
Motion Planning on a Graph(Extended Abstract)Christos H. Papadimitriou � Prabhakar Raghavan y Madhu Sudan yHisao Tamaki yAbstractWe are given a connected, undirected graph G on nvertices. There is a mobile robot on one of the ver-tices; this vertex is labeled s. Each of several othervertices contains a single movable obstacle. The ro-bot and the obstacles may only reside at vertices,although they may be moved across edges. A ver-tex may never contain more than one object (ro-bot/obstacle). In one step, we may move either therobot or one of the obstacles from its current posi-tion v to a vacant vertex adjacent to v. Our goal isto move the robot to a designated vertex t using thesmallest number of steps possible.The problem is a simple abstraction of a robot mo-tion planning problem, with the geometry replacedby the adjacencies in the graph. We point out itsconnections to robot motion planning. We studyits complexity, giving exact and approximate algo-rithms for several cases.1. OverviewWe are given a connected, undirected graph G on nvertices. There is a mobile robot on one of the ver-tices; this vertex is labeled s. Each of several othervertices contains a single movable obstacle. The ro-bot and the obstacles may only reside at vertices,although they may be moved across edges. No ver-�Department of Computer Science and Engineering,UCSD, La Jolla, CA 92093.yIBM T.J.Watson Research Center, Yorktown Heights, NY10598.

tex may ever contain more than one movable entity(robot or obstacles). In one step, we may move eitherthe robot or one of the obstacles from its current po-sition v to a vacant vertex adjacent to v. Our goal isto move the robot to a designated vertex t using thesmallest number of steps possible. Let us call thisgraph motion planning with one robot, or GMP1Rfor short.There are twomotivations for studying GMP1R (andrelated problems we will mention in Section 4):1. GMP1R strips away the geometric considera-tions from the following geometric motion plan-ning problem: move an object in a geomet-ric scene from one position to another, mov-ing obstacles out of the way if necessary. Mo-tion planning problems for robots in geomet-ric environments have relatively high complex-ities (most practical motion planning problemsare PSPACE-hard, or worse). In fact, a prob-lem closely related to the geometric version ofGMP1R is PSPACE-hard (see Section 4 fordetails). From a complexity-theoretic view-point, GMP1R enables us to study how much ofthis complexity stems from geometric considera-tions, and how much from purely combinatorialones.2. The algorithms we devise for GMP1R can beapplied to practical motion planning problemsin relatively uniform settings, in which geome-try does not play a substantial role. Candidatesarise in environments with regular geometriessuch as buildings or factory
oors in which themovable entities are identical (say, carts of thesame size moving in corridors that can accom-

modate one cart at a time, or vehicles movingon a network of tracks). Packet routing usingthe de
ection or hot-potato model [3] providesa related example (see Section 4). In some ofthese cases, a better cost metric may accountfor the physical lengths of edges. In others, in-tersections in the building/railroad may be ableto hold more than one obstacle/robot at a time.In Section 4 we outline extensions of some ofour results to these variants.Our formulation of GMP1R seeks to minimize thenumber of steps to move the robot from s to t. Infact, the characterization and algorithms we give willimplicitly solve the decision version | which askswhether at all the robot can be moved from s to t| in polynomial time. A number of related geo-metric motion planning problems are given in [7].It is possible to formulate graph-theoretic analogsof all of these problems, and this is discussed inSection 4. We note that Frederickson (see [1] andreferences therein) has studied a di�erent planningproblem that he calls motion planning on a tree; ourproblem and methods are completely di�erent fromhis.An obvious generalization of GMP1R is GMPkR,where we have k robots with respective destinations.A special case of GMPkR, where there are no ad-ditinal obstacles (thus all the movable objects havetheir destinations), is previously studied. Wilson [8]studies the case k = n� 1, which is the \15-puzzle"played on a general graph, and gives an e�cientlycheckable characterization of the solvable instancesof the problem. Kornhauser, Miller, and Spirakis [5]extend his result to any k � n � 1 and also givean upper bound of O(n3) on the number of stepsto solve any solvable instance. They give an exam-ple for which this bound is optimal. Goldreich [2]examines the issue of computing the shortest movesequence for the problem studied by Kornhauser etal. and shows that determining the shortest movesequence is NP-hard.Figure 1 depicts an instance of GMP1R on a treethat invalidates a number of plausible characteriza-tions of the optimal plan (and thereby a number ofsimple algorithms). Here the only feasible plan for

