Motion Planning on a Graph
(Extended Abstract)

CHRISTOS H. PAPADIMITRIOU *

PRABHAKAR RAGHAVAN !

MADHU SUDAN 1

Hisao TaMAKI !

Abstract

We are given a connected, undirected graph G on n
vertices. There is a mobile robot on one of the ver-
tices; this vertex is labeled s. Each of several other
vertices contains a single movable obstacle. The ro-
bot and the obstacles may only reside at vertices,
although they may be moved across edges. A ver-
tex may never contain more than one object (ro-
bot/obstacle). In one step, we may move either the
robot or one of the obstacles from its current posi-
tion v to a vacant vertex adjacent to v. Our goal is
to move the robot to a designated vertex ¢ using the
smallest number of steps possible.

The problem is a simple abstraction of a robot mo-
tion planning problem, with the geometry replaced
by the adjacencies in the graph. We point out its
connections to robot motion planning. We study
its complexity, giving exact and approximate algo-
rithms for several cases.

1. Overview

We are given a connected, undirected graph G on n
vertices. There is a mobile robot on one of the ver-
tices; this vertex is labeled s. Each of several other
vertices contains a single movable obstacle. The ro-
bot and the obstacles may only reside at vertices,
although they may be moved across edges. No ver-

*Department of Computer Science and Engineering,
UCSD, La Jolla, CA 92093.

'IBM T.J. Watson Research Center, Yorktown Heights, NY
10598.

tex may ever contain more than one movable entity
(robot or obstacles). In one step, we may move either
the robot or one of the obstacles from its current po-
sition v to a vacant vertex adjacent to v. Our goal is
to move the robot to a designated vertex t using the
smallest number of steps possible. Let us call this
graph motion planning with one robot, or GMP1R
for short.

There are two motivations for studying GMP1R (and
related problems we will mention in Section 4):

1. GMPI1R strips away the geometric considera-
tions from the following geometric motion plan-
ning problem: move an object in a geomet-
ric scene from one position to another, mov-
ing obstacles out of the way if necessary. Mo-
tion planning problems for robots in geomet-
ric environments have relatively high complex-
ities (most practical motion planning problems
are PSPACE-hard, or worse). In fact, a prob-
lem closely related to the geometric version of
GMPIR is PSPACE-hard (see Section 4 for
details). From a complexity-theoretic view-
point, GMP1R enables us to study how much of
this complexity stems from geometric considera-
tions, and how much from purely combinatorial
ones.

2. The algorithms we devise for GMP1R can be
applied to practical motion planning problems
in relatively uniform settings, in which geome-
try does not play a substantial role. Candidates
arise in environments with regular geometries
such as buildings or factory floors in which the
movable entities are identical (say, carts of the
same size moving in corridors that can accom-

modate one cart at a time, or vehicles moving
on a network of tracks). Packet routing using
the deflection or hot-potato model [3] provides
a related example (see Section 4). In some of
these cases, a better cost metric may account
for the physical lengths of edges. In others, in-
tersections in the building/railroad may be able
to hold more than one obstacle/robot at a time.
In Section 4 we outline extensions of some of
our results to these variants.

Our formulation of GMP1R seeks to minimize the
number of steps to move the robot from s to t. In
fact, the characterization and algorithms we give will
implicitly solve the decision version — which asks
whether at all the robot can be moved from s to t
— in polynomial time. A number of related geo-
metric motion planning problems are given in [7].
It is possible to formulate graph-theoretic analogs
of all of these problems, and this is discussed in
Section 4. We note that Frederickson (see [1] and
references therein) has studied a different planning
problem that he calls motion planning on a tree; our
problem and methods are completely different from

his.

An obvious generalization of GMP1R is GMPEkR,
where we have k robots with respective destinations.
A special case of GMPEKR, where there are no ad-
ditinal obstacles (thus all the movable objects have
their destinations), is previously studied. Wilson [8]
studies the case £k = n — 1, which is the “15-puzzle”
played on a general graph, and gives an efficiently
checkable characterization of the solvable instances
of the problem. Kornhauser, Miller, and Spirakis [5]
extend his result to any & < n — 1 and also give
an upper bound of O(n®) on the number of steps
to solve any solvable instance. They give an exam-
ple for which this bound is optimal. Goldreich [2]
examines the issue of computing the shortest move
sequence for the problem studied by Kornhauser et
al. and shows that determining the shortest move
sequence is NP-hard.

Figure 1 depicts an instance of GMP1R on a tree
that invalidates a number of plausible characteriza-
tions of the optimal plan (and thereby a number of
simple algorithms). Here the only feasible plan for

moving the robot from s to ¢ is, essentially: (1) move
the robot to a; (2) move the obstacles at b and ¢ to
¢ and y; (3) move the obstacles on vertices e through
t to the right, so that the occupy vertices g through ¢;
(4) move the robot to the sidestep vertex d; (5) move
the obstacles currently on ¢ and ¢ back towards the
source past f, clearing the way for the robot to move
from d to t.

The example shows that (1) the robot may tem-
porarily have to move away from the source, both
initially from s and later on to a sidestep vertex;
(2) the motion of some obstacles, too, may be non-
monotone — here some obstacles first move to the
right along the s—t path, and then again to the left.

1.1. Our results

Theorem 1: Given an instance of GMPIR and
a positive integer k, it is NP-complete to decide
whether a solution of length k exists. The problem
remains NP-complete when restricted to a planar
graph.

