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1 Introdu
tionOne of the 
ontributions of 
omputational 
omplexity theory has been to re-examine the 
lassi
alnotion of what 
onstitutes a proof of a mathemati
al statement. The 
omplexity 
lass NP intro-du
ed the notion of an eÆ
iently veri�able proof. It asks that the proof, whi
h is a sequen
e ofwritten symbols, not only be veri�able, but be veri�able qui
kly, namely in polynomial time. Overthe last de
ade or so, resear
hers have furthered this avenue in many ways. One of the many notionsthat has been developed, and explored, allows the veri�er (of the 
laimed proof) to be probabilisti
in its a
tions. The new veri�er is also allowed to err in its judgment, as long as it doesn't do sotoo often| proofs of false statements 
an be a

epted with small probability. (This probability ismeasured over 
oin tosses made by the veri�er and not over any distribution over theorems/proofs.)As a tradeo�, the notion restri
ts the a

ess of the veri�er into the proof, allowing a veri�er toonly query or probe the proof in a small number of bits and studies the behavior of the numberof bits that are needed to be probed in any proof system as a fun
tion of the error probability.Su
h a proof system, i.e., the veri�er and its asso
iated format for valid proofs, is referred to as aprobabilisti
ally 
he
kable proof system | PCP, for short. Along with the development of this no-tion, the resear
h has also yielded a series of te
hni
al developments, whi
h have 
onstru
ted PCPveri�ers whi
h examine only a 
onstant number of bits, C, of a purported proof and reje
t proofsof in
orre
t statements with probability 12 . This 
onstant is a universal 
onstant, and independentof the length of the theorem or the proof. The new proof systems, do require valid proofs to belonger than traditional (deterministi
) proof systems would allow for. However the size of the newproofs are only polynomially larger than the size of the traditional proofs.Apart from the inherent interest in the 
onstru
tion and performan
e of PCP systems, a majormotivating fa
tor for the study of PCP systems is their use in the derivation of non-approximabilityresults for 
ombinatorial optimization problems. The theory of NP-
ompleteness has been employedas an important tool in the analysis of the 
omplexity of �nding optimal solutions to dis
rete (or
ombinatorial) optimization problems. For many optimization problems, the NP-
omplete or NP-hard ones, this theory 
an be used to show that no polynomial time solution solves this problemexa
tly, unless NP = P. However the possibility that solutions to these problems whi
h approximatethe optimum to within a relative error of � for every � > 0 may be found in polynomial time,remained open. A new 
onne
tion uses the PCP 
onstru
tions mentioned above to show thatfor many interesting problems, even su
h approximate solutions 
an not be found in polynomialtime unless NP = P. This 
onne
tion further serves to motivate the study of PCP systems and inparti
ular, their eÆ
ien
y (for instan
e, the parameter C above) sin
e improved eÆ
ien
y translatesinto stronger non-approximability results.The prime motivation for the problem to be studied in this paper is these PCP 
onstru
tionsand the ensuing hardness of approximation results. However, a full explanation of the details ofthese results is beyond the s
ope of this paper | in fa
t, we will not even attempt to formalize thede�nitions above. The interested reader is dire
ted towards any of a number of surveys whi
h haveappeared on this topi
.1 Fortunately, the problem to be studied in this paper 
an be formulated
leanly without referen
e to the above mentioned results and furthermore have an interesting im-pli
ation in a 
oding theoreti
 setting. We �rst des
ribe this setting and then pro
edd to formallyde�ne the problem of interest.Central to many of the 
onstru
tion of eÆ
ient PCPs has been the 
onstru
tion and analysis1 It isn't possible to provide an exhaustive list of the dozen or so surveys available but if you are on the web 
he
kout http://www-
se.u
sd.edu/users/mihir/p
p.html.



of error-
orre
ting 
odes and probabilisti
 \error-dete
tion" algorithms for these error-
orre
ting
odes. These algorithms fun
tion as follows: Given a word w whi
h is supposed to be a 
odewordof some error-
orre
ting 
ode, the algorithm probabilisti
ally 
hooses a small (sometimes 
onstant)number of bits of the word w to examine, 
omputes a (simple) boolean fun
tion of these bits andoutputs a verdi
t ACCEPT/REJECT. The guarantee obtainable from su
h algorithms is weakerthan the guarantee expe
ted from 
lassi
al error-dete
tion algorithms. In parti
ular, the guaranteesbehave as follows: Given a valid 
odeword, the algorithm must output ACCEPT with probability1. On the other hand if the input is far from any valid 
odeword (i.e., the distan
e is more thansome spe
i�ed 
onstant fra
tion of the minimum distan
e of the 
ode), then the algorithm mustoutput REJECT with some positive probability, bounded away from 0. Most of the 
odes usedin these 
onstru
tions are well-known ones, with Hadamard Codes and variants of Reed-Solomonbeing the most 
ommonly used ones. Mu
h of the te
hni
al development in this area is dire
tedtowards the 
onstru
tion and analysis of the probabilisti
 error-
orre
ting algorithms. This area ofstudy, 
olle
tively referred to as testing in the PCP literature is the origin of the problem 
onsideredin this paper.It is a feature of the area that while tests are easy to spe
ify, they are notoriously hard toanalyze, espe
ially to analyze well. Yet, good analyses are, for several reasons, worth strivingfor. There is, �rst, the inherent mathemati
al interest of getting the best possible analysis andunderstanding of a well-de�ned 
ombinatorial problem. But, there is a more pragmati
 reason:better analyses typi
ally translate into improved (in
reased) fa
tors shown non-approximable inhardness of approximation results.The spe
i�
 problem 
onsidered here is 
alled the linearity testing problem. We wish to look ata parti
ular test, 
alled the BLR test, with was the �rst ever proposed. Our fo
us is the 
ase of mostimportan
e in appli
ations, when the underlying fun
tion maps between groups of 
hara
teristi
two. Several analyses have appeared, yet none is tight. Ea
h improved analysis implies improvedfa
tors shown non-approximable in hardness of approximation results.Let us begin by des
ribing the linearity testing problem and past work more pre
isely.1.1 The ProblemThe linearity testing problem is a problem related to homomorphisms between groups. Let G;Hbe �nite groups. A fun
tion g : G! H is said to be linear if g(u) + g(v) = g(u+v) for all u; v 2 G.(That is, g is a group homomorphism.) We will use the notation u R G to represent a randomvariable u 
hosen uniformly at random from the (�nite) group G. Here are some basi
 de�nitions:Lin(G;H) | Set of all linear fun
tions of G to HDist(f; g) def= PruR G [ f(u) 6=g(u) ℄ | (relative) distan
e between f; g : G! HDist(f) def= minf Dist(f; g) : g 2 Lin(G;H) g | Distan
e of f to its 
losest linear fun
tion.The BLR Test. Blum, Luby and Rubinfeld [9℄ suggest a probabilisti
 method to \test" if afun
tion f is really a linear fun
tion. This test, hen
eforth referred to as the BLR test, is thefollowing [9℄| Given a fun
tion f : G ! H, pi
k u; v 2 G at random and reje
t if f(u) + f(v) 6=f(u+v). Let Err(f) def= Pru;v R G [ f(u) + f(v) 6=f(u+v) ℄denote the probability that the BLR test reje
ts f . The issue in linearity testing is to study howErr(f) behaves as a fun
tion of x = Dist(f). In parti
ular, one would like to derive good lower



bounds on Err(f) as a fun
tion of x.Rej(�). A 
onvenient way to 
apture the above issues is via the reje
tion probability fun
tionRejG;H : [0; 1℄ ! [0; 1℄ of the test. It asso
iates to any number x the minimum value of Err(f),taken over all fun
tions f of distan
e x from the spa
e of linear fun
tions. Thus,RejG;H(x) def= minf Err(f) : f : G! H s.t. Dist(f) = x g :The graph of RejG;H |namely RejG;H(x) plotted as a fun
tion of x| is 
alled the linearitytesting 
urve.2 This 
urve depends only on the groups G;H.By de�nition it follows that RejG;H(x) > 0 if x > 0. However it is not easy to see if any otherquantitative statements 
an be made about RejG;H(x) > 0 for larger values of x. The most generalproblem in linearity testing is to determine the fun
tion RejG;H(�) for given G;H. Mu
h of thework that has been done provides information about various aspe
ts of this fun
tion.The knee of the 
urve. At �rst glan
e, it may be tempting to believe that RejG;H(�) will bea monotone non-de
reasing fun
tion. One of the most surprising features of RejG;H is that thisis not ne
essarily true. It turns out (and we will see su
h an example presently) that there existgroups G;H su
h that RejG;H(14) � 38 , but RejG;H(23 ) = 29 . The threshold of x = 14 turns out tobe signi�
ant in this example and an important parameter that emerges in the study of linearitytesting is how low RejG;H(x) 
an be for x � 14 . In this paper we 
all this parameter, identi�edin [2, 6, 7, 8℄, the knee of the 
urve. Formally:KneeG;H def= minfRej(x) : x � 14 g :1.2 Error dete
tion in Hadamard 
odesIn this paper we look at the performan
e of the BLR test when the underlying groups are G =GF(2)n and H = GF(2) for some positive integer n. For notational simpli
ity we now drop thegroups G;H from the subs
ripts, writing Rej(x) and Knee| it is to be understood that we meanG = GF(2)n and H = GF(2).This spe
ial 
ase is of interest be
ause of the following reason: In this 
ase the family of fun
tionsLin(GF(2)n;GF(2)) a
tually de�nes a Hadamard 
ode of blo
k length 2n. Noti
e that every linearfun
tion l is spe
i�ed by a ve
tor � from GF(2)n su
h that l(x) = h�; xi (where h�; xi =Pni=1 �ixidenotes the inner produ
t of ve
tors �; x). Thus we 
an asso
iate with ea
h of the 2n linear fun
tionsl, a 
odeword whi
h is the 2n bit sequen
e (l(x) : x 2 GF(2)n). Any two distin
t 
odewords di�erin exa
tly 2n�1 positions, making this a (2n; 2n; 2n�1)-
ode. For further details see Ma
Williamsand Sloane [18, pages 48{49℄.For an arbitrary fun
tion f , the parameter Dist(f) simply measures its distan
e to the abovementioned Hadamard 
ode, normalized by 2n. Estimating Dist(f) is thus related to the 
lassi
altask of error-dete
tion. The parameter Err(f) on the other hand simply de�nes a quantity that 
anbe estimated to fairly good a

