a funtion f : F n ! F as a real valuedfuntion, and de�ne a funtion h whih is a simple transformation of f . We prove that if thedistane from f to its nearest linear funtion is large, then the Fourier oeÆients of h annot be6 The plurality of a multiset is the most ommonly ourring element in the multiset (ties are broken arbitrarily).



very large. Furthermore, we show that the smaller the Fourier oeÆients of h are, the higher theprobability that f will fail the BLR test.In the rest of this setion, we �rst review the basi tools of disrete Fourier analysis that weuse, and then give a preise formulation of the argument disussed above.Disrete Fourier Transform. We onsider the family of all real-valued funtions on F n as a2n-dimensional real vetor spae. For funtions �; �: F n ! R, let h�; �i = 1jF jn �Pu2Fn �(u)�(u)denote the inner produt of the funtions � and �. The family of funtions f  � : � 2 F n g,where  �(u) = (�1)��u, � � u = Pni=1 �iui, form an orthonormal basis for this linear spae (i.e.,h �;  �i = 1 and h �;  �i = 0 if � 6= �). Thus every funtion � an be uniquely expressed as linearombination of the  �'s, namely, � = P�2Fn b�� �. The oeÆient b�� is referred to as the �-thFourier oeÆient of �. By the orthonormality of the basis f  � : � 2 F n g it follows that:b�� = h�;  �i: (1)Also the orthonormality of the basis yields the following identity known as Parseval's equality:h�; �i = X�2Fn(b��)2: (2)The onvolution of two funtions � and �, denoted � � �, is a funtion mapping F n to the realsand de�ned as follows: (� � �)(x) = 1jF jn �Pu+v=x �(u)�(v). Note that the onvolution operator isassoiative. Lastly we need the following identity, alled the onvolution identity, whih shows therelationship between the Fourier oeÆients of two funtions � and � and the Fourier oeÆientsof their onvolution: 8� 2 F n; d(� � �)� = b��b��: (3)Lower Bound. To lower bound Err(f) we use disrete Fourier analysis tehniques. We start byestablishing a relation between the Fourier oeÆients of a transformation of the funtion f , andDist(f), i.e., the distane from f to the linear funtion losest to f . The transformation is given bythe funtion h: F n ! R, de�ned as h(u) = 1 if f(u) = 0 and h(u) = �1 otherwise. Over GF(2), han be expressed as h(�) = (�1)f(�) and this is a ruial element of the following two lemmas. The�rst lemma shows that if Dist(f) is large, the Fourier oeÆients of h are small.Lemma 2.1 Suppose f : F n ! F and � 2 F n. Let h(u) = 1 if f(u) = 0 and �1 otherwise. Thenbh� � 1� 2Dist(f).Proof: Let l�(u) = � � u =Pni=1 �iui. Clearly, l� 2 Lin and  � = (�1)l� .bh� = h(�1)f ;  �i (Using (1))= h(�1)f ; (�1)l�i= 1jF jn �Pu2Fn (�1)f(u)+l�(u)= Pru [ f(u)=l�(u) ℄� Pru [ f(u)6=l�(u) ℄= 1� 2Dist(f; l�)� 1� 2Dist(f) :



Our next lemma onnets the other parameter, Err(f), to the value of a onvolution of h. Thislemma uses the identity h(�) = (�1)f(�) and hene the fat that we are working over GF(2). (Inwhat follows, we use a bold-faed 0, to denote the vetor of all 0's to enable distinguishing it fromthe salar 0.)Lemma 2.2 Suppose f : F n ! F and � 2 F n. Let h(u) = 1 if f(u) = 0 and �1 otherwise. ThenErr(f) = 12 (1� (h � h � h)(0)) :Proof: Notie that over GF(2), f(u) + f(v) + f(u+v) is always 0 or 1. Furthermore, the BLRtest aepts on random hoie u; v if f(u) + f(v) + f(u+v) = 0. Alternatively, we an onsiderthe expression h(u)h(v)h(u+v) = (�1)f(u)+f(v)+f(u+v) and observe that the test aepts if thisexpression is 1 and rejets if this expression is �1. Thus the expression 12 (1 � h(u)h(v)h(u+v)) isan indiator for the rejetion event in the BLR test, i.e., 12 (1 � h(u)h(v)h(u+v)) is 1 if the BLRtest rejets and 0 otherwise. Thus we haveErr(f) = 1jF j2n Xu;v2Fn 12 (1� h(u)h(v)h(u+v)) = 12 0�1� 1jF j2n Xu;v2Fn h(u)h(v)h(u+v)1A :From the de�nition of onvolution it follows that (h � h � h)(0) = 1jF j2n Pu;v2Fn h(u)h(v)h(u+v).Thus we derive Err(f) = 12 (1� (h � h � h)(0)) :The proof of Theorem 1.2 now follows easily using Properties (1), (2), and (3).Proof of Theorem 1.2: From Lemma 2.2 it suÆes to analyze (h � h � h)(0).(h � h � h)(0) = P�2Fn d(h � h � h)� �(0) (Using  �'s as a basis)= P�2Fn d(h � h � h)� (Sine  �(0) = 1, for every �.)= P�2Fn(bh�)3 (Using (3))� �max�2Fn bh���P�2Fn(bh�)2�= �max�2Fn bh�� (Using (2) and hh; hi = 1.)� 1� 2Dist(f) (Using Lemma 2.1):Now using Lemma 2.2, we haveErr(f) = 12 (1� (h � h � h)(0)) � 12 (1� (1� 2Dist(f))) = Dist(f):The next lemma omplements Theorem 1.2. This lemma is a slightly more re�ned version of thebound Rej(x) � 3x� 6x2 derived in [6℄. To state it we �rst de�ne the slak between funtions fand l by sl(f; l) def= Pru;v R Fn [ f(u)6=l(u); f(v) 6=l(v); f(u+v)6=l(u+v) ℄ :