moving the robot from s to t is, essentially: (1) movethe robot to a; (2) move the obstacles at b and c tox and y; (3) move the obstacles on vertices e throught to the right, so that the occupy vertices g through i;(4) move the robot to the sidestep vertex d; (5) movethe obstacles currently on g and t back towards thesource past f , clearing the way for the robot to movefrom d to t.The example shows that (1) the robot may tem-porarily have to move away from the source, bothinitially from s and later on to a sidestep vertex;(2) the motion of some obstacles, too, may be non-monotone | here some obstacles �rst move to theright along the s{t path, and then again to the left.1.1. Our resultsTheorem 1: Given an instance of GMP1R anda positive integer k, it is NP-complete to decidewhether a solution of length k exists. The problemremains NP-complete when restricted to a planargraph.The proof of NP -hardness is by a reduction (Fig-ure 2) from 3-SAT, and immediately yields a hard-ness of approximation result | the solution lengthcannot be approximated to an arbitrarily small con-stant. Details of this reduction (and the extensionto planar graphs) are given in the full paper. It isinteresting to note that the graph used in this re-duction belongs to a class for which our algorithmin Section 3 gives a constant-factor approximation.Membership in NP will follow from the characteri-zation of the feasibility in Section 1.2 that providesa polynomial length solution for every feasible in-stance.After some preliminaries in the following subsection,we study the problem on a tree in Section 2. Basedon a canonical form lemma established in Section 2.1,we give in Section 2.2 a polynomial time algorithmthat computes an optimal plan whenever G is a tree.This algorithm has a rather large running time, soin Section 2.3 we give a faster algorithm runningin time that achieves a plan of length at most 7times the optimal length. In Section 3 we give an

a

s b c

d

e f tg

R

R

h

The Robot An Obstaclex y

iFigure 1: An instructive instance on a tree.
Variables Clauses

ts

Vertex without obstacle

Vertex initially having an obstacle

x y z

x y z
− − −

except for one hole at its center.

A path of length 3M with no obstacles
at interior vertices

A path of length 2M, full of obstaclesFigure 2: The NP-hardness reduction; the clause x+ y + �z is illustrated.approximation algorithm for general graphs. Thecost of the solution obtained by this algorithm is atmostO(pn) times the optimal, and at the same timeO(lmax=lmin) times the optimal, where lmax and lminare the lengths of the longest and shortest paths ofdegree-2 vertices in G.Some of our results may be extended to generaliza-tions and variants of GMP1R; these are outlined inSection 4.1.2. PreliminariesA hole is a vertex that does not contain an obstacle.This should be literally taken so that the vertex withthe robot is also a hole: a convention for technicalconvenience. When an obstacle is moved from v tothe adjacent vertex w, we may think of it as a holemoving from w to v; we often use this notion in our
descriptions. We call a path of G a degree-2 chainor simply a chain if all of its internal vertices are ofdegree 2 and neither of the endpoints is of degree2. The length of a chain C, denoted by l(C), is thenumber of the edges in the chain. A chain is criticalif it does not belong to a cycle. We call a vertexof degree 3 or greater a fork vertex, and a vertex ofdegree 1 a leaf. Thus, an endpoint of a chain is eithera fork vertex or a leaf.We �rst address the feasibility question: given aninstance, is it at all possible to bring the robot froms to t? When G is biconnected, it is su�cient (andclearly also necessary) to have 2 holes, because wecan always move one of the holes wherever we want.Suppose that s and t belong to two distinct bicon-nected components and the length of the longest crit-ical chain between these components is l. It is clearthat l + 3 holes are necessary for the robot to crossthis chain (unless s or t is an endpoint of this chain).