ura
y by a probabilisti
 algorithm, whi
h probes f in a few pla
es(or reads a few bits of the purported 
odeword). The algorithm repeats the following step severaltimes: It pi
ks random x; y 2 GF(2)n and tests to see if f(x) + f(y) = f(x+y). At the end itreports the average number of times this test fails. It 
an be veri�ed easily that this provides an2 A
tually the fun
tion RejG;H(x) is only de�ned for �nitely many values, namely the integral multiples of 1jGj ,and unde�ned for in�nitely many values. Thus the linearity testing 
urve is not really a 
urve in the real plane, butsimply des
ribes a fun
tion of �nitely many points.



estimate on Err(f), and the a

ura
y of this estimate improves with the number of iterations. Theadvantage of this algorithm is that it probes f in very few pla
es in order to 
ompute its output(in parti
ular the number of probes 
an be independent of n). The aim of Linearity Testing is toturn this estimate on Err(f) into an estimate on Dist(f). This would thus yield an algorithm whi
hprobes f in few pla
es and yet yields some reasonable estimates on Dist(f), and in parti
ular solvesthe earlier mentioned probabilisti
 error-dete
tion task. This is the ingredient whi
h makes thistest useful in the appli
ations to PCPs and motivates our study.1.3 Previous workThe �rst investigation of the shape of the linearity testing 
urve, by Blum, Luby and Rubinfeld [9℄,was in the general 
ontext where G;H are arbitrary �nite groups. Their analysis showed thatRejG;H(x) � 29 x [9℄. (They indi
ate that this is an improvement of their original analysis obtainedjointly with Coppersmith.) Interest in the tightness of the analysis begins with Bellare, Goldwasser,Lund and Russell [6℄ in the 
ontext of improving the performan
e of PCP systems. They showedthat RejG;H(x) � 3x� 6x2. It turns out that, with very little e�ort, the result of [9℄ 
an be usedto show that RejG;H(x) � 29 for x � 13 . This 
laim appears in Bellare and Sudan [8℄, withoutproof. A proof is in
luded in the appendix of this paper, for the sake of 
ompleteness. Of the threebounds above, the last two bounds super
ede the �rst, so that the following theorem 
aptures thestate of knowledge.Theorem 1.1 [6, 9, 10℄ Let G;H be arbitrary �nite groups. Then:(1) RejG;H(x) � 3x� 6x2.(2) KneeG;H � 29 .As indi
ated above, an improved lower bound for the knee would lead to better PCP systems. Butin this general setting, we 
an do no better. The following example of Coppersmith [10℄ shows thatthe above value is in fa
t tight in the 
ase of general groups. Let m be divisible by three. Let fbe a fun
tion from Znm to Zm su
h that f(u) = 3k, if u1 2 f3k � 1; 3k; 3k + 1g. Then, Dist(f) = 23 .Furthermore, f(u) + f(v) 6= f(u+v) only if u1 = v1 = 1 (mod 3), or u1 = v1 = �1 (mod 3), i.e.Err(f) = 29 .This leads into our resear
h. We note that the problem to whi
h linearity testing is applied inthe proof system 
onstru
tions of [2, 6, 7, 8℄ is that of testing Hadamard 
odes (in the �rst threeworks) and the long 
ode (in the last work). But this 
orresponds to the above problem in thespe
ial 
ase where G = GF(2)n and H = GF(2). (G is regarded as an additive group in the obviousway. Namely, the elements are viewed as n-bit strings or ve
tors over GF(2), and operations are
omponent-wise over GF(2).) For this 
ase, the example of Coppersmith does not apply, and we
an hope for better results.1.4 New results and te
hniquesAs pointed out earlier we fo
us on the 
ase where the domain and range are of 
hara
teristi
 twoand in parti
ular G = GF(2)n and H = GF(2). We provide two new analyses of Rej(x) in this
ase.Fourier analysis. We establish a new 
onne
tion between linearity testing and Fourier analy-sis. We provide an interpretation of Dist(f) and Err(f) in terms of the Fourier 
oeÆ
ients of anappropriate transformation of f . We use this to 
ast the linearity testing problem in the language



of Fourier series. This enables us to use Fourier analysis to study the BLR test. The out
ome isthe following:Theorem 1.2 For every real number x � 12 , Rej(x) � x.Apart from lending a new perspe
tive to the linearity testing problem, the result exhibits a featurewhi
h distinguishes it from all previous results. Namely, it shows that Rej(x) ! 12 as x ! 12 .3(A

ording to the previous analysis, namely Theorem 1.1, Rej(x) may have been bounded aboveby 29 for all x � �, where � is the larger root of the equation 3z � 6z2 = 29 .) Furthermore we 
anshow that the analysis is tight (to within o(1) fa
tors) at x = 12 � o(1).This result 
an also be 
ombined with Part (1) of Theorem 1.1 to show thatKnee � 13 . Howeverthis is not tight. So we fo
us next on �nding the right value of the knee.Combinatorial analysis. The analysis to �nd the knee is based on 
ombinatorial te
hniques.It leads us to an isoperimetri
 problem about a 3-regular hypergraph on the verti
es of the n-dimensional hyper
ube. We state and prove a Summation Lemma whi
h provides a tight isoperi-metri
 inequality for this problem. We then use it to provide the following exa
t value of the kneeof Rej(x).Theorem 1.3 Knee = 45128 .Tightness of the analysis. We provide examples to indi
ate that, besides the knee value, thelower bounds on Rej(x) as indi
ated by our and previous results are tight for a number of points.In parti
ular, the 
urve is tight for x � 516 , and the bound at x = 12 � o(1) is mat
hed up to withino(1) fa
tors (i.e., there exist fun
tions fn : GF(2)n ! GF(2) su
h that as n goes to 1, Err(fn) andDist(fn) go to 12).Other results. The isoperimetri
 inequality underlying Theorem 1.3 turns out to reveal otherfa
ts about Rej(x) as well. In parti
ular it helps establish a tight upper bound on Err(f) as afun
tion of Dist(f). This result is presented in Se
tion 3.Also, while the main fo
us of this paper has been the BLR test, we also present in Se
tion 5a more general result about testing for total degree one in 
hara
teristi
 two. The purpose is tofurther illustrate the strength and elegan
e of the Fourier analysis te
hnique, as well as its moregeneral appli
ability to the problem of analyzing program testers.Graph. Figure 1 summarizes the results of this work. The points f (Dist(f);Err(f)) : f g lie inthe white region of the �rst graph. The dark shaded region represents the forbidden area beforeour work, and the light shaded region represents what we add to the forbidden area. Note we bothextend the lower bound and provide upper bounds. The dots are a
tual 
omputer 
onstru
tedexamples; they indi
ate that perhaps the lower bound may be improved, but not by mu
h.4 Inparti
ular, the knee value is tight. Furthermore the upper bound is tight.The se
ond graph indi
ates lower bounds on Rej(x). The line 29 x represents the result of [9℄.The parabola is the 
urve 3x� 6x2 representing the result of [6℄. The 
urve 23 x when x � 13 and 29when x > 13 represents the result of [8℄. Our additions are the 45 degree line of x and the horizontalline at 45128 for the new knee value.3 Note that Dist(f) � 12 for all f : G ! H be
ause we are working over GF(2), so only the portion x 2 [0; 12 ℄ ofthe 
urve is interesting.4 More pre
isely, we have a randomized pro
edure that with high probability 
an 
onstru
t, for ea
h plotted point,a fun
tion f su
h that (Dist(f); Err(f)) is arbitrarily 
lose to the point in question.
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Figure 1: The points (Dist(f);Err(f)) in the plane, and the su