Lemma 2.3 For all f : F n ! F and all l 2 Lin,Err(f) = 3Dist(f; l)� 6Dist(f; l)2 + 4 sl(f; l) :Proof: Sine f takes values in F = GF(2), f(u) + f(v)6=f(u+v) if and only if f di�ers from l inexatly one of the points fu; v; u+vg or in all of the points fu; v; u+vg. Thus Err(f) =3Pru;v [ f(u)6=l(u); f(v)=l(v); f(u+v)=l(u+v) ℄ + Pru;v [ f(u) 6=l(u); f(v)6=l(v); f(u+v)6=l(u+v) ℄ :Furthermore, observe thatPru;v [ f(u) 6=l(u); f(v)=l(v); f(u+v)=l(u+v) ℄= Pru;v [ f(u) 6=l(u); f(v)=l(v) ℄� Pru;v [ f(u) 6=l(u); f(v)=l(v); f(u+v) 6=l(u+v) ℄= Pru;v [ f(u) 6=l(u); f(v)=l(v) ℄� Pru;v [ f(u) 6=l(u); f(u+v) 6=l(u+v) ℄+ Pru;v [ f(u)6=l(u); f(v) 6=l(v); f(u+v)6=l(u+v) ℄ :Hene, Err(f) = 3Pru;v [ f(u) 6=l(u); f(v)=l(v) ℄ � 3Pru;v [ f(u) 6=l(u); f(u+v) 6=l(u+v) ℄+ 4Pru;v [ f(u) 6=l(u); f(v)6=l(v); f(u+v) 6=l(u+v) ℄ :By de�nition, the last term on the RHS above is 4 sl(f; l). Moreover, the eventsf (u; v) : f(u)=l(u) g, f (u; v) : f(v)=l(v) g, f (u; v) : f(u+v)=l(u+v) g are pairwise independent.Hene, Pru;v [ f(u) 6=l(u); f(u+v)6=l(u+v) ℄ = (1 � Dist(f; l))2 and Pru;v [ f(u) 6=l(u); f(v)=l(v) ℄ =Dist(f; l) (1�Dist(f; l)). Performing a simple algebrai manipulation, suÆes to onlude the proofof the lemma.Tightness Disussion. We now disuss how tight the results of this setion are. Throughout therest of this disussion let x 2 [0; 1℄ be suh that x jF jn is an integer.Case 1: x > 12 .Then there is no funtion f : F n ! F suh that Dist(f) = x (sine the expeted distane from arandomly hosen linear funtion to f is at most 12 (1 + 1jF jn )).Case 2: x = 12 .Randomly hoose f so f(u) = Xu, where Xu is a random variable distributed aording to aBernoulli distribution with parameter p 2 [12 ; 1℄.7 A Cherno� bound (see [1, Appendix A℄) showsthat with overwhelming probability 0 � x � Dist(f) = o(1). Moreover, Chebyshev's inequality(see [1, Ch. 4℄) implies that with high probability jErr(f) � �3 p(1� p)2 + p3� j = o(1). Thus, ifp = 12 , Theorem 1.2 is almost tight in the sense that Rej(x) is almost x.Case 3: x � 516 .We will show that in this ase the bound Rej(x) � 3x � 6x2 is tight. Indeed, for u in F n letbuk def= u1 � � � uk. If S = f u 2 F n : bu4 2 f1000; 0100; 0010; 0001; 1111g g, then for any funtion fwhih equals 1 in x jF jn elements of S, and 0 otherwise, it holds that Dist(f) = Dist(f; 0) = x andsl(f; 0) = 0. Hene, Lemma 2.3 implies that Err(f) = 3x� 6x2.Figure 1, gives evidene showing that Theorem 1.2 is lose to being optimal for x in the interval[ 516 ; 12 ℄. But, as the next two setions show, there is room for improvements.7 A Bernoulli distribution with parameter p orresponds to the distribution of a f0; 1g-random variable withexpetation p.



3 The Summation LemmaThis setion is devoted to proving a ombinatorial result of independent interest, but neessaryin the tighter analysis of the linearity test that we give in Setion 4. We also apply this result toobtain a tight upper bound on the probability that the BLR test fails.First, reall that the lexiographi order in F n is the total order relation � suh that u � v ifand only if Pi ui2�i �Pi vi2�i (arithmeti over the reals).Loosely stated, we show that given three subsets A;B;C of F n, the number of triplets (u; v; w)in A�B � C suh that u+v+w = 0, is maximized when A;B;C are the lexiographially smallestjAj; jBj; jCj elements of F n respetively.The following lemma, independently proved by D. J. Kleitman [17℄, gives a preise statementof the above disussed fat.For onveniene we introdue the following notation: for every nonnegative integer n andA;B;C � F n let �n(A;B;C) = f (u; v; w) 2 A�B�C : u+v+w = 0 g ;and let 'n(A;B;C) = 1jF j2n jf (u; v; w) 2 A�B�C : u+v+w = 0 gj :Also, for S � F n we let S� denote the olletion of the lexiographially smallest jSj elements ofF n.Lemma 3.1 (Summation Lemma) For every A;B;C � F n,'n(A;B;C) � 'n(A�; B�; C�) :Proof: We proeed by indution. The ase n = 1 an be easily veri�ed. For the indutive step,we �rst de�ne, for every i 2 f1; : : : ; ng, a transformation that sends S � F n to S(i) � F n. Thistransformation onsists in lexiographially ordering the elements of S whose i-th omponent is0 and 1 respetively. The transformation does not hange the number of elements of S with i-thomponent 0 and 1 respetively. Consider i 2 f1; : : : ; ng and b 2 F . Let fi;b be the funtion thatembeds F n�1 onto fu 2 F n : ui = bg in the natural way, i.e. for u = (uj)j 6=i 2 F n�1, (fi;b(u))j = ujif j 6= i, and b otherwise. For S � F n, let S(i)b be the natural projetion into F n�1 of the elementsof S whose i-th oordinate is b, i.e. S(i)b = f (uj)j 6=i 2 F n�1 : fi;b(u) 2 S g. Furthermore, letS(i) = fi;0 �(S(i)0 )��[ fi;1 �(S(i)1 )�� :Observe that jSj = jS(i)0 j + jS(i)1 j. Moreover, lexiographially ordering a set does not hange itsardinality, thus j(S(i)0 )�j = jS(i)0 j and j(S(i)1 )�j = jS(i)1 j. Sine fi;0 and fi;1 are injetive and theirranges are disjoint it follows that jS(i)j = jSj .88 The following example might help in larifying the notation so far introdued: if n = 3 and S =f010; 011; 100; 101; 111g, then S(2)0 = f10; 11g, S(2)1 = f00; 01; 11g, (S(2)0 )� = f00; 01g, (S(2)1 )� = f00; 01; 10g, andS(2) = f000; 001; 010; 011; 110g.