Having l + 3 holes may not be su�cient if some ofthem are not available on the \right side" of the ro-bot. However, feasibility can be determined by ex-amining the robot's ability to reach a nearest forkvertex (in each of the k directions where k is the de-gree of s) because, once the robot is on a fork vertexwith 2 more holes adjacent to it, all other holes canbe moved freely by pushing the robot around thisfork vertex. This gives us a simple necessary andsu�cient condition, which shows that the feasibilityproblem is in P and the optimization problem is inNP .In the subsequent analysis, we use the following al-ternative formulation of GMP1R. Suppose that apath P from u to v is �lled with obstacles exceptfor v and we move each of these obstacles one steptowards v. We can view the net e�ect as moving theobstacle initially at u to v. We can also view it asa move of a hole from v to u. Note that this viewextends to the more general case where the path Pmay contain vacant vertices other than v. Thus, inour new formulation, an obstacle is allowed to tra-verse a path in one move, provided the path doesnot contain the robot and its destination is initiallyvacant, paying the length of the path as the cost.The robot, however, is allowed to move only to anadjacent vertex in one step as before.A plan for an initial con�guration is a sequence ofrobot and obstacle moves starting from that con�g-uration, where each obstacle move is speci�ed by anoriented path P . Often we specify an obstacle moveby a source-destination pair, in which case the pathtaken is assumed to be the shortest path. We calla plan valid if, when each move is executed, everyrobot move is to a vertex without an obstacle andthe path of every obstacle move is clear of the robot.The cost of a plan is the total cost of the moves inthe plan, where each robot move has a unit cost andthe cost of an obstacle move is the length of the pathof the move. We call a plan complete if it brings therobot from s to t. We call two plans equivalent iftheir initial and �nal con�gurations are respectivelyidentical, disregarding the identity of the obstacles.Consider the following subproblem. Let
 be a con-�guration and let U be an arbitrary set of vertices.What is the least cost plan to clear U entirely of

obstacles? Let us �rst ignore the presence of the ro-bot. Then, this subproblem has the following simpleanswer which we call the matching principle. LetV1 � U be the set of vertices in U with an obsta-cle in
 and let V2 � V (G) n U be the set of ver-tices outside of U with a hole in
. It is necessarythat jV2j � jV1j for our problem to have a solution.Consider a weighted bipartite graph on vertex sets(V1; V2) where there is an edge with cost l betweenv1 2 V1 and v2 2 V2 if and only if the shortest pathbetween v1 and v2 in G has length l. Let � denotethe minimum cost matching from V1 into V2 in thisbipartite graph. This matching � can be viewedas a plan consisting of obstacle moves v ! �(v),v 2 V1, which can be executed without interferencewith each other. In fact, it is not di�cult to seethat this is an optimal plan from
 to clear U . Inthe subsequent analysis of our problem with a ro-bot, several variations of the matching principle areused to simplify given plans and to obtain optimalsubplans.2. TreesIn this section we study the case when G is a tree.2.1. Canonical plansIn this subsection we de�ne a canonical form for acomplete plan, and show the existence of an optimalcomplete plan that is canonical. This will allow usto consider only canonical plans when we design al-gorithms in the later sections. The proofs of all thelemmas in this section can be found in the full paper.In the example of Figure 1, we saw that the moves ofthe robot in an optimal plan may not be monotonic.It may back up from s, and may sidestep at severalpoints on its way towards t. Our �rst goal is toestablish that these are the only ways that the robotmay deviate from a monotonic advance along the s{tpath.We call a sequence of robot moves quasi-monotonicalong an oriented path P from u to v, if it startsfrom u towards v and, on arriving at each internal