essive lower bounds. See text fordis
ussion.1.5 Appli
ation to MaxSNP hardnessAs mentioned earlier, the 
onstru
tion of PCP systems have led to new results showing the non-approximability of many 
ombinatorial optimization problems. This surprising 
onne
tion, initiatedby Feige, Goldwasser, Lov�asz, Safra and Szegedy [11℄, showed how to turn the results on 
onstru
-tions of eÆ
ient PCP systems into results whi
h showed that for 
ertain 
ombinatorial optimizationproblems �nding an � approximate solution is also an NP-hard task. A subsequent result, due toArora, Lund, Motwani, Sudan and Szegedy [2℄ managed to use a similar idea to show that ananalogous result holds for a large 
olle
tion of problems 
alled MaxSNP hard problems. The resultsays that for every MaxSNP hard problem, there is a 
onstant � > 0, su
h that the task of �ndingsolutions whi
h approximate the optimum to within a relative error of � for this problem, is alsoNP-hard. Subsequently, initiated by the work of Bellare, Goldwasser, Lund and Russell [6℄, a seriesof works have improved the above results by 
onstru
ting more eÆ
ient PCP systems and therebyshowing stronger hardness of approximation results for MaxSNP hard problems.Usage of the linearity test in the 
onstru
tion of eÆ
ient PCPs, and then
e in the derivation ofhardness of approximability results for MaxSNP problems, begins in [2℄ and 
ontinues in [6, 8, 7℄.In the �rst three 
ases, it is used to test the Hadamard 
ode; in the last 
ase, to test a di�erent
ode 
alled the long 
ode. In all 
ases the underlying problem is the one we have 
onsidered above,namely linearity testing with G = GF(2)n and H = GF(2).The MaxSNP hardness result of [6℄ used only two things: The lower bound Rej(x) � 3x� 6x2of Theorem 1.1, and the best available lower bound k on the knee. They were able to express thenon-approximability fa
tor for Max-3SAT as an in
reasing fun
tion g1(k) depending solely on k.The lower bound on the knee that they used was Knee � 16 derived from Part (1) of Theorem 1.1and [9℄. Their �nal result was that approximating Max-3SAT within 113112 � 1:009 is NP-hard.Improved proof systems were built by [8℄. Again, their non-approximability fa
tor had the form



g2(k) for some fun
tion g2 depending only on the best available lower bound k on the knee. TheyusedKnee � 29 to show that approximating Max-3SAT within 7473 � 1:014 is NP-hard. Theorem 1.3would yield dire
t improvements to the results of [6, 8℄ with no 
hange in the underlying proofsystems or 
onstru
tion. However, better proof systems are now known, namely the long 
ode basedones of [7℄. The analysis in the latter uses both our results (namely Theorem 1.3 and Theorem 1.2).They show that approximating Max-3SAT within 1:038 is NP-hard. They also exploit our analysesto derive strong non-approximability results for other MaxSNP problems (like Max-2SAT andMax-Cut) and for Vertex Cover.Thus, the appli
ations of [6, 8℄ motivated our 
onsideration of the linearity testing problem. Inthe pro
ess we proved more than these works needed. But, interestingly, later [7℄ found our resultsuseful in the same 
ontext.1.6 Relationship to other workAs mentioned earlier, there are a variety of problems whi
h are studied under the label of testing.In parti
ular, a variety of tasks address the issue of testing variants of Reed-Solomon 
odes. Thesetests, referred to in the literature as low-degree tests are used in a variety of ways in proof systems.We brie
y explain, �rst, what are the other problems and results in low degree testing and whythey di�er from ours; se
ond how the usage of these in proof systems is di�erent from the usage oflinearity tests.Low degree testing. We are given a fun
tion f : F n ! F , where F is a �eld, and we aregiven a positive integer d. In the low individual degree testing problem we are asked to determinewhether f is 
lose to some polynomial p of degree d in ea
h of its n variables. When spe
ialized tothe 
ase of d = 1, this task is referred to as multi-linearity testing. In the low total degree testingproblem we are asked to determine whether f is 
lose to some polynomial p of total degree d in itsn variables.5 Multi-linearity tests were studied by [4, 11℄. Low individual degree tests were studiedby [3, 5, 12, 19℄. Total degree tests were studied by [2, 13, 14, 20℄.What we are looking at, namely linearity testing over GF(2), is a variant of the total degreetesting problem in whi
h the degree is d = 1, F is set to GF(2), and the 
onstant term of thepolynomial p is for
ed to 0. Even though a signi�
ant amount of work has been put into theanalysis of the low degree tests by the above mentioned works, the analysis does not appear to betight for any 
ase. In parti
ular one 
annot use those results to derive the results we obtain here.In fa
t the tightness of the result obtained here raises the hope that similar te
hniques 
an be usedto improve the analysis in the above testers.The role of testing in PCP systems. An important tool in the 
onstru
tion of proof systemsis a tool referred to as re
ursion [3℄. Roughly, the tool provides an analog of the pro
ess of
onstru
tion of 
on
atenated error-
orre
ting 
odes, to the realm of PCPs. A PCP proof system
onstru
ted by re
ursion 
onsists of several levels of di�erent atomi
 PCPs. The PCP at ea
h levelof re
ursion typi
ally uses some form of low-degree testing, the kind di�ering from level to level.The use of multi-linearity testing was initiated by Babai, Fortnow and Lund [4℄. For eÆ
ien
yreasons, resear
hers beginning with Babai, Fortnow, Levin and Szegedy [5℄ then turned to lowindividual degree testing. This testing is used in the \higher" levels of the re
ursion. Linearitytesting showed up for the �rst time in the lowest level of the re
ursion, in the 
he
king of the5 To illustrate the di�eren
e between individual and total degree, note that f(x1; : : : ; xn) = x1x2 is multi-linearbut not linear.



Hadamard 
ode in [2℄. The proof systems of [7℄ use all these di�erent testers, but, as we explained,the �nal non-approximability fa
tors obtained 
an be expressed only in terms of the shape of thelinearity testing 
urve.Re
ent work. Kiwi [16℄ provides improved analysis for the linearity testing problem over all�nite �elds. He obtains this result by providing another new interpretation of the linearity testingproblem, this time by relating it to a weight enumeration problem of a linear 
ode studied as afun
tion of the minimum distan
e of its dual 
ode.H�astad [15℄ has shown a tester for a di�erent 
ode, namely the \long 
ode" of [7℄, and ananalysis for the test is again based on a Fourier Transform based approa
h. The analysis on
eagain provides signi�
ant improvements to non-approximability results for the 
lique problem.1.7 Dis
ussionThe main argument behind the analysis of the BLR test given in [9℄ is the following: given f takingvalues from one �nite group G into another �nite group, start by de�ning a fun
tion gf whosevalue at u is Pluralityf f(u+v)� f(v) : v 2 G g.6 Then, show that if Err(f) is suÆ
iently small,three things happen. First, an overwhelming majority of the values ff(u+v)�f(v) : v 2 Gg agreewith gf (u), se
ond, gf is linear, and last, gf is 
lose to f . This argument is 
alled the pluralityargument. The assumption that the reje
tion probability of the test is small seems to be an essential
omponent of this argument.The arguments used in most of the previous works on low-degree testing are based on theplurality argument. So far, these type of arguments have been unable to show a non-trivial relationbetween the probability that a given fun
tion fails a test, and its distan
e from a family of low-degree polynomials, when the probability that the test fails is high (i.e., larger than 12). Our dis
reteFourier analysis approa
h does not exhibit the properties dis
ussed above, and this may be one ofthe reasons for its su

ess.Our approa
h was somewhat inspired by the 
oding theoreti
 statement of the linearity testingproblem; however the �nal analysis does not bring this out 
learly. Kiwi's [16℄ approa
h brings the
onne
tion out mu
h more expli
itly and suggests that further exploration of the relationship to
oding theory may prove fruitful.2 Fourier Analysis of the Linearity TestIn this se
tion we prove Theorem 1.2 and dis
uss how tight it is.Conventions. In the rest of this work, unless expli
itly said otherwise, F denotes GF(2). Further-more, whenever we write Lin it is to be understood that we are referring to Lin(F n; F ). Throughoutthis se
tion, if an element b of F appears as an exponent, e.g. (�1)b, it is to be understood as areal number. Thus (�1)b takes the value 1 or �1 depending on whether b is 0 or 1 respe
tively.The main result of this se
tion is based on an appli
ation of dis
rete Fourier analysis te
hniquesto the study of the BLR test. More pre
isely, we view a fun
tion f : F n ! F as a real valuedfun
tion, and de�ne a fun
tion h whi
h is a simple transformation of f . We prove that if thedistan
e from f to its nearest linear fun
tion is large, then the Fourier 
oeÆ
ients of h 
annot be6 The plurality of a multiset is the most 
ommonly o

urring element in the multiset (ties are broken arbitrarily).