Note that addition (in F n) of two lexiographially small elements of F n yields a lexiographiallysmall element of F n. Thus, it is reasonable to expet that for every A;B;C � F n and i 2 f1; : : : ; ng,'n(A;B;C) � 'n(A(i); B(i); C(i)). We will now prove this latter inequality. Indeed, note that'n(A;B;C) = 'n�1(A(i)0 ; B(i)0 ; C(i)0 ) + 'n�1(A(i)1 ; B(i)1 ; C(i)0 )+ 'n�1(A(i)1 ; B(i)0 ; C(i)1 ) + 'n�1(A(i)0 ; B(i)1 ; C(i)1 ) :Applying the indutive hypothesis to eah term on the RHS above shows that'n(A;B;C) � 'n�1((A(i)0 )�; (B(i)0 )�; (C(i)0 )�) + 'n�1((A(i)1 )�; (B(i)1 )�; (C(i)0 )�)+ 'n�1((A(i)1 )�; (B(i)0 )�; (C(i)1 )�) + 'n�1((A(i)0 )�; (B(i)1 )�; (C(i)1 )�) :In the previous inequality, the RHS is 'n(A(i); B(i); C(i)). Hene, 'n(A;B;C) � 'n(A(i); B(i); C(i))as laimed. We will now show that we an assume that for all i 2 f1; : : : ; ng, A(i) = A, B(i) = B, andC(i) = C. Indeed, if this was not the ase, we an repeat the above argument by onsidering A(i),B(i), C(i) instead of A, B, C. To prove that this iterative proess is guaranteed to eventually stoplet u 2 F n also represent the integer with binary expansion u . Note that if A(i) 6= A, or B(i) 6= B,or C(i) 6= C, then Pu2S u >Pu2S(i) u for some S 2 fA;B;Cg. Hene the aforementioned iterativeproess stops in at most PS2fA;B;CgPu2S u steps.One would like to onlude the proof of the lemma by laiming that, if for all i, A(i) = A, B(i) = B,and C(i) = C, then A;B;C are equal to A�; B�; C� respetively. We will show that the latter laimis `almost' true, in the sense that if e denotes (1; 0; : : : ; 0) 2 F n, e0 denotes (0; 1; : : : ; 1) 2 F n, andV = f (u1; : : : ; un) 2 F n : u1 = 0 g then the following holds:If for every i 2 f1; : : : ; ng; S = S(i); then S = S� or S = (V n feg) [ fe0g :We prove the above fat by ontradition. Assume that S 6= S� and S 6= (V n feg) [ fe0g. SineS = S(1), then either (1; 0; : : : ; 0; 1) 2 F n is in S or (0; 1; : : : ; 1; 0) 2 F n is not in S. Supposethat (1; 0; : : : ; 0; 1) 2 F n is in S. Sine S = S(1) and S 6= S�, we know that e 62 S. Thus,(1; 0; : : : ; 0) 2 F n�1 is in S(n)1 and (0; 1; : : : ; 1) 2 F n�1 is not in S(n)1 . Hene, (S(n)1 )� 6= S(n)1 .It follows that S 6= S(n), a ontradition. Suppose now that (0; 1; : : : ; 1; 0) 2 F n is not in S.Sine S = S(1) and S 6= S�, we know that e0 2 S. Thus, (1; 0; : : : ; 0) 2 F n�1 is in S(n)0 and(0; 1; : : : ; 1) 2 F n�1 is not in S(n)0 . Hene, (S(n)0 )� 6= S(n)0 . It follows that S 6= S(n), again aontradition.9Thus far we have shown that in order to upper bound 'n(A;B;C) we an restrit our attention tothe sets A;B;C that are either in lexiographially smallest order or take the form (V nfeg)[fe0g.To onlude the lemma we need to onsider three ases. These ases depend on how many of thesets A;B;C are in lexiographially smallest order.Case 1: exatly two of the sets A;B;C are in lexiographially smallest order.Without loss of generality assume A = A�, B = B�, and C = (V n feg) [ fe0g. Then'n(A;B;C) = 'n(A;B; V ) + 'n(A;B; fe0g)� 'n(A;B; feg) :Note that 'n(A;B; feg) = maxf0; jA \ V j+ jB \ V j � jV jg+maxf0; jA n V j+ jB n V j � jV jg and'n(A;B; fe0g) = minfjAnV j; jB\V jg+minfjA\V j; jBnV jg. Hene, 'n(A;B; feg) � 'n(A;B; fe0g).9 Observe that we only required that S(1) = S(n) = S.