vertex w of P , either (1) immediately proceeds tothe next vertex on P , or (2) \sidesteps" to a vertexadjacent to w not on P , returns to w and proceedsto the next vertex on P . We call an internal vertexof P at which a sidestep occurs a branch vertex and avertex to which the robot sidesteps a sidestep vertex.We call a valid complete plan S quasi-monotonic ifthe robot's walk in S is quasi-monotonic along thepath from s to t. Let Gv denote the forest thatresults from removing a vertex v from the tree G.For a vertex u 6= v, the u{side of v is the tree of Gvthat contains u. The u{side of an edge e is similarlyde�ned. A vertex u is behind a vertex v 6= u if u isnot in the t{side of v. The following lemma assertsthe existence of an optimal complete plan in whichthe robot, once having stepped into the t-side of s,behaves quasi-monotonically.Lemma 2: There exists an optimal complete planwhich consists of two parts: (1) a back up part(which may be empty) in which the robot stays awayfrom the t{side of s, followed by (2) a forward partwhich is a quasi-monotonic complete plan that bringsthe robot from s to t.As we saw in the example of Figure 1, the purposeof the back up part is to liberate some holes behinds, which would otherwise be unavailable until therobot reaches the �rst side-step vertex in its quasi-monotonic move towards t. For this purpose, it isalways su�cient for the robot to monotonically backup to the closest fork vertex s0 behind s, visit upto two vertices adjacent to s0, which we call backup vertices, and return to s monotonically. We calla valid complete plan quasi-bitonic if it consists ofa back up plan, which either is empty or takes theabove form, followed by a quasi-monotonic forwardplan.Lemma 3: There exists an optimal complete planwhich is quasi-bitonic.We also want the obstacles in an optimal plan tobehave nicely. Let S be a quasi-bitonic plan. Wedenote by BS (TS) the tree consisting of the set ofvertices visited by the robot in the back up part

(forward part, respectively) of S, including s. Anobstacle move from a vertex v in TS is outward if itsdestination is in the t{side of s and not in TS; for-ward if its destination is in the t{side of v and in TS;backward if its destination is either behind s or inthe intersection of TS and the s{side of v. We call aquasi-bitonic plan S canonical if it has the followingproperties.(P1) No obstacle ever moves from outside of BS [TSinto BS [TS.(P2) All obstacles that are in BS move out of BSwithout passing s, before the robot starts moving.(P3) All outward and forward moves from TS occurbefore the robot starts moving.(P4) Each obstacle initially on TS either moves once,outward or backward, or moves twice, �rst forwardand then backward.(P5) When an obstacle moves backward, it passesthrough at least one branch vertex. When the ob-stacle is from a vertex strictly between two branchvertices, the meaning of this statement is clear. Weneed clari�cations for a few special cases. If the ob-stacle originates from a branch vertex v or a sidestepvertex adjacent to v, it passes another branch ver-tex. If the obstacle originates from a vertex on thepath from s to the �rst sidestep vertex, then it passesthrough the fork vertex in BS , i.e. the one the robotbacked up to. Moreover, when an obstacle movesbackward, the robot is on the sidestep vertex adja-cent to the branch vertex it �rst passes through (oron a leaf of BS in the above special case.)Lemma 4: There exists an optimal complete planthat is canonical.2.2. An exact algorithmThe algorithm for GMP1R below fully exploits theproperties of canonical optimal plans. Hereafter, theonly complete plans we will be concerned with arecanonical plans.Given a canonical plan S and an edge e from u to vlying on the path from s to t (all edges are thoughtof as directed towards the sink t), the subsequenceof moves that only involve edges on the s-side of v(including e) is denoted left(S; e). (Here, think of

S as a plan in our original formulation of GMP1Rin which each move of an obstacle is across a singleedge.) This sequence left(S; e) is almost a valid planexcept that it may pile up obstacles or holes on v.Similarly all moves on the t-side of e form an almostvalid plan, which is denoted right(S; e).Consider the
ow of objects over e while executinga canonical plan. From the de�nition of a canonicalplan, we can verify that this
ow occurs in the fol-lowing sequence. It starts with the pre
ow across e,i.e., obstacles which cross from u to v and is followedby some back
ow across e, i.e., obstacles going fromv to u. This is followed by the crossing of the robotover e. Lastly, there is a post
ow of more obstaclesgoing from v to u. In the following lemma we showthat the amount of pre
ow, back
ow and post
owcompletely characterize the decomposition of a planinto two pieces across an edge e.We will say that a canonical plan S is (e; n1; n2; n3)-respecting if the pre
ow across e is n1, the back
owis n2 and the post
ow is n3.Lemma 5: Let e be any edge on the path froms to t and left S1 and S2 be two (e; n1; n2; n3)-respecting canonical plans. Then there exists an(e; n1; n2; n3)-respecting canonical plan S such thatleft(S) = left(S1) and right(S) = right(S2).Proof [Sketch]: Decompose S1 into partial plansS(1)1 ; S(2)1 ; : : : where S(i)1 is the sequence of moveswhich occur between the (i � 1)st move across eand the ith move across e. Similarly decomposeS2. The plan S obtained by replacing S(i)1 withleft(S(i)1); right(S(i)2), for all i is our target plan. Aninduction on i shows that the sequence of moves be-fore the ith move across e is a valid sequence. Itcan also be veri�ed that the resulting sequence iscomplete and canonical. 2The above lemma enables us to decompose the con-struction of the optimal plan into the construc-tions of the optimal plans to the left and the rightof e, while making them (e; n1; n2; n3)-respecting.Let opt(e; n1; n2; n3) represent the cost of the leftpart left(S; e) of an optimal canonical (e; n1; n2; n3)-respecting plan S. We focus on the task of comput-