very large. Furthermore, we show that the smaller the Fourier 
oeÆ
ients of h are, the higher theprobability that f will fail the BLR test.In the rest of this se
tion, we �rst review the basi
 tools of dis
rete Fourier analysis that weuse, and then give a pre
ise formulation of the argument dis
ussed above.Dis
rete Fourier Transform. We 
onsider the family of all real-valued fun
tions on F n as a2n-dimensional real ve
tor spa
e. For fun
tions �; �: F n ! R, let h�; �i = 1jF jn �Pu2Fn �(u)�(u)denote the inner produ
t of the fun
tions � and �. The family of fun
tions f  � : � 2 F n g,where  �(u) = (�1)��u, � � u = Pni=1 �iui, form an orthonormal basis for this linear spa
e (i.e.,h �;  �i = 1 and h �;  �i = 0 if � 6= �). Thus every fun
tion � 
an be uniquely expressed as linear
ombination of the  �'s, namely, � = P�2Fn b�� �. The 
oeÆ
ient b�� is referred to as the �-thFourier 
oeÆ
ient of �. By the orthonormality of the basis f  � : � 2 F n g it follows that:b�� = h�;  �i: (1)Also the orthonormality of the basis yields the following identity known as Parseval's equality:h�; �i = X�2Fn(b��)2: (2)The 
onvolution of two fun
tions � and �, denoted � � �, is a fun
tion mapping F n to the realsand de�ned as follows: (� � �)(x) = 1jF jn �Pu+v=x �(u)�(v). Note that the 
onvolution operator isasso
iative. Lastly we need the following identity, 
alled the 
onvolution identity, whi
h shows therelationship between the Fourier 
oeÆ
ients of two fun
tions � and � and the Fourier 
oeÆ
ientsof their 
onvolution: 8� 2 F n; d(� � �)� = b��b��: (3)Lower Bound. To lower bound Err(f) we use dis
rete Fourier analysis te
hniques. We start byestablishing a relation between the Fourier 
oeÆ
ients of a transformation of the fun
tion f , andDist(f), i.e., the distan
e from f to the linear fun
tion 
losest to f . The transformation is given bythe fun
tion h: F n ! R, de�ned as h(u) = 1 if f(u) = 0 and h(u) = �1 otherwise. Over GF(2), h
an be expressed as h(�) = (�1)f(�) and this is a 
ru
ial element of the following two lemmas. The�rst lemma shows that if Dist(f) is large, the Fourier 
oeÆ
ients of h are small.Lemma 2.1 Suppose f : F n ! F and � 2 F n. Let h(u) = 1 if f(u) = 0 and �1 otherwise. Thenbh� � 1� 2Dist(f).Proof: Let l�(u) = � � u =Pni=1 �iui. Clearly, l� 2 Lin and  � = (�1)l� .bh� = h(�1)f ;  �i (Using (1))= h(�1)f ; (�1)l�i= 1jF jn �Pu2Fn (�1)f(u)+l�(u)= Pru [ f(u)=l�(u) ℄� Pru [ f(u)6=l�(u) ℄= 1� 2Dist(f; l�)� 1� 2Dist(f) :



Our next lemma 
onne
ts the other parameter, Err(f), to the value of a 
onvolution of h. Thislemma uses the identity h(�) = (�1)f(�) and hen
e the fa
t that we are working over GF(2). (Inwhat follows, we use a bold-fa
ed 0, to denote the ve
tor of all 0's to enable distinguishing it fromthe s
alar 0.)Lemma 2.2 Suppose f : F n ! F and � 2 F n. Let h(u) = 1 if f(u) = 0 and �1 otherwise. ThenErr(f) = 12 (1� (h � h � h)(0)) :Proof: Noti
e that over GF(2), f(u) + f(v) + f(u+v) is always 0 or 1. Furthermore, the BLRtest a

epts on random 
hoi
e u; v if f(u) + f(v) + f(u+v) = 0. Alternatively, we 
an 
onsiderthe expression h(u)h(v)h(u+v) = (�1)f(u)+f(v)+f(u+v) and observe that the test a

epts if thisexpression is 1 and reje
ts if this expression is �1. Thus the expression 12 (1 � h(u)h(v)h(u+v)) isan indi
ator for the reje
tion event in the BLR test, i.e., 12 (1 � h(u)h(v)h(u+v)) is 1 if the BLRtest reje
ts and 0 otherwise. Thus we haveErr(f) = 1jF j2n Xu;v2Fn 12 (1� h(u)h(v)h(u+v)) = 12 0�1� 1jF j2n Xu;v2Fn h(u)h(v)h(u+v)1A :From the de�nition of 
onvolution it follows that (h � h � h)(0) = 1jF j2n Pu;v2Fn h(u)h(v)h(u+v).Thus we derive Err(f) = 12 (1� (h � h � h)(0)) :The proof of Theorem 1.2 now follows easily using Properties (1), (2), and (3).Proof of Theorem 1.2: From Lemma 2.2 it suÆ
es to analyze (h � h � h)(0).(h � h � h)(0) = P�2Fn d(h � h � h)� �(0) (Using  �'s as a basis)= P�2Fn d(h � h � h)� (Sin
e  �(0) = 1, for every �.)= P�2Fn(bh�)3 (Using (3))� �max�2Fn bh���P�2Fn(bh�)2�= �max�2Fn bh�� (Using (2) and hh; hi = 1.)� 1� 2Dist(f) (Using Lemma 2.1):Now using Lemma 2.2, we haveErr(f) = 12 (1� (h � h � h)(0)) � 12 (1� (1� 2Dist(f))) = Dist(f):The next lemma 
omplements Theorem 1.2. This lemma is a slightly more re�ned version of thebound Rej(x) � 3x� 6x2 derived in [6℄. To state it we �rst de�ne the sla
k between fun
tions fand l by sl(f; l) def= Pru;v R Fn [ f(u)6=l(u); f(v) 6=l(v); f(u+v)6=l(u+v) ℄ :



Lemma 2.3 For all f : F n ! F and all l 2 Lin,Err(f) = 3Dist(f; l)� 6Dist(f; l)2 + 4 sl(f; l) :Proof: Sin
e f takes values in F = GF(2), f(u) + f(v)6=f(u+v) if and only if f di�ers from l inexa
tly one of the points fu; v; u+vg or in all of the points fu; v; u+vg. Thus Err(f) =3Pru;v [ f(u)6=l(u); f(v)=l(v); f(u+v)=l(u+v) ℄ + Pru;v [ f(u) 6=l(u); f(v)6=l(v); f(u+v)6=l(u+v) ℄ :Furthermore, observe thatPru;v [ f(u) 6=l(u); f(v)=l(v); f(u+v)=l(u+v) ℄= Pru;v [ f(u) 6=l(u); f(v)=l(v) ℄� Pru;v [ f(u) 6=l(u); f(v)=l(v); f(u+v) 6=l(u+v) ℄= Pru;v [ f(u) 6=l(u); f(v)=l(v) ℄� Pru;v [ f(u) 6=l(u); f(u+v) 6=l(u+v) ℄+ Pru;v [ f(u)6=l(u); f(v) 6=l(v); f(u+v)6=l(u+v) ℄ :Hen
e, Err(f) = 3Pru;v [ f(u) 6=l(u); f(v)=l(v) ℄ � 3Pru;v [ f(u) 6=l(u); f(u+v) 6=l(u+v) ℄+ 4Pru;v [ f(u) 6=l(u); f(v)6=l(v); f(u+v) 6=l(u+v) ℄ :By de�nition, the last term on the RHS above is 4 sl(f; l). Moreover, the eventsf (u; v) : f(u)=l(u) g, f (u; v) : f(v)=l(v) g, f (u; v) : f(u+v)=l(u+v) g are pairwise independent.Hen
e, Pru;v [ f(u) 6=l(u); f(u+v)6=l(u+v) ℄ = (1 � Dist(f; l))2 and Pru;v [ f(u) 6=l(u); f(v)=l(v) ℄ =Dist(f; l) (1�Dist(f; l)). Performing a simple algebrai
 manipulation, suÆ
es to 
on
lude the proofof the lemma.Tightness Dis
ussion. We now dis
uss how tight the results of this se
tion are. Throughout therest of this dis
ussion let x 2 [0; 1℄ be su
h that x jF jn is an integer.Case 1: x > 12 .Then there is no fun
tion f : F n ! F su
h that Dist(f) = x (sin
e the expe
ted distan
e from arandomly 
hosen linear fun
tion to f is at most 12 (1 + 1jF jn )).Case 2: x = 12 .Randomly 
hoose f so f(u) = Xu, where Xu is a random variable distributed a

ording to aBernoulli distribution with parameter p 2 [12 ; 1℄.7 A Cherno� bound (see [1, Appendix A℄) showsthat with overwhelming probability 0 � x � Dist(f) = o(1). Moreover, Chebys
hev's inequality(see [1, Ch. 4℄) implies that with high probability jErr(f) � �3 p(1� p)2 + p3� j = o(1). Thus, ifp = 12 , Theorem 1.2 is almost tight in the sense that Rej(x) is almost x.Case 3: x � 516 .We will show that in this 
ase the bound Rej(x) � 3x � 6x2 is tight. Indeed, for u in F n letbu
k def= u1 � � � uk. If S = f u 2 F n : bu
4 2 f1000; 0100; 0010; 0001; 1111g g, then for any fun
tion fwhi
h equals 1 in x jF jn elements of S, and 0 otherwise, it holds that Dist(f) = Dist(f; 0) = x andsl(f; 0) = 0. Hen
e, Lemma 2.3 implies that Err(f) = 3x� 6x2.Figure 1, gives eviden
e showing that Theorem 1.2 is 
lose to being optimal for x in the interval[ 516 ; 12 ℄. But, as the next two se
tions show, there is room for improvements.7 A Bernoulli distribution with parameter p 
orresponds to the distribution of a f0; 1g-random variable withexpe
tation p.