Thus, 'n(A;B;C) � 'n(A;B; V ). To onlude, observe that C� = V and reall that A = A� andB = B�.Case 2: exatly one of the sets A;B;C is in lexiographially smallest order.Without loss of generality, we assume that A = A� and B = C = (V n feg) [ fe0g. If A = F nor A = ;, then it is obvious that 'n(A;B;C) = 'n(A�; B�; C�) and we are done. Thus, we alsoassume that A 6= F n and A 6= ;. Then,'n(A;B;C) = 'n(A; V; V )� 'n(A; V; feg) � 'n(A; feg; V )+ 'n(A; V; fe0g) + 'n(A; fe0g; V ) + 'n(A; feg; feg)� 'n(A; feg; fe0g)� 'n(A; fe0g; feg) + 'n(A; fe0g; fe0g) :Note that 'n(A; V; feg) = 'n(A; feg; V ) = jA\V j, 'n(A; V; fe0g) = 'n(A; fe0g; V ) = jAnV j. SineA = A� and A 6= F n, then 'n(A; fe0g; feg) = 'n(A; fe0g; feg) = 0. Sine A = A� and A 6= ;, then'n(A; fe0g; fe0g) = 'n(A; feg; feg) = 1. Thus, 'n(A;B;C) = 'n(A; V; V )�2 jA\V j+2 jAnV j+2.Sine A = A� and A 6= F n, then jA n V j < jV j, and if jA n V j 6= 0, then jA \ V j = jV j. SineA = A� and A 6= ;, then jA\ V j > 0, and if jA n V j = 0, then jA\ V j = jAj. Hene, 'n(A;B;C) �'n(A; V; V ). To onlude, observe that B� = C� = V and reall that A = A�.Case 3: none of the sets A;B;C is in lexiographially smallest order.In this ase A = B = C = (V n feg) [ fe0g. Thus,'n(A;B;C) = 'n(V; V; V )�maxf0; jA \ V j+ jB \ V j � jV jg�maxf0; jA \ V j+ jC \ V j � jV jg �maxf0; jB \ V j+ jC \ V j � jV jg :Hene, 'n(A;B;C) � 'n(V; V; V ). To onlude, observe that A� = B� = C� = V .By de�nition, a subspae V of F n is suh that if u; v 2 V , then u+v 2 V . This motivates using1jSj2 j�n(S; S; S)j ;as a measure of how lose the set S � F n is to being a subspae. The larger this quantity is, theloser the set S is o� being a subspae. From this point of view, the Summation Lemma implies thatthe olletion of the lexiographially smallest m elements of F n is the subset of F n (of ardinalitym) that more losely resembles a subspae.Lemma 3.2 Suppose f : F n ! F . Let x = Dist(f). Let k be the unique integer suh that2�k � x < 2�k+1, and let Æ = 2�k. ThenErr(f) � 3x� 6x2 + 4 Æ2 + 12 (x� Æ)2 :Proof: Let l be the losest linear funtion to f , and let S = f u : f(u) 6= l(u) g. Note thatsl(f; l) = 'n(S; S; S), thus by Lemma 2.3 we have thatErr(f) = 3 Æ � 6 Æ2 + 4'n(S; S; S) :By the Summation Lemma, 'n(S; S; S) � 'n(S�; S�; S�). The lemma will follow one we show that'n(S�; S�; S�) = Æ2 + 3 (x � Æ)2. Indeed, let V be the lexiographially smallest Æ jF jn elements



of F n. Note that V is a subspae, V � S�, and jS�j = jSj = x jF jn. Sine 'n(S� n V; V; V ),'n(V; S� n V; V ), 'n(V; V; S� n V ), and 'n(S� n V; S� n V; S� n V ) are all equal to 0 we get that'n(S�; S�; S�) = 'n(S� n V; S� n V; V ) + 'n(S� n V; V; S� n V )+ 'n(V; S� n V; S� n V ) + 'n(V; V; V ) :Note that 'n(V; V; V ) = Æ2. Moreover, 'n(S� n V; S� n V; V ), 'n(S� n V; V; S� n V ), and 'n(V; S� nV; S� n V ) are all equal to (x� Æ)2. Thus, 'n(S�; S�; S�) = Æ2 + 3 (x� Æ)2 as we laimed.We will now prove that the bound of Lemma 3.2 annot be improved. Indeed, let x 2 [0; 12 ℄ be suhthat x jF jn is an integer. Let S be the lexiographially smallest x jF jn elements of F n. Considerthe funtion f : F n ! F whih evaluates to 1 on every element of S and to 0 otherwise, i.e. fis the harateristi funtion of S. We will prove that the losest linear funtion to f is the zerofuntion, hene Dist(f) = x. But, �rst note that sine S = S�, then 'n(S; S; S) = 'n(S�; S�; S�).Hene, from the proof of Lemma 3.2, it follows that Err(f) meets the upper bound of the statementof Lemma 3.2. To prove that the losest linear funtion to f is the zero funtion we argue byontradition. We onsider the following two ases:Case 1: x 2 [0; 14 ℄.Here, the zero funtion is at distane x from f . If some other linear funtion was at distane lessthan x from f , then suh linear funtion would be at distane less than 2x � 12 from the zerofuntion. A ontradition, sine two distint linear funtions are at distane 12 .Case 2: x 2 (14 ; 12 ℄.Let V be the largest subspae of F n ontained in S, and let V 0 be the smallest subspae of F n thatontains S. Reall that the ardinality of a subspae of F n is a power of two. Thus, sine S is theset of the lexiographially smallest xjF jn elements of F n, then jV j = 14 jF jn and jV 0j = 12 jF jn. Forthe sake of ontradition, assume l: F n ! F is a nonzero linear funtion whose distane to f isless than x. Note that a linear funtion whih is nonzero over a subspae of F n must evaluate to1 in exatly half the elements of that subspae. In partiular, l evaluates to 1 on half the elementsof F n.Case 2:1: l evaluates to 0 over V .Reall that f evaluates to 0 outside of S and to 1 over S. Moreover, l evaluates to 1 in exatly halfthe elements of F n. Thus, l disagrees with f in every element of V and in at least 12 jF jn � jS n V jof the elements not in V . Hene, the distane between f and l is at least 14 + (12 � (x� 14 )) � x, aontradition.Case 2:2: l does not evaluate to 0 over V .Then, l evaluates to 1 in exatly half the elements of V and half the elements of V 0. Thus, ldisagrees with f in half the elements of V and in at least jS n V j � 12(jV 0j � jV j) of the elementsof S n V . Moreover, l evaluates to 1 on half the elements of F n and on half the elements ofV 0. Hene, sine f evaluates to 0 on the elements of F n n V 0, it follows that l disagrees withf in 12 jF nj � 12 jV 0j of the elements of F n n V 0. Thus, the distane between f and l is at least12 jV j + (jS n V j � 12(jV 0j � jV j)) + (12 jF nj � 12 jV 0j) = 18 + ((x � 14) � 18 ) + (12 � 14) = x, again aontradition.