ing opt(e; n1; n2; n3).Let e and e0 be edges appearing on the s to t pathin this order and suppose that the tail of e is a forkvertex. We de�ne the cost of an \atomic" move asfollows. Let us call a canonical plan S (e; e0){atomicif it causes the robot to sidestep at the tail of e, butnot again until the robot crosses e0. The atomic costatomic-opt(e; n1; n2; n3; e0; n01; n02; n03) is de�ned tothe minimum over all (e; e0){atomic, (e; n1; n2; n3)-respecting, and (e0; n01; n2; n03)-respecting plans S, ofthe quantity that is the cost of left(S; e0) minus thecost of left(S; e).The cost opt(e0; n01; n2; n03) can now be computed eas-ily using the recurrenceopt(e0; n01; n2; n03) = mine;n1;n2;n3fopt(e; n1; n2; n3)+ atomic-opt(e; n1; n2; n3; e0; n01; n2; n03)g;where e ranges over all the e on the s{t path suchthat the tail of e is a fork vertex.It is relatively straightforward to compute an opti-mal complete plan based on this recurrence for opt.A precise description of this is included in the fullpaper. We now concentrate on the harder task ofcomputing atomic-opt(e; n1; n2; n3; e0; n01; n02; n03)Let v be the tail of e and v0 the tail of e0. Let wbe the vertex adjacent to v that is used as the side-step point. Let P denote the path from w to thehead of edge e0. We will show how to compute theatomic-opt(e; n1; n2; n3; e0; n01; n02; n03) given that w isthe sidestep point. By minimizing over all possiblews we get atomic-opt(e; n1; n2; n3; e0; n01; n02; n03).This computation turns out to be a minimum cost
ow computation on an appropriately de�ned lay-ered network. The network has three layers of nodes,the source set, the sink set and intermediate set.Arcs may go from the source layer to the sink layerdirectly, or may go from the source to the interme-diate layer and from the intermediate layer to thesink layer. There is one source node in this networkfor each obstacle that ever uses P , and one sink nodefor each possible ultimate destination of these obsta-cles. Every arc of the network has unit capacity andthe
ow constraint is that (1) every source shouldhave one unit of
ow out of it and (2) at most one

unit of
ow can enter each intermediate or sink node.There are n1 + n02 + n03 sources corresponding to theobstacles that
ow into P through v and v0, in ad-dition to the sources corresponding to the obstacleson P in the initial con�guration. Each hole on thepath from v to v0 (excluding v and v0) in the initialcon�guration, is a node on the intermediate layer.The sink layer has one node for each of the n2 + n3obstacles that get pushed behind v, one for each ofthe n01 obstacles get pushed ahead of v0, one for eachhole on the subtrees hanging o� the v{v0 path andone for each vertex on P . The rules for arcs betweenthese nodes can be inferred by analyzing the possiblemoves of obstacles in a canonical plan. The detailsare given in the full paper. The cost of an arc is thelength of the path (in the tree G) between the obsta-cle and the corresponding (virtual) hole. Here, forexample, if the source represents one of the pre
owobstacles then the cost of the arc is determined as ifthe obstacle were at v. Similar rules are applied tocompute the cost of the remaining arcs.A minimum cost
ow in the above network gives thecost of moving the obstacles so as to allow the robotto move from v to w to v0. Minimizing over all possi-ble ws gives us atomic-opt(e; n1; n2; n3; e0; n01; n02; n03).We now analyze the complexity of the entire algo-rithm. The properties of a canonical plan imply that,if an (e; n1; n2; n3)-respecting canonical plan uses thetail of e as a branch vertex, then 0 � n2 � 2 when-ever n1 > 0. Therefore, there are only O(n3) quadru-ples (e; n1; n2; n3) among which we need to computeatomic-opt. Each ofO(n6) atomic cost computationsgenerates O(1)
ow problems when amortized overall possible paris (e; e0). Therefore, we need to solveO(n6) mincost
ow problems. Once this is done, theoptimal plan is obtained by solving a shortest pathproblem in a network in which these O(n3) quadru-ples are the nodes.Theorem 6: If there is a solution of �nite cost foran instance of GMP1R on a tree, an optimal solu-tion can be computed by solving O(n6) mincost
owproblems on networks with O(n) nodes each, and ashortest path problem on a graph with O(n3) nodes.