3 The Summation LemmaThis se
tion is devoted to proving a 
ombinatorial result of independent interest, but ne
essaryin the tighter analysis of the linearity test that we give in Se
tion 4. We also apply this result toobtain a tight upper bound on the probability that the BLR test fails.First, re
all that the lexi
ographi
 order in F n is the total order relation � su
h that u � v ifand only if Pi ui2�i �Pi vi2�i (arithmeti
 over the reals).Loosely stated, we show that given three subsets A;B;C of F n, the number of triplets (u; v; w)in A�B � C su
h that u+v+w = 0, is maximized when A;B;C are the lexi
ographi
ally smallestjAj; jBj; jCj elements of F n respe
tively.The following lemma, independently proved by D. J. Kleitman [17℄, gives a pre
ise statementof the above dis
ussed fa
t.For 
onvenien
e we introdu
e the following notation: for every nonnegative integer n andA;B;C � F n let �n(A;B;C) = f (u; v; w) 2 A�B�C : u+v+w = 0 g ;and let 'n(A;B;C) = 1jF j2n jf (u; v; w) 2 A�B�C : u+v+w = 0 gj :Also, for S � F n we let S� denote the 
olle
tion of the lexi
ographi
ally smallest jSj elements ofF n.Lemma 3.1 (Summation Lemma) For every A;B;C � F n,'n(A;B;C) � 'n(A�; B�; C�) :Proof: We pro
eed by indu
tion. The 
ase n = 1 
an be easily veri�ed. For the indu
tive step,we �rst de�ne, for every i 2 f1; : : : ; ng, a transformation that sends S � F n to S(i) � F n. Thistransformation 
onsists in lexi
ographi
ally ordering the elements of S whose i-th 
omponent is0 and 1 respe
tively. The transformation does not 
hange the number of elements of S with i-th
omponent 0 and 1 respe
tively. Consider i 2 f1; : : : ; ng and b 2 F . Let fi;b be the fun
tion thatembeds F n�1 onto fu 2 F n : ui = bg in the natural way, i.e. for u = (uj)j 6=i 2 F n�1, (fi;b(u))j = ujif j 6= i, and b otherwise. For S � F n, let S(i)b be the natural proje
tion into F n�1 of the elementsof S whose i-th 
oordinate is b, i.e. S(i)b = f (uj)j 6=i 2 F n�1 : fi;b(u) 2 S g. Furthermore, letS(i) = fi;0 �(S(i)0 )��[ fi;1 �(S(i)1 )�� :Observe that jSj = jS(i)0 j + jS(i)1 j. Moreover, lexi
ographi
ally ordering a set does not 
hange its
ardinality, thus j(S(i)0 )�j = jS(i)0 j and j(S(i)1 )�j = jS(i)1 j. Sin
e fi;0 and fi;1 are inje
tive and theirranges are disjoint it follows that jS(i)j = jSj .88 The following example might help in 
larifying the notation so far introdu
ed: if n = 3 and S =f010; 011; 100; 101; 111g, then S(2)0 = f10; 11g, S(2)1 = f00; 01; 11g, (S(2)0 )� = f00; 01g, (S(2)1 )� = f00; 01; 10g, andS(2) = f000; 001; 010; 011; 110g.



Note that addition (in F n) of two lexi
ographi
ally small elements of F n yields a lexi
ographi
allysmall element of F n. Thus, it is reasonable to expe
t that for every A;B;C � F n and i 2 f1; : : : ; ng,'n(A;B;C) � 'n(A(i); B(i); C(i)). We will now prove this latter inequality. Indeed, note that'n(A;B;C) = 'n�1(A(i)0 ; B(i)0 ; C(i)0 ) + 'n�1(A(i)1 ; B(i)1 ; C(i)0 )+ 'n�1(A(i)1 ; B(i)0 ; C(i)1 ) + 'n�1(A(i)0 ; B(i)1 ; C(i)1 ) :Applying the indu
tive hypothesis to ea
h term on the RHS above shows that'n(A;B;C) � 'n�1((A(i)0 )�; (B(i)0 )�; (C(i)0 )�) + 'n�1((A(i)1 )�; (B(i)1 )�; (C(i)0 )�)+ 'n�1((A(i)1 )�; (B(i)0 )�; (C(i)1 )�) + 'n�1((A(i)0 )�; (B(i)1 )�; (C(i)1 )�) :In the previous inequality, the RHS is 'n(A(i); B(i); C(i)). Hen
e, 'n(A;B;C) � 'n(A(i); B(i); C(i))as 
laimed. We will now show that we 
an assume that for all i 2 f1; : : : ; ng, A(i) = A, B(i) = B, andC(i) = C. Indeed, if this was not the 
ase, we 
an repeat the above argument by 
onsidering A(i),B(i), C(i) instead of A, B, C. To prove that this iterative pro
ess is guaranteed to eventually stoplet u 2 F n also represent the integer with binary expansion u . Note that if A(i) 6= A, or B(i) 6= B,or C(i) 6= C, then Pu2S u >Pu2S(i) u for some S 2 fA;B;Cg. Hen
e the aforementioned iterativepro
ess stops in at most PS2fA;B;CgPu2S u steps.One would like to 
on
lude the proof of the lemma by 
laiming that, if for all i, A(i) = A, B(i) = B,and C(i) = C, then A;B;C are equal to A�; B�; C� respe
tively. We will show that the latter 
laimis `almost' true, in the sense that if e denotes (1; 0; : : : ; 0) 2 F n, e0 denotes (0; 1; : : : ; 1) 2 F n, andV = f (u1; : : : ; un) 2 F n : u1 = 0 g then the following holds:If for every i 2 f1; : : : ; ng; S = S(i); then S = S� or S = (V n feg) [ fe0g :We prove the above fa
t by 
ontradi
tion. Assume that S 6= S� and S 6= (V n feg) [ fe0g. Sin
eS = S(1), then either (1; 0; : : : ; 0; 1) 2 F n is in S or (0; 1; : : : ; 1; 0) 2 F n is not in S. Supposethat (1; 0; : : : ; 0; 1) 2 F n is in S. Sin
e S = S(1) and S 6= S�, we know that e 62 S. Thus,(1; 0; : : : ; 0) 2 F n�1 is in S(n)1 and (0; 1; : : : ; 1) 2 F n�1 is not in S(n)1 . Hen
e, (S(n)1 )� 6= S(n)1 .It follows that S 6= S(n), a 
ontradi
tion. Suppose now that (0; 1; : : : ; 1; 0) 2 F n is not in S.Sin
e S = S(1) and S 6= S�, we know that e0 2 S. Thus, (1; 0; : : : ; 0) 2 F n�1 is in S(n)0 and(0; 1; : : : ; 1) 2 F n�1 is not in S(n)0 . Hen
e, (S(n)0 )� 6= S(n)0 . It follows that S 6= S(n), again a
ontradi
tion.9Thus far we have shown that in order to upper bound 'n(A;B;C) we 
an restri
t our attention tothe sets A;B;C that are either in lexi
ographi
ally smallest order or take the form (V nfeg)[fe0g.To 
on
lude the lemma we need to 
onsider three 
ases. These 
ases depend on how many of thesets A;B;C are in lexi
ographi
ally smallest order.Case 1: exa
tly two of the sets A;B;C are in lexi
ographi
ally smallest order.Without loss of generality assume A = A�, B = B�, and C = (V n feg) [ fe0g. Then'n(A;B;C) = 'n(A;B; V ) + 'n(A;B; fe0g)� 'n(A;B; feg) :Note that 'n(A;B; feg) = maxf0; jA \ V j+ jB \ V j � jV jg+maxf0; jA n V j+ jB n V j � jV jg and'n(A;B; fe0g) = minfjAnV j; jB\V jg+minfjA\V j; jBnV jg. Hen
e, 'n(A;B; feg) � 'n(A;B; fe0g).9 Observe that we only required that S(1) = S(n) = S.