4 Combinatorial analysis of the linearity testWe now prove Theorem 1.3, i.e. that Knee = 45128 . To prove that Knee � 45128 we assoiate to afuntion f : F n ! F a funtion gf : F n ! F , whose value at u is Pluralityf f(u+v)� f(v) : v 2F n g. Then, if Err(f) is suÆiently small three things our: (i) An overwhelming majority of thevalues f f(u + v) � f(v) : v 2 F n g agree with gf (u), (ii) gf is linear, (iii) gf is lose to f . Thisargument was �rst used in [9℄ while studying linearity testing over �nite groups. We will show howthis argument an be tightened in the ase of linearity testing over GF(2).More preisely, the proof of Theorem 1.3 is a onsequene of the following three lemmas:Lemma 4.1 For all f : F n ! F , then Err(f) � 12 Dist(f; gf ).Lemma 4.2 For all f : F n ! F , if gf is linear, then Err(f) � 2Dist(f; gf ) � [1� Dist(f; gf )℄.Lemma 4.3 For all f : F n ! F , if Err(f) < 45128 , then gf is linear.We �rst show that Theorem 1.3 follows from the above stated results. Assume Knee < 45128 , then,there is a funtion f : F n ! F , suh that Err(f) < 45128 and x = Dist(f) � 14 . By Lemma 2.3,Err(f) � 3x � 6x2, thene we need only onsider the ase in whih x is at least 516 . Moreover,by Lemma 4.3, gf is a linear funtion. Thus, Dist(f; gf ) � x � 516 , whih together with Lem-mas 4.1 and 4.2 imply that Err(f) � minx2[5=16;1℄maxn12x; 2(1 � x)xo = 38 , a ontradition. Hene,Knee � 45128 . In our tightness disussion part of Setion 2 we showed that there exists a funtionf : F n ! F suh that Dist(f) = 516 and Err(f) = 45128 . Hene, Knee = 45128 as we wanted to prove.The rest of this setion is dediated to proving Lemmas 4.1 through 4.3.The proofs of Lemmas 4.1 and 4.2 are based on an observation whih is impliit in [14℄. Thisobservation ruially depends on the fat that f takes values over F = GF(2). It says that forevery u 2 F n, Prv [ f(u+v)�f(v)=gf (u) ℄ � 12 :Hene, if f(u)6=gf (u), then f(u) 6= f(u+v)� f(v) at least half of the time, whih impliesPru;v [ f(u)+f(v) 6=f(u+v) j f(u) 6=gf (u) ℄ � 12 : (4)Proof of Lemma 4.1: Simple onditioning says that Err(f) is at leastPru;v [ f(u)+f(v)6=f(u+v) j f(u) 6=gf (u) ℄ � Dist(f; gf ) :But by (4) we know this is at least 12 Dist(f; gf ).Proof of Lemma 4.2: Assume gf is linear. As observed in the proof of Lemma 2.3Err(f) = 3Pru;v [ f(u) 6=gf (u); f(v)=gf (v); f(u+v)=gf (u+v) ℄+ Pru;v [ f(u) 6=gf (u); f(v) 6=gf (v); f(u+v) 6=gf (u+v) ℄ :Sine gf is linear, Pru;v [ f(u)6=gf (u); f(v)=gf (v); f(u+v)=gf (u+v) ℄ =Pru;v [ f(u) 6=gf (u); f(u)+f(v)6=f(u+v) ℄� Pru;v [ f(u)6=gf (u); f(v) 6=gf (v); f(u+v)6=gf (u+v) ℄ :



Hene, Err(f) = 3Pru;v [ f(u)+f(v)6=f(u+v) j f(u) 6=gf (u) ℄ � Dist(f; gf )� 2Pru;v [ f(u) 6=gf (u); f(v) 6=gf (v); f(u+v) 6=gf (u+v) ℄ :In this last expression, the �rst term an be lower bounded, as in the proof of Lemma 4.1, by32 Dist(f; gf ). The seond term is 2 sl(f; gf ). Thus, we have Err(f) � 32 Dist(f; gf ) � 2 sl(f; gf ).Finally, applying Lemma 2.3, we get that Err(f) � 3Dist(f; gf ) � 3Dist(f; gf )2 � 12 Err(f). Thelemma follows.Proof of Lemma 4.3: By ontradition. Assume gf is not linear. Then there are x; y suhthat gf (x) + gf (y) 6= gf (x+y). Note that by onstrution gf (0) = 0, thus x and y are distintand nonzero. Hene, x; y; x+y are distint. Sine gf (x) + gf (y) 6= gf (x+y) it annot be thatgf (x); gf (y); gf (x+y) are all zero. Without loss of generality, we assume that gf (x+y) = 1. We nowshow that we an also assume that gf (x) = gf (y) = 1. Indeed, if f satis�es the latter assumptionwe are done. Otherwise, sine gf (x) + gf (y) 6= gf (x+y) = 1, we have that gf (x) = gf (y) = 0.Let l: F n ! F be a linear funtion suh