2.3. A fast 7-approximation for treesIn this section, we describe an algorithm for GMP1Ron a tree that gives a solution with cost at most7 times the optimal. The idea is to simplify theproblem by �xing the set of side-stepping vertices.Let T0 be a subtree of G consisting of the path froms to t and, for each branch vertex v strictly betweens and t, an arbitrary vertex adjacent to v but noton the s{t path. Recall that, for a canonical planS, TS (BS) denotes the subtree consisting of the setof vertices visited by the robot in the forward part(back up part, respectively) of S.Lemma 7: There exists a complete canonical planS with TS = T0 with cost at most 7 times the cost ofthe optimal complete plan.The proof is a simple simulation and is omitted. Ouralgorithm searches for an optimal canonical plan as-suming that it side-steps according to T0. This isdone by solving a mincost
ow problem very sim-ilar to the one we used in computing the atomiccost in the exact algorithm of Section 2.2. Sincethe side-step vertices are �xed, we can constructone
ow graph (for each potential shape B of BS)which corresponds to a complete canonical plan Swith TS = T0 and BS = B. The source layer con-sists of the obstacles initially in T0 [B and the sinklayer consists of the holes outside of T0 [B and thevertices in T0 [B. The intermediate layer consistsof the vertices of T0 which are initially vacant andthus potential temporary locations of obstacles be-tween the forward and the backward moves. Therules for the presence and costs of the arcs are verysimilar to those in Section 2.2. We need to solve a
ow problem for each of O(n2) potential shapes ofB. However, combining the problems for B with mi-nor di�erences, we can reduce the number of
owproblems required down to n.Theorem 8: An approximate solution for GMP1Ron a tree, with cost at most 7 times the optimal,can be computed by solving at most n mincost
owproblems on a graph with O(n) vertices.

3. An approximation algorithmfor general graphsIn this section, we consider general graphs and con-struct polynomial time algorithms to solve GMP1Rapproximately. In the following, we assume that sis a fork vertex. This assumption is justi�ed, in thecontext of approximation , by the following observa-tion.Lemma 9: Let s be an internal vertex of a chainC; and let s1 and s2 be two endpoints of C. Supposefurther that t is not on this chain. Let Si, i = 1; 2,be the optimal plan to bring the robot from s to siand let S 0i be the optimal plan to bring the robot tot starting with the �nal con�guration of Si. Then,for either i = 1 or 2, the plan Si followed by S0i isa solution to the original problem whose cost is atmost three times the optimal.Proof: If the robot in the optimal plan exits C fromsi, the optimal cost must be greater than the cost ofSi. But S 0i can do no worse than undoing Si andthen executing the optimal s-to-t plan. 2A natural heuristic for an approximate solution is tolet the robot follow the shortest path from s to t,with possible side-steppings. It is easy to see thatthe plan obtained by this heuristic can be as bad as
(lmax) times the optimal, where lmax is the lengthof the longest chain in G. This is because a chain oflength l packed with obstacles requires
(l2) steps toclear, while the optimal plan may choose a slightlylonger path with few obstacles. In fact, a much worsecase exists. Suppose that there are two disjoint pathsfrom s to t of di�erent lengths. Each internal vertexof the shorter path has a single leaf attached to it.In the longer path, any two vertices having distance2 on the path are connected by an additional chainof length 2. Thus, the chains on both paths are allof length 1. If there are only 2 holes in the entiregraph, the longer path can be traversed in a numberof steps that is linear in its length, while the shorterone requires a quadratic number of steps (at eachrobot move, a hole must be recycled through thecycle consisting of the two s{t paths). Yet anothercase in which the shortest path performs poorly is