Thus, 'n(A;B;C) � 'n(A;B; V ). To 
on
lude, observe that C� = V and re
all that A = A� andB = B�.Case 2: exa
tly one of the sets A;B;C is in lexi
ographi
ally smallest order.Without loss of generality, we assume that A = A� and B = C = (V n feg) [ fe0g. If A = F nor A = ;, then it is obvious that 'n(A;B;C) = 'n(A�; B�; C�) and we are done. Thus, we alsoassume that A 6= F n and A 6= ;. Then,'n(A;B;C) = 'n(A; V; V )� 'n(A; V; feg) � 'n(A; feg; V )+ 'n(A; V; fe0g) + 'n(A; fe0g; V ) + 'n(A; feg; feg)� 'n(A; feg; fe0g)� 'n(A; fe0g; feg) + 'n(A; fe0g; fe0g) :Note that 'n(A; V; feg) = 'n(A; feg; V ) = jA\V j, 'n(A; V; fe0g) = 'n(A; fe0g; V ) = jAnV j. Sin
eA = A� and A 6= F n, then 'n(A; fe0g; feg) = 'n(A; fe0g; feg) = 0. Sin
e A = A� and A 6= ;, then'n(A; fe0g; fe0g) = 'n(A; feg; feg) = 1. Thus, 'n(A;B;C) = 'n(A; V; V )�2 jA\V j+2 jAnV j+2.Sin
e A = A� and A 6= F n, then jA n V j < jV j, and if jA n V j 6= 0, then jA \ V j = jV j. Sin
eA = A� and A 6= ;, then jA\ V j > 0, and if jA n V j = 0, then jA\ V j = jAj. Hen
e, 'n(A;B;C) �'n(A; V; V ). To 
on
lude, observe that B� = C� = V and re
all that A = A�.Case 3: none of the sets A;B;C is in lexi
ographi
ally smallest order.In this 
ase A = B = C = (V n feg) [ fe0g. Thus,'n(A;B;C) = 'n(V; V; V )�maxf0; jA \ V j+ jB \ V j � jV jg�maxf0; jA \ V j+ jC \ V j � jV jg �maxf0; jB \ V j+ jC \ V j � jV jg :Hen
e, 'n(A;B;C) � 'n(V; V; V ). To 
on
lude, observe that A� = B� = C� = V .By de�nition, a subspa
e V of F n is su
h that if u; v 2 V , then u+v 2 V . This motivates using1jSj2 j�n(S; S; S)j ;as a measure of how 
lose the set S � F n is to being a subspa
e. The larger this quantity is, the
loser the set S is o� being a subspa
e. From this point of view, the Summation Lemma implies thatthe 
olle
tion of the lexi
ographi
ally smallest m elements of F n is the subset of F n (of 
ardinalitym) that more 
losely resembles a subspa
e.Lemma 3.2 Suppose f : F n ! F . Let x = Dist(f). Let k be the unique integer su
h that2�k � x < 2�k+1, and let Æ = 2�k. ThenErr(f) � 3x� 6x2 + 4 Æ2 + 12 (x� Æ)2 :Proof: Let l be the 
losest linear fun
tion to f , and let S = f u : f(u) 6= l(u) g. Note thatsl(f; l) = 'n(S; S; S), thus by Lemma 2.3 we have thatErr(f) = 3 Æ � 6 Æ2 + 4'n(S; S; S) :By the Summation Lemma, 'n(S; S; S) � 'n(S�; S�; S�). The lemma will follow on
e we show that'n(S�; S�; S�) = Æ2 + 3 (x � Æ)2. Indeed, let V be the lexi
ographi
ally smallest Æ jF jn elements



of F n. Note that V is a subspa
e, V � S�, and jS�j = jSj = x jF jn. Sin
e 'n(S� n V; V; V ),'n(V; S� n V; V ), 'n(V; V; S� n V ), and 'n(S� n V; S� n V; S� n V ) are all equal to 0 we get that'n(S�; S�; S�) = 'n(S� n V; S� n V; V ) + 'n(S� n V; V; S� n V )+ 'n(V; S� n V; S� n V ) + 'n(V; V; V ) :Note that 'n(V; V; V ) = Æ2. Moreover, 'n(S� n V; S� n V; V ), 'n(S� n V; V; S� n V ), and 'n(V; S� nV; S� n V ) are all equal to (x� Æ)2. Thus, 'n(S�; S�; S�) = Æ2 + 3 (x� Æ)2 as we 
laimed.We will now prove that the bound of Lemma 3.2 
annot be improved. Indeed, let x 2 [0; 12 ℄ be su
hthat x jF jn is an integer. Let S be the lexi
ographi
ally smallest x jF jn elements of F n. Considerthe fun
tion f : F n ! F whi
h evaluates to 1 on every element of S and to 0 otherwise, i.e. fis the 
hara
teristi
 fun
tion of S. We will prove that the 
losest linear fun
tion to f is the zerofun
tion, hen
e Dist(f) = x. But, �rst note that sin
e S = S�, then 'n(S; S; S) = 'n(S�; S�; S�).Hen
e, from the proof of Lemma 3.2, it follows that Err(f) meets the upper bound of the statementof Lemma 3.2. To prove that the 
losest linear fun
tion to f is the zero fun
tion we argue by
ontradi
tion. We 
onsider the following two 
ases:Case 1: x 2 [0; 14 ℄.Here, the zero fun
tion is at distan
e x from f . If some other linear fun
tion was at distan
e lessthan x from f , then su
h linear fun
tion would be at distan
e less than 2x � 12 from the zerofun
tion. A 
ontradi
tion, sin
e two distin
t linear fun
tions are at distan
e 12 .Case 2: x 2 (14 ; 12 ℄.Let V be the largest subspa
e of F n 
ontained in S, and let V 0 be the smallest subspa
e of F n that
ontains S. Re
all that the 
ardinality of a subspa
e of F n is a power of two. Thus, sin
e S is theset of the lexi
ographi
ally smallest xjF jn elements of F n, then jV j = 14 jF jn and jV 0j = 12 jF jn. Forthe sake of 
ontradi
tion, assume l: F n ! F is a nonzero linear fun
tion whose distan
e to f isless than x. Note that a linear fun
tion whi
h is nonzero over a subspa
e of F n must evaluate to1 in exa
tly half the elements of that subspa
e. In parti
ular, l evaluates to 1 on half the elementsof F n.Case 2:1: l evaluates to 0 over V .Re
all that f evaluates to 0 outside of S and to 1 over S. Moreover, l evaluates to 1 in exa
tly halfthe elements of F n. Thus, l disagrees with f in every element of V and in at least 12 jF jn � jS n V jof the elements not in V . Hen
e, the distan
e between f and l is at least 14 + (12 � (x� 14 )) � x, a
ontradi
tion.Case 2:2: l does not evaluate to 0 over V .Then, l evaluates to 1 in exa
tly half the elements of V and half the elements of V 0. Thus, ldisagrees with f in half the elements of V and in at least jS n V j � 12(jV 0j � jV j) of the elementsof S n V . Moreover, l evaluates to 1 on half the elements of F n and on half the elements ofV 0. Hen
e, sin
e f evaluates to 0 on the elements of F n n V 0, it follows that l disagrees withf in 12 jF nj � 12 jV 0j of the elements of F n n V 0. Thus, the distan
e between f and l is at least12 jV j + (jS n V j � 12(jV 0j � jV j)) + (12 jF nj � 12 jV 0j) = 18 + ((x � 14) � 18 ) + (12 � 14) = x, again a
ontradi
tion.



4 Combinatorial analysis of the linearity testWe now prove Theorem 1.3, i.e. that Knee = 45128 . To prove that Knee � 45128 we asso
iate to afun
tion f : F n ! F a fun
tion gf : F n ! F , whose value at u is Pluralityf f(u+v)� f(v) : v 2F n g. Then, if Err(f) is suÆ
iently small three things o

ur: (i) An overwhelming majority of thevalues f f(u + v) � f(v) : v 2 F n g agree with gf (u), (ii) gf is linear, (iii) gf is 
lose to f . Thisargument was �rst used in [9℄ while studying linearity testing over �nite groups. We will show howthis argument 
an be tightened in the 
ase of linearity testing over GF(2).More pre
isely, the proof of Theorem 1.3 is a 
onsequen
e of the following three lemmas:Lemma 4.1 For all f : F n ! F , then Err(f) � 12 Dist(f; gf ).Lemma 4.2 For all f : F n ! F , if gf is linear, then Err(f) � 2Dist(f; gf ) � [1� Dist(f; gf )℄.Lemma 4.3 For all f : F n ! F , if Err(f) < 45128 , then gf is linear.We �rst show that Theorem 1.3 follows from the above stated results. Assume Knee < 45128 , then,there is a fun
tion f : F n ! F , su
h that Err(f) < 45128 and x = Dist(f) � 14 . By Lemma 2.3,Err(f) � 3x � 6x2, then
e we need only 
onsider the 
ase in whi
h x is at least 516 . Moreover,by Lemma 4.3, gf is a linear fun
tion. Thus, Dist(f; gf ) � x � 516 , whi
h together with Lem-mas 4.1 and 4.2 imply that Err(f) � minx2[5=16;1℄maxn12x; 2(1 � x)xo = 38 , a 
ontradi
tion. Hen
e,Knee � 45128 . In our tightness dis
ussion part of Se
tion 2 we showed that there exists a fun
tionf : F n ! F su
h that Dist(f) = 516 and Err(f) = 45128 . Hen
e, Knee = 45128 as we wanted to prove.The rest of this se
tion is dedi
ated to proving Lemmas 4.1 through 4.3.The proofs of Lemmas 4.1 and 4.2 are based on an observation whi
h is impli
it in [14℄. Thisobservation 
ru
ially depends on the fa
t that f takes values over F = GF(2). It says that forevery u 2 F n, Prv [ f(u+v)�f(v)=gf (u) ℄ � 12 :Hen
e, if f(u)6=gf (u), then f(u) 6= f(u+v)� f(v) at least half of the time, whi
h impliesPru;v [ f(u)+f(v) 6=f(u+v) j f(u) 6=gf (u) ℄ � 12 : (4)Proof of Lemma 4.1: Simple 
onditioning says that Err(f) is at leastPru;v [ f(u)+f(v)6=f(u+v) j f(u) 6=gf (u) ℄ � Dist(f; gf ) :But by (4) we know this is at least 12 Dist(f; gf ).Proof of Lemma 4.2: Assume gf is linear. As observed in the proof of Lemma 2.3Err(f) = 3Pru;v [ f(u) 6=gf (u); f(v)=gf (v); f(u+v)=gf (u+v) ℄+ Pru;v [ f(u) 6=gf (u); f(v) 6=gf (v); f(u+v) 6=gf (u+v) ℄ :Sin
e gf is linear, Pru;v [ f(u)6=gf (u); f(v)=gf (v); f(u+v)=gf (u+v) ℄ =Pru;v [ f(u) 6=gf (u); f(u)+f(v)6=f(u+v) ℄� Pru;v [ f(u)6=gf (u); f(v) 6=gf (v); f(u+v)6=gf (u+v) ℄ :