that l(x) = l(y) = 1 (suh funtion exists sine x; y aredistint and nonzero). Set f 0 = f + l and observe that Err(f 0) = Err(f) and gf 0 = gf + l. Hene,Err(f 0) < 45128 , gf 0(x) + gf 0(y) 6= gf 0(x+y), and gf 0(x) = gf 0(y) = gf 0(x+y) = 1. So, we an ontinuearguing about f 0 instead of f .Set S = f0; x; y; x+yg. We will begin by investigating nonlinearity on osets of S. For every s 2 F n,de�ne fs to be the funtion from S to F , suh that fs(u) = f(s+u). For every s; t 2 F n, letps;t = Pru;v R S [ fs(u)+ft(v) 6=fs+t(u+v) ℄ :By interhanging the orders of expetations we see thatErr(f) = Es;tR Fn [ ps;t ℄ : (5)Now ps;t depends only on the values of f on the osets s+S, t+S, and s+ t+S. We lassify theseosets aording to the pattern of values of f on the oset. De�ne the trae of f at w astrf (w) = [f(w); f(w+x); f(w+y); f(w+x+y)℄ :We partition the elements w of F n aording to the values that the trae of f at w takes,H0 = f w : trf (w) equals [0; 0; 0; 0℄ or [1; 1; 1; 1℄ gHx = f w : trf (w) equals [0; 0; 1; 1℄ or [1; 1; 0; 0℄ gHy = f w : trf (w) equals [0; 1; 0; 1℄ or [1; 0; 1; 0℄ gHx+y = f w : trf (w) equals [0; 1; 1; 0℄ or [1; 0; 0; 1℄ gHodd = f w : trf (w) has an odd number of 1's g ;and de�ne their relative measures h0 = jH0j=jF jn, hx = jHxj=jF jn, hy = jHyj=jF jn, hx+y =jHx+yj=jF jn, and hodd = jHoddj=jF jn. Notie that if s 2 Hz then the whole oset s+S is in Hz, forany of the �ve sets Hz.By symmetry we may assume that hx � hy � hx+y.



The ondition gf (x+y) = 1 impliesPruR Fn [ f(u+x+y) = f(u) ℄ � 12 ;whene h0 + hx+y + 12hodd � 12 ; (6)sine for eah oset w+S in Hodd, half the elements w+u satisfy f(w+u) = f(w+u+x+y), while allelements w of H0 and Hx+y satisfy f(w) = f(w+x+y).So no single set among the four H0, Hx, Hy, or Hx+y is too large; eah of h0, hx, hy, hx+y isbounded by 12 . If f were stritly linear, one of these four sets would over all of F n. As it is, theinteration of several substantial sets among H0, Hx, Hy, Hx+y, or the presene of a large Hodd,will fore a large nonlinearity on f , and will give the desired lower bound on Err(f).To quantify this interation between sets, we partition F n�F n into six sets as follows:A = Set of all (s; t) suh that fs; t; s+ tg are all in the same set, either H0 or Hx or Hyor Hx+yB = Set of all (s; t) suh that two of fs; t; s+ tg are in the same set H0 or Hx or Hy orHx+y, and the other one is in HoddC = Set of all (s; t) suh that at least two of fs; t; s+ tg are in HoddD = Set of all (s; t) suh that fs; t; s + tg � H0 [ Hx [ Hy [ Hx+y with exatly twoelements from the same set H0, Hx, Hy or Hx+yE = Set of all (s; t) suh that one of fs; t; s+tg is inHodd, the other two are from di�erentsets in H0, Hx, Hy and Hx+yF = Set of all (s; t) suh that fs; t; s+ tg are from di�erent sets H0, Hx, Hy, Hx+yThe following tables illustrate the above de�ned partition.(s,t) H0 Hx Hy Hx+y Hodd (s,t) H0 Hx Hy Hx+y HoddH0 A D D D B H0 D D F F EHx D D F F E Hx D A D D BHy D F D F E Hy F D D F EHx+y D F F D E Hx+y F D F D EHodd B E E E C Hodd E B E E Cs+ t 2 H0 s+ t 2 Hx(s,t) H0 Hx Hy Hx+y Hodd (s,t) H0 Hx Hy Hx+y HoddH0 D F D F E H0 D F F D EHx F D D F E Hx F D F D EHy D D A D B Hy F F D D EHx+y F F D D E Hx+y D D D A BHodd E E B E C Hodd E E E B Cs+ t 2 Hy s+ t 2 Hx+y