when there is a rich pool of holes \closer" to thelonger path than the shorter path.These examples motivate the following estimates ofthe cost of traversing a chain, in addition to the ob-vious estimate | its length.1. Evacuation cost !(C): the cost required to clearchain C assuming that an in�nite source of holesis attached to each end of the chain.2. Cycle cost �h(C): the cost to be spent for recy-cling holes when the robot traverses the chainusing exactly h distinct holes. If h holes areenough to �ll up the chain, this cost is set to 0.If there is no cycle containing C and h holes arenot enough to �ll up the chain, this cost is setto 1.3. Hole-fetch cost �h(C): the cost required tobring h holes to chain C in the initial con�gura-tion, regarding the robot as one of the obstacles.More formal de�nitions of these measures are givenin the full paper. Note that all of these measures canbe computed e�ciently based on the initial con�gu-ration.Suppose that the optimal plan uses at most h dis-tinct holes in the robot's traversal of any single chain.Then its cost is at least Pi(l(Ci) + !(Ci) + �h(Ci)),where the summation is over all chains Ci traversedby the robot in the optimal plan. Its cost is alsoat least maxi(min2�h0�h(�h0(Ci) + �h0(Ci)), becausethe traversal of any chain Ci requires globally fetch-ing some holes to Ci and recycling them. Moreover,if the optimal plan uses exactly h distinct holes onsome chain, its cost is at least mini �h(Ci). There-fore, the cost of the optimal plan is at least13fXi (l(Ci) + !(Ci) + �h(Ci))+maxi (min2�h0�h(�h0(Ci) + �h0(Ci))+min�h(Ci)g:For each path P from s tot, let �h(P) denote Pi(l(Ci) + !(Ci) + �h(Ci)) +maxi(min2�h0�h(�h0(Ci) + �h0(Ci)) + mini �h(Ci),

where i indexes all chains in P . Our algorithm triesall values of h, �nding for each a path P that min-imizes �h(P), and constructing a plan in which therobot traverses this path, side-stepping at every forkvertex. Such a path can be found as follows. LetCI denote the set of chains of G with the I small-est values of min2�h0�h(�h0(C) + �h0(C) and let DJdenote the set of chains of G with the J largest val-ues of �h(C). Let GIJ denote the network obtainedfrom G by replacing each chain C in CI \ DJ by anarc of length l(C)+ !(C)+�h(C), and removing allother chains. Solve the s{t shortest path problemon each GIJ and take the solution that minimized�h(P). The following Lemma compares the cost ofa plan based on P with our estimate �h(P).Lemma 10: For any h � 2 and path P from sto t such that �h(P) < 1, we can construct, inpolynomial time, a complete plan with cost at mostO(kmax=lmin + 1)�h(P), where kmax is the maxi-mum number of obstacles on a single chain of Pin the initial con�guration and lmax and lmin arethe lengths of the logest and the shortest chains ofP . The cost of this plan is also bounded above byO(kmaxl(P) + �h(P)).Combined with the above observations, the �rst partof this lemma immediately leads to:Theorem 11: There is a poly-nomial time O(lmax=lmin){approximation algorithmfor GMP1R on a general graph, where lmax and lminare the lengths of the longest and the shortest chainsof G respectively.Although the bound in this theorem, as it is pre-sented, appears to be sensitive to an addition ofeven one short chain to the graph, a closer lookat the proof reveals that this is not the case: ad-dition of short chains does not essentially changethe bound on the approximation ratio as long astheir total length is O(lmax). The second bound inLemma 10 implies n=kmax{approximation because�h(P) � (kmax)2. Combined with the �rst bound,we have:

Theorem 12: There is a polynomial time O(pn){approximation algorithm for GMP1R on a generalgraph.4. Extensions and further workIn this section we outline extensions of our algo-rithms and directions for further work.The case in which each edge of G has a positiveweight associated with it is an interesting generaliza-tion of the unweighted case. The problem becomessigni�cantly di�erent, even in the case of a tree. Forinstance, the quasi-monotonicity of robot's motiondoes not hold any more, even in the case when therobot starts at a leaf (Figure 3). We refer to themovement depicted in Figure 3 as a wiggle. Howeverwe are able to establish that the path of the robotstill adheres to a certain canonical form. This is de-scribed informally in Lemma 13. In the case wherethe robot does not start from a leaf vertex, the ro-bot does not necessarily back up to the �rst branchvertex behind it, and the motion on the backwardjourney need not be simple. Lemma 14 addressesthis issue informally. The canonical obstacle movesare similar to the unweighted case. These featuressu�ce to establish the existence of polynomial timealgorithm for the GMP1R on weighted trees.Lemma 13: There exists an optimal plan for theGMP1R on weighted trees for the case where s is aleaf, where the robot moves monotonically towards t,except to make sidesteps or wiggles.Lemma 14: In an optimal plan for the GMP1R onweighted trees, the robot may start by moving back-ward initially. In such cases, there exists an opti-mal plan where the robot proceeds monotonically tosome vertex s0 behind it (without wiggles or side-steps), and then proceeds almost monotonically (asin Lemma 13) towards the destination t.The proof is omitted. Using these lemmas, we setup a dynamic programming algorithm to solve theGMP1R on weighted trees.

R The Robot An Obstacle

1 1 1 1

100

1

2

3

4

5

1 1 1 1

100

R

R

Figure 3: A wiggle in the robot's pathTheorem 15: There exists a polynomial time algo-rithm to solve the GMP1R on the weighted tree.A solution to the weighted version of GMP1R ex-tends immediately to the case when each vertex ofG has a positive integral capacity, representing thenumber of objects that may sit on it at one time,because we can simulate a vertex with capacity k bya k-vertex star consisting of weight 0 edges. Thismodels situations in which we have intersections atwhich objects can move past one another (say, a rail-way junction).We conclude by mentioning the most interesting di-rections for further research:(1) Show that a simple geometric version of GMP1Ris PSPACE-hard. The related warehouseman's prob-lem is PSPACE-hard[4]; however, that reductionbreaks down if all the objects have the same size.(2) Study the case of several robots, each with itsown destination, i.e., GMPkR discussed in the in-troduction.(3) In situations such as railway networks, severalobjects can move simultaneously under their ownpower. This version is closely related to de
ectionrouting for packets [3]. Thus, we would study plans

with parallel moves allowed, and study the numberof steps to deliver every robot to its destination.References[1] G. Frederickson and D. J. Guan. Preemptiveensemble motion planning on a tree. SIAM J.Comput., 21:1130-52, 1992.[2] O. Goldreich. Shortest move-sequence in thegeneralized 15-puzzle is NP-hard. Manuscript,Laboratory for Computer Science, MIT, June1984.[3] B. Hajek. Bounds on evacuation time for de-
ection routing. Distributed Computing, 5:1{6,1991.[4] J. Hopcroft, J. T. Schwartz and M. Sharir. Onthe complexity of motion planning for multipleindependent objects; PSPACE-hardness of the\Warehousmen's Problem". International Jour-nal of Robotics Research, 3:76{88, 1987.[5] D. Kornhauser, G. Miller, and P. Spirakis. Co-ordinating pebble motion on graphs, the diam-

eter of permutation groups, and applications.Proceedings of the 25th Annual Symposium onFoundations of Computer Science, pages 241{250, 1984.[6] D. Lichtenstein. Planar Formulae and TheirUses. SIAM J. Comput., 11:329-343, 1982.[7] J. T. Schwartz, M. Sharir, and J. Hopcroft.Planning, Geometry and Complexity. Ablex,1987.[8] R.M. Wilson. Graph Puzzles, Homotopy, andthe Alternating Group. Jounal of CombinatorialTheory (B), 16:86-96, 1974.