Hen
e, Err(f) = 3Pru;v [ f(u)+f(v)6=f(u+v) j f(u) 6=gf (u) ℄ � Dist(f; gf )� 2Pru;v [ f(u) 6=gf (u); f(v) 6=gf (v); f(u+v) 6=gf (u+v) ℄ :In this last expression, the �rst term 
an be lower bounded, as in the proof of Lemma 4.1, by32 Dist(f; gf ). The se
ond term is 2 sl(f; gf ). Thus, we have Err(f) � 32 Dist(f; gf ) � 2 sl(f; gf ).Finally, applying Lemma 2.3, we get that Err(f) � 3Dist(f; gf ) � 3Dist(f; gf )2 � 12 Err(f). Thelemma follows.Proof of Lemma 4.3: By 
ontradi
tion. Assume gf is not linear. Then there are x; y su
hthat gf (x) + gf (y) 6= gf (x+y). Note that by 
onstru
tion gf (0) = 0, thus x and y are distin
tand nonzero. Hen
e, x; y; x+y are distin
t. Sin
e gf (x) + gf (y) 6= gf (x+y) it 
annot be thatgf (x); gf (y); gf (x+y) are all zero. Without loss of generality, we assume that gf (x+y) = 1. We nowshow that we 
an also assume that gf (x) = gf (y) = 1. Indeed, if f satis�es the latter assumptionwe are done. Otherwise, sin
e gf (x) + gf (y) 6= gf (x+y) = 1, we have that gf (x) = gf (y) = 0.Let l: F n ! F be a linear fun
tion su
h that l(x) = l(y) = 1 (su
h fun
tion exists sin
e x; y aredistin
t and nonzero). Set f 0 = f + l and observe that Err(f 0) = Err(f) and gf 0 = gf + l. Hen
e,Err(f 0) < 45128 , gf 0(x) + gf 0(y) 6= gf 0(x+y), and gf 0(x) = gf 0(y) = gf 0(x+y) = 1. So, we 
an 
ontinuearguing about f 0 instead of f .Set S = f0; x; y; x+yg. We will begin by investigating nonlinearity on 
osets of S. For every s 2 F n,de�ne fs to be the fun
tion from S to F , su
h that fs(u) = f(s+u). For every s; t 2 F n, letps;t = Pru;v R S [ fs(u)+ft(v) 6=fs+t(u+v) ℄ :By inter
hanging the orders of expe
tations we see thatErr(f) = Es;tR Fn [ ps;t ℄ : (5)Now ps;t depends only on the values of f on the 
osets s+S, t+S, and s+ t+S. We 
lassify these
osets a

ording to the pattern of values of f on the 
oset. De�ne the tra
e of f at w astrf (w) = [f(w); f(w+x); f(w+y); f(w+x+y)℄ :We partition the elements w of F n a

ording to the values that the tra
e of f at w takes,H0 = f w : trf (w) equals [0; 0; 0; 0℄ or [1; 1; 1; 1℄ gHx = f w : trf (w) equals [0; 0; 1; 1℄ or [1; 1; 0; 0℄ gHy = f w : trf (w) equals [0; 1; 0; 1℄ or [1; 0; 1; 0℄ gHx+y = f w : trf (w) equals [0; 1; 1; 0℄ or [1; 0; 0; 1℄ gHodd = f w : trf (w) has an odd number of 1's g ;and de�ne their relative measures h0 = jH0j=jF jn, hx = jHxj=jF jn, hy = jHyj=jF jn, hx+y =jHx+yj=jF jn, and hodd = jHoddj=jF jn. Noti
e that if s 2 Hz then the whole 
oset s+S is in Hz, forany of the �ve sets Hz.By symmetry we may assume that hx � hy � hx+y.



The 
ondition gf (x+y) = 1 impliesPruR Fn [ f(u+x+y) = f(u) ℄ � 12 ;when
e h0 + hx+y + 12hodd � 12 ; (6)sin
e for ea
h 
oset w+S in Hodd, half the elements w+u satisfy f(w+u) = f(w+u+x+y), while allelements w of H0 and Hx+y satisfy f(w) = f(w+x+y).So no single set among the four H0, Hx, Hy, or Hx+y is too large; ea
h of h0, hx, hy, hx+y isbounded by 12 . If f were stri
tly linear, one of these four sets would 
over all of F n. As it is, theintera
tion of several substantial sets among H0, Hx, Hy, Hx+y, or the presen
e of a large Hodd,will for
e a large nonlinearity on f , and will give the desired lower bound on Err(f).To quantify this intera
tion between sets, we partition F n�F n into six sets as follows:A = Set of all (s; t) su
h that fs; t; s+ tg are all in the same set, either H0 or Hx or Hyor Hx+yB = Set of all (s; t) su
h that two of fs; t; s+ tg are in the same set H0 or Hx or Hy orHx+y, and the other one is in HoddC = Set of all (s; t) su
h that at least two of fs; t; s+ tg are in HoddD = Set of all (s; t) su
h that fs; t; s + tg � H0 [ Hx [ Hy [ Hx+y with exa
tly twoelements from the same set H0, Hx, Hy or Hx+yE = Set of all (s; t) su
h that one of fs; t; s+tg is inHodd, the other two are from di�erentsets in H0, Hx, Hy and Hx+yF = Set of all (s; t) su
h that fs; t; s+ tg are from di�erent sets H0, Hx, Hy, Hx+yThe following tables illustrate the above de�ned partition.(s,t) H0 Hx Hy Hx+y Hodd (s,t) H0 Hx Hy Hx+y HoddH0 A D D D B H0 D D F F EHx D D F F E Hx D A D D BHy D F D F E Hy F D D F EHx+y D F F D E Hx+y F D F D EHodd B E E E C Hodd E B E E Cs+ t 2 H0 s+ t 2 Hx(s,t) H0 Hx Hy Hx+y Hodd (s,t) H0 Hx Hy Hx+y HoddH0 D F D F E H0 D F F D EHx F D D F E Hx F D F D EHy D D A D B Hy F F D D EHx+y F F D D E Hx+y D D D A BHodd E E B E C Hodd E E E B Cs+ t 2 Hy s+ t 2 Hx+y



(s,t) H0 Hx Hy Hx+y HoddH0 B E E E CHx E B E E CHy E E B E CHx+y E E E B CHodd C C C C Cs+ t 2 HoddWe now pro
eed to show a lower bound for Err(f) whi
h depends on the relative size of the setsA;B; C;D; E , and F . Indeed, observe that if (s; t) is in B, then ps;t is at least 14 . (We 
al
ulate anexample: suppose s and s + t are both in Hx, with trf (s) = [0; 0; 1; 1℄ and trf (s + t) = [1; 1; 0; 0℄,while t is in Hodd, with trf (t) = [1; 1; 0; 1℄. If f were linear on the 
osets s+ S; t+S; s+ t+ S, andtrf (s), trf (s + t) were as given, then trf (t) would ne
essarily be [1; 1; 0; 0℄, and t would be in Hx.The value trf (t) di�ers from [1; 1; 0; 0℄ in the last position, 
orresponding to x+ y. Thus wheneverv = x+ y we will have f(s+u) + f(t+v) 6= f(s+t+u+v). This happens for 14 of the random 
hoi
esof (u; v).) With similar arguments one 
an show that if (s; t) is in C, then ps;t is at least 38 . And,if (s; t) is in D, E , or F , then ps;t is 12 . Hen
e, if for a set T � F n�F n we let �(T ) = jT j=jF j2n,then (5) yields Err(f) � 14 �(B) + 38 �(C) + 12 [�(D) + �(E) + �(F)℄ :Re
alling that �(C) = 1� (�(A) + �(B) + �(D) + �(E) + �(F)), allows us to 
on
lude thatErr(f) � 38 � 18 (3�(A) + �(B)) + 18 [�(D) + �(E) + �(F)℄ : (7)We now derive from (7) another lower bound for Err(f) whi
h will depend solely onh0; hx; hy ; hx+y; hodd, and �(F).We �rst need the following identities relating the measure of the sets A, B, C, D, E , and F , to h0,hx, hy, hx+y, and hodd. Consider the probability that randomly 
hosen s and t are in the same setH0, Hx, Hy, or Hx+y, plus the 
orresponding probabilities for (s; s + t) and (t; s + t); expressingthis sum of probabilities in two ways yields3�(A) + �(B) + �(D) = 3�h20 + h2x + h2y + h2x+y� : (8)Consider the probability that s and t are in two di�erent sets H0, Hx, Hy, or Hx+y, plus the
orresponding probabilities for (s; s + t) and (t; s + t); expressing this sum of probabilities in twoways yields: 2�(D) + �(E) + 3�(F) = 3 �(1� hodd)2 � �h20 + h2x + h2y + h2x+y�� : (9)Adding �18 of (8) and 18 of (9) to (7), givesErr(f) � 38 + 38(1� hodd)2 � 34 �h20 + h2x + h2y + h2x+y�� 14�(F) : (10)We now pro
eed to upper bound �(F). We divide the analysis into two 
ases.Case 1: hx + hy � h0 � hx+y > 14 .