(s,t) H0 Hx Hy Hx+y HoddH0 B E E E CHx E B E E CHy E E B E CHx+y E E E B CHodd C C C C Cs+ t 2 HoddWe now proeed to show a lower bound for Err(f) whih depends on the relative size of the setsA;B; C;D; E , and F . Indeed, observe that if (s; t) is in B, then ps;t is at least 14 . (We alulate anexample: suppose s and s + t are both in Hx, with trf (s) = [0; 0; 1; 1℄ and trf (s + t) = [1; 1; 0; 0℄,while t is in Hodd, with trf (t) = [1; 1; 0; 1℄. If f were linear on the osets s+ S; t+S; s+ t+ S, andtrf (s), trf (s + t) were as given, then trf (t) would neessarily be [1; 1; 0; 0℄, and t would be in Hx.The value trf (t) di�ers from [1; 1; 0; 0℄ in the last position, orresponding to x+ y. Thus wheneverv = x+ y we will have f(s+u) + f(t+v) 6= f(s+t+u+v). This happens for 14 of the random hoiesof (u; v).) With similar arguments one an show that if (s; t) is in C, then ps;t is at least 38 . And,if (s; t) is in D, E , or F , then ps;t is 12 . Hene, if for a set T � F n�F n we let �(T ) = jT j=jF j2n,then (5) yields Err(f) � 14 �(B) + 38 �(C) + 12 [�(D) + �(E) + �(F)℄ :Realling that �(C) = 1� (�(A) + �(B) + �(D) + �(E) + �(F)), allows us to onlude thatErr(f) � 38 � 18 (3�(A) + �(B)) + 18 [�(D) + �(E) + �(F)℄ : (7)We now derive from (7) another lower bound for Err(f) whih will depend solely onh0; hx; hy ; hx+y; hodd, and �(F).We �rst need the following identities relating the measure of the sets A, B, C, D, E , and F , to h0,hx, hy, hx+y, and hodd. Consider the probability that randomly hosen s and t are in the same setH0, Hx, Hy, or Hx+y, plus the orresponding probabilities for (s; s + t) and (t; s + t); expressingthis sum of probabilities in two ways yields3�(A) + �(B) + �(D) = 3�h20 + h2x + h2y + h2x+y� : (8)Consider the probability that s and t are in two di�erent sets H0, Hx, Hy, or Hx+y, plus theorresponding probabilities for (s; s + t) and (t; s + t); expressing this sum of probabilities in twoways yields: 2�(D) + �(E) + 3�(F) = 3 �(1� hodd)2 � �h20 + h2x + h2y + h2x+y�� : (9)Adding �18 of (8) and 18 of (9) to (7), givesErr(f) � 38 + 38(1� hodd)2 � 34 �h20 + h2x + h2y + h2x+y�� 14�(F) : (10)We now proeed to upper bound �(F). We divide the analysis into two ases.Case 1: hx + hy � h0 � hx+y > 14 .



By ase assumption and sine hx+y � hy we have that hx � hx + hy � h0 � hx+y > 14 . So,hx; hy; hx+y 2 (14 ; 12 ℄. As in Setion 3, for A;B;C � F n we let'n(A;B;C) = 1jF j2n jf (u; v; w) 2 A�B�C : u+v+w = 0 gj :Observe now, that for eah element (u; v) of F , fu; v; u+vg either ontains an element from H0 orontains one element from eah of the sets Hx, Hy, and Hx+y.The ontribution to F of the elements (u; v), where fu; v; u+vg ontain elements from eah ofthe sets Hx, Hy, and Hx+y, is upper bounded by 6'n(Hx;Hy;Hx+y). The Summation Lemmaimplies that 'n(Hx;Hy;Hx+y) � 'n(H�x;H�y ;H�x+y). Note that hx; hy; hx+y ompletely haraterizeH�x;H�y ;H�x+y. Thus sine hx; hy; hx+y 2 (14 ; 12 ℄ we have that'n(H�x;H�y ;H�x+y) = 14 � 12(hx + hy + hx+y) + hxhy + hxhx+y + hyhx+y= 14 � 12 [(h0 + hodd) + (hx + hy + hx+y)℄(hx + hy + hx+y)+ hxhy + hxhx+y + hyhx+y= 14 � 12 (h0 + hodd)(hx + hy + hx+y)� 12 (h2x + h2y + h2x+y) :Hene, 6'n(Hx;Hy;Hx+y) � 32 � 3 (h0 + hodd)(hx + hy + hx+y)� 3 (h2x + h2y + h2x+y).Furthermore, the ontribution to F of the elements (u; v), where fu; v; u+vg ontains an elementof H0 is upper bounded by3'n(H0;Hx;Hy [Hx+y) + 3'n(H0;Hy;Hx [Hx+y) + 3'n(H0;Hx+y;Hx [Hy) ;whih is at most 3h0 (hx+hy+hx+y). Putting it all together, we have�(F) � 32 � 3hodd(hx + hy + hx+y)� 3(h2x + h2y + h2x+y) ;whih jointly with (10) implies thatErr(f) � 38 + 38(1� hodd)2 � 34 �h20 + h2x + h2y + h2x+y��38 + 34hodd(hx + hy + hx+y) + 34(h2x + h2y + h2x+y)= 38 � 38h2odd � 34h0hodd � 34h20� 38 � 38(hodd + 4h0)2 :We onlude the analysis of this ase by noting that14 � 1� 3(hx + hy � h0 � hx+y)� 1� hx � hy � hx+y + 3h0= hodd + 4h0 ;where the �rst inequality follows by ase assumption, and the seond one beause hx � hy � hx+y,so that Err(f) � 38 � 38 �14�2 = 45128 :Case 2: hx + hy � h0 � hx+y � 14 .