By 
ase assumption and sin
e hx+y � hy we have that hx � hx + hy � h0 � hx+y > 14 . So,hx; hy; hx+y 2 (14 ; 12 ℄. As in Se
tion 3, for A;B;C � F n we let'n(A;B;C) = 1jF j2n jf (u; v; w) 2 A�B�C : u+v+w = 0 gj :Observe now, that for ea
h element (u; v) of F , fu; v; u+vg either 
ontains an element from H0 or
ontains one element from ea
h of the sets Hx, Hy, and Hx+y.The 
ontribution to F of the elements (u; v), where fu; v; u+vg 
ontain elements from ea
h ofthe sets Hx, Hy, and Hx+y, is upper bounded by 6'n(Hx;Hy;Hx+y). The Summation Lemmaimplies that 'n(Hx;Hy;Hx+y) � 'n(H�x;H�y ;H�x+y). Note that hx; hy; hx+y 
ompletely 
hara
terizeH�x;H�y ;H�x+y. Thus sin
e hx; hy; hx+y 2 (14 ; 12 ℄ we have that'n(H�x;H�y ;H�x+y) = 14 � 12(hx + hy + hx+y) + hxhy + hxhx+y + hyhx+y= 14 � 12 [(h0 + hodd) + (hx + hy + hx+y)℄(hx + hy + hx+y)+ hxhy + hxhx+y + hyhx+y= 14 � 12 (h0 + hodd)(hx + hy + hx+y)� 12 (h2x + h2y + h2x+y) :Hen
e, 6'n(Hx;Hy;Hx+y) � 32 � 3 (h0 + hodd)(hx + hy + hx+y)� 3 (h2x + h2y + h2x+y).Furthermore, the 
ontribution to F of the elements (u; v), where fu; v; u+vg 
ontains an elementof H0 is upper bounded by3'n(H0;Hx;Hy [Hx+y) + 3'n(H0;Hy;Hx [Hx+y) + 3'n(H0;Hx+y;Hx [Hy) ;whi
h is at most 3h0 (hx+hy+hx+y). Putting it all together, we have�(F) � 32 � 3hodd(hx + hy + hx+y)� 3(h2x + h2y + h2x+y) ;whi
h jointly with (10) implies thatErr(f) � 38 + 38(1� hodd)2 � 34 �h20 + h2x + h2y + h2x+y��38 + 34hodd(hx + hy + hx+y) + 34(h2x + h2y + h2x+y)= 38 � 38h2odd � 34h0hodd � 34h20� 38 � 38(hodd + 4h0)2 :We 
on
lude the analysis of this 
ase by noting that14 � 1� 3(hx + hy � h0 � hx+y)� 1� hx � hy � hx+y + 3h0= hodd + 4h0 ;where the �rst inequality follows by 
ase assumption, and the se
ond one be
ause hx � hy � hx+y,so that Err(f) � 38 � 38 �14�2 = 45128 :Case 2: hx + hy � h0 � hx+y � 14 .



To ea
h element (u; v) in F , asso
iate the unique tuple (u0; v0) 2 fu; v; u+vg�fu; v; u+vg, su
h that(u0; v0) 2 H0 �Hx+y [Hx �Hy. This s
heme asso
iates to ea
h element of H0 �Hx+y [Hx �Hyat most 6 elements of F . Thus, �(F) � 6 (h0hx+y + hxhy). Whi
h jointly with (10) impliesErr(f) � 38 + 38(1� hodd)2 � 34 �h20 + h2x + h2y + h2x+y�� 32 (h0hx+y + hxhy)= 38 + 38 [(h0 + hx+y) + (hx + hy)℄2 � 34 [(h0 + hx+y)2 + (hx + hy)2℄= 38 � 38 (hx + hy � h0 � hx+y)2 :The analysis of this 
ase 
on
ludes by observing that14 � hx + hy � h0 � hx+y= 1� hodd � 2(h0 + hx+y)� 0 ;where the �rst inequality is by 
ase assumption, and the latter one follows from (6), so that againErr(f) � 38 � 38 �14�2 = 45128 :5 Total degree one testing in 
hara
teristi
 twoAlthough the main purpose of our work is to give a near optimal analysis of the BLR test, we nowdes
ribe and analyze a way of testing for total degree one over GF(2). Our purpose is to furtherillustrate the strength and elegan
e of the Fourier analysis te
hnique, as well as its more generalappli
ability to the problem of analyzing program testers.As usual, let F = GF(2). Note that a total degree one polynomial p is either a linear fun
tion or alinear fun
tion plus a 
onstant. Thus, sin
e F is of 
hara
teristi
 two, p(u)+p(v)+p(w) = p(u+v+w)for all u; v; w 2 F n. The latter is satis�ed only if p is of total degree one. In analogy to the 
ase oflinearity testing, de�neDeg1 | Set of all polynomials of total degree one from F n to FDist1(f) def= minf Dist(f; p) : p 2 Deg1 g | Distan
e of f to its 
losest polynomial of totaldegree one.Again, assume we are given ora
le a

ess to a fun
tion f mapping F n to F . We want to test that fis 
lose to a polynomial of total degree 1 from F n to F , and make as few ora
le queries as possible.The Total Degree 1 Test. The test is the following | Pi
k u; v; w 2 F n at random, query theora
le to obtain f(u); f(v); f(w); f(u+v+w), and reje
t if f(u) + f(v) + f(w) 6= f(u+v+w). LetErr1(f) def= Pru;v;wR Fn [ f(u) + f(v) + f(w) 6= f(u+v+w) ℄ ;be the probability that the test reje
ts f . Also letRej1(x) def= minf Err1(f) : f : F n ! F s.t. Dist1(f) = x g :In order to understand how good this test is we need to lower bound Err1(f) in terms of x = Dist1(f).The te
hniques dis
ussed in this work gives us tools for a
hieving this goal. In fa
t, applying



these te
hniques we will show that if h(�) = (�1)f(�) (f viewed as a real valued fun
tion), thenjh�j � 1 � 2x, for all � in F n. Indeed, note that all fun
tions in Deg1 are of the form l�(�) + �,where � is in F and l� denotes the fun
tion that sends u to h�; ui = Pni=1 �iui (arithmeti
 overF ). Then, as in Lemma 2.1, we have that bh� = 1 � 2Dist(f; l�) � 1 � 2x. Moreover, sin
eDist(f; l�) +Dist(f; l�+1) = 1, we also have that bh� = 2Dist(f; l� +1)� 1 � 2x� 1, whi
h provesthe 
laim.Arguing as in the proofs of Lemma 2.2 and Theorem 1.2 yieldsErr1(f) = 12 (1� (h � h � h � h)(0)) = 12 �1�P�2Fn (bh�)4� :Hen
e, the previously derived bound on the absolute value of the Fourier 
oeÆ
ients of h andParseval's equality imply thatErr1(f) � 12  1� (1� 2x)2 X�2Fn(bh�)2! = 2x (1� x) :Finally, note that sin
e f takes values over GF(2), then f(u)+f(v)+f(w) 6=f(u+v+w) if and onlyif f di�ers from every p 2 Deg1 in exa
tly one of the points fu; v; w; u+v+wg, or in exa
tly three ofthe points fu; v; w; u+v+wg. This observation leads to a generalization of Lemma 2.3 that allowsto show that Err1(f) � 8x (1� x) (12 � x).We have shown the following:Lemma 5.1 Rej1(x) � maxn 8x (1 � x) (12 � x) ; 2x (1 � x) o .A
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A BLR test analysis implied by previous workConsider the fun
tion f that takes values from the �nite group G into another �nite group H.As suggested by [9℄ we de�ne the fun
tion gf that at u 2 G equals the most 
ommonly o

urringvalue in the multiset f f(u+v) � f(v) : v 2 G g (ties broken arbitrarily). In [9℄ it is shown that ifErr(f) < 29 , then gf is linear, and for all v 2 G, PruR G [ gf (v)=f(u+v)� f(u) ℄ > 23 . Thus,Err(f) � Dist(f; gf ) � Pru;v R G [ f(v)6=f(u+v)� f(u) j gf (v)6=f(v) ℄ � 23 Dist(f; gf ) :In other words, as observed in [8℄, if Err(f) < 29 , then Dist(f) � 32 Err(f).