To eah element (u; v) in F , assoiate the unique tuple (u0; v0) 2 fu; v; u+vg�fu; v; u+vg, suh that(u0; v0) 2 H0 �Hx+y [Hx �Hy. This sheme assoiates to eah element of H0 �Hx+y [Hx �Hyat most 6 elements of F . Thus, �(F) � 6 (h0hx+y + hxhy). Whih jointly with (10) impliesErr(f) � 38 + 38(1� hodd)2 � 34 �h20 + h2x + h2y + h2x+y�� 32 (h0hx+y + hxhy)= 38 + 38 [(h0 + hx+y) + (hx + hy)℄2 � 34 [(h0 + hx+y)2 + (hx + hy)2℄= 38 � 38 (hx + hy � h0 � hx+y)2 :The analysis of this ase onludes by observing that14 � hx + hy � h0 � hx+y= 1� hodd � 2(h0 + hx+y)� 0 ;where the �rst inequality is by ase assumption, and the latter one follows from (6), so that againErr(f) � 38 � 38 �14�2 = 45128 :5 Total degree one testing in harateristi twoAlthough the main purpose of our work is to give a near optimal analysis of the BLR test, we nowdesribe and analyze a way of testing for total degree one over GF(2). Our purpose is to furtherillustrate the strength and elegane of the Fourier analysis tehnique, as well as its more generalappliability to the problem of analyzing program testers.As usual, let F = GF(2). Note that a total degree one polynomial p is either a linear funtion or alinear funtion plus a onstant. Thus, sine F is of harateristi two, p(u)+p(v)+p(w) = p(u+v+w)for all u; v; w 2 F n. The latter is satis�ed only if p is of total degree one. In analogy to the ase oflinearity testing, de�neDeg1 | Set of all polynomials of total degree one from F n to FDist1(f) def= minf Dist(f; p) : p 2 Deg1 g | Distane of f to its losest polynomial of totaldegree one.Again, assume we are given orale aess to a funtion f mapping F n to F . We want to test that fis lose to a polynomial of total degree 1 from F n to F , and make as few orale queries as possible.The Total Degree 1 Test. The test is the following | Pik u; v; w 2 F n at random, query theorale to obtain f(u); f(v); f(w); f(u+v+w), and rejet if f(u) + f(v) + f(w) 6= f(u+v+w). LetErr1(f) def= Pru;v;wR Fn [ f(u) + f(v) + f(w) 6= f(u+v+w) ℄ ;be the probability that the test rejets f . Also letRej1(x) def= minf Err1(f) : f : F n ! F s.t. Dist1(f) = x g :In order to understand how good this test is we need to lower bound Err1(f) in terms of x = Dist1(f).The tehniques disussed in this work gives us tools for ahieving this goal. In fat, applying



these tehniques we will show that if h(�) = (�1)f(�) (f viewed as a real valued funtion), thenjh�j � 1 � 2x, for all � in F n. Indeed, note that all funtions in Deg1 are of the form l�(�) + �,where � is in F and l� denotes the funtion that sends u to h�; ui = Pni=1 �iui (arithmeti overF ). Then, as in Lemma 2.1, we have that bh� = 1 � 2Dist(f; l�) � 1 � 2x. Moreover, sineDist(f; l�) +Dist(f; l�+1) = 1, we also have that bh� = 2Dist(f; l� +1)� 1 � 2x� 1, whih provesthe laim.Arguing as in the proofs of Lemma 2.2 and Theorem 1.2 yieldsErr1(f) = 12 (1� (h � h � h � h)(0)) = 12 �1�P�2Fn (bh�)4� :Hene, the previously derived bound on the absolute value of the Fourier oeÆients of h andParseval's equality imply thatErr1(f) � 12  1� (1� 2x)2 X�2Fn(bh�)2! = 2x (1� x) :Finally, note that sine f takes values over GF(2), then f(u)+f(v)+f(w) 6=f(u+v+w) if and onlyif f di�ers from every p 2 Deg1 in exatly one of the points fu; v; w; u+v+wg, or in exatly three ofthe points fu; v; w; u+v+wg. This observation leads to a generalization of Lemma 2.3 that allowsto show that Err1(f) � 8x (1� x) (12 � x).We have shown the following:Lemma 5.1 Rej1(x) � maxn 8x (1 � x) (12 � x) ; 2x (1 � x) o .AknowledgmentsJ. H. thanks Mike Sipser for making his visit to MIT possible. M. K. thanks Dan Kleitman, CarstenLund, Mike Sipser, and Dan Spielman for several interesting and helpful disussions. We thankSanjeev Arora and Ronitt Rubinfeld for omments on an earlier draft. Part of this work was donewhile M.B. was at the IBM T. J. Watson Researh Center.Referenes[1℄ N. Alon and J. H. Spener. The probabilisti method. John Wiley & Sons, In., 1992.[2℄ S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof veri�ation andintratability of approximation problems. Proeedings of the 33rd Symposium on Foundationsof Computer Siene, IEEE, 1992.[3℄ S. Arora and S. Safra. Probabilisti heking of proofs: a new haraterization of NP.Proeedings of the 33rd Symposium on Foundations of Computer Siene, IEEE, 1992.[4℄ L. Babai, L. Fortnow and C. Lund. Non-deterministi exponential time has two-proverinterative protools. Computational Complexity, Vol. 1, 3{40, 1991.[5℄ L. Babai, L. Fortnow, L. Levin and M. Szegedy. Cheking omputations in polyloga-rithmi time. Proeedings of the 23rd Annual Symposium on Theory of Computing, ACM,1991.
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A BLR test analysis implied by previous workConsider the funtion f that takes values from the �nite group G into another �nite group H.As suggested by [9℄ we de�ne the funtion gf that at u 2 G equals the most ommonly ourringvalue in the multiset f f(u+v) � f(v) : v 2 G g (ties broken arbitrarily). In [9℄ it is shown that ifErr(f) < 29 , then gf is linear, and for all v 2 G, PruR G [ gf (v)=f(u+v)� f(u) ℄ > 23 . Thus,Err(f) � Dist(f; gf ) � Pru;v R G [ f(v)6=f(u+v)� f(u) j gf (v)6=f(v) ℄ � 23 Dist(f; gf ) :In other words, as observed in [8℄, if Err(f) < 29 , then Dist(f) � 32 Err(f).