The proof of NP-hardness is by a reduction (Fig-
ure 2) from 3-SAT, and immediately yields a hard-
ness of approximation result — the solution length
cannot be approximated to an arbitrarily small con-
stant. Details of this reduction (and the extension
to planar graphs) are given in the full paper. It is
interesting to note that the graph used in this re-
duction belongs to a class for which our algorithm
in Section 3 gives a constant-factor approximation.
Membership in NP will follow from the characteri-
zation of the feasibility in Section 1.2 that provides
a polynomial length solution for every feasible in-
stance.

After some preliminaries in the following subsection,
we study the problem on a tree in Section 2. Based
on a canonical form lemma established in Section 2.1,
we give in Section 2.2 a polynomial time algorithm
that computes an optimal plan whenever G is a tree.
This algorithm has a rather large running time, so
in Section 2.3 we give a faster algorithm running
in time that achieves a plan of length at most 7
times the optimal length. In Section 3 we give an

‘ An Obstacle

Figure 1: An instructive instance on a tree.

Variables

.............

O Vertex without obstacle
@ Vertex initially having an obstacle

.......................................

A path of length 2M, full of obstacles
except for one hole at its center.

A path of length 3M with no obstacles
at interior vertices

Figure 2: The NP-hardness reduction; the clause « + y + z is illustrated.

approximation algorithm for general graphs. The
cost of the solution obtained by this algorithm is at
most O(4/n) times the optimal, and at the same time
O(limaz [lmin) times the optimal, where l,,4, and .,
are the lengths of the longest and shortest paths of
degree-2 vertices in G.

Some of our results may be extended to generaliza-
tions and variants of GMP1R; these are outlined in
Section 4.

1.2. Preliminaries

A hole is a vertex that does not contain an obstacle.
This should be literally taken so that the vertex with
the robot is also a hole: a convention for technical
convenience. When an obstacle is moved from v to
the adjacent vertex w, we may think of it as a hole
moving from w to v; we often use this notion in our

descriptions. We call a path of G a degree-2 chain
or simply a chain if all of its internal vertices are of
degree 2 and neither of the endpoints is of degree
2. The length of a chain C, denoted by [(C), is the
number of the edges in the chain. A chain is eritical
if it does not belong to a cycle. We call a vertex
of degree 3 or greater a fork vertezr, and a vertex of
degree 1 a leaf. Thus, an endpoint of a chain is either
a fork vertex or a leaf.

We first address the feasibility question: given an
instance, is it at all possible to bring the robot from
s to t7 When G is biconnected, it is sufficient (and
clearly also necessary) to have 2 holes, because we
can always move one of the holes wherever we want.
Suppose that s and ¢ belong to two distinct bicon-
nected components and the length of the longest crit-
ical chain between these components is [. It is clear
that [+ 3 holes are necessary for the robot to cross
this chain (unless s or ¢ is an endpoint of this chain).

Having [+ 3 holes may not be sufficient if some of
them are not available on the “right side” of the ro-
bot. However, feasibility can be determined by ex-
amining the robot’s ability to reach a nearest fork
vertex (in each of the k directions where k is the de-
gree of s) because, once the robot is on a fork vertex
with 2 more holes adjacent to it, all other holes can
be moved freely by pushing the robot around this
fork vertex. This gives us a simple necessary and
sufficient condition, which shows that the feasibility
problem is in P and the optimization problem is in
NP.

In the subsequent analysis, we use the following al-
ternative formulation of GMP1R. Suppose that a
path P from u to v is filled with obstacles except
for v and we move each of these obstacles one step
towards v. We can view the net effect as moving the
obstacle initially at » to v. We can also view it as
a move of a hole from v to u. Note that this view
extends to the more general case where the path P
may contain vacant vertices other than ». Thus, in
our new formulation, an obstacle is allowed to tra-
verse a path in one move, provided the path does
not contain the robot and its destination is initially
vacant, paying the length of the path as the cost.
The robot, however, is allowed to move only to an
adjacent vertex in one step as before.

A plan for an initial configuration is a sequence of
robot and obstacle moves starting from that config-
uration, where each obstacle move is specified by an
oriented path P. Often we specify an obstacle move
by a source-destination pair, in which case the path
taken is assumed to be the shortest path. We call
a plan wvalid if, when each move is executed, every
robot move is to a vertex without an obstacle and
the path of every obstacle move is clear of the robot.
The cost of a plan is the total cost of the moves in
the plan, where each robot move has a unit cost and
the cost of an obstacle move is the length of the path
of the move. We call a plan complete if it brings the
robot from s to t. We call two plans equivalent if
their initial and final configurations are respectively
identical, disregarding the identity of the obstacles.

Consider the following subproblem. Let v be a con-
figuration and let U be an arbitrary set of vertices.
What is the least cost plan to clear U entirely of

obstacles? Let us first ignore the presence of the ro-
bot. Then, this subproblem has the following simple
answer which we call the matching principle. Let
Vi € U be the set of vertices in U with an obsta-
cle in v and let V, C V(G) \ U be the set of ver-
tices outside of U with a hole in . It is necessary
that |V3| > |Vi] for our problem to have a solution.
Consider a weighted bipartite graph on vertex sets
(V1,V,) where there is an edge with cost [between
v, € V3 and vy € V, if and only if the shortest path
between v; and v, in G has length [. Let p denote
the minimum cost matching from V; into V; in this
bipartite graph. This matching g can be viewed
as a plan consisting of obstacle moves v — p(v),
v € Vi, which can be executed without interference
with each other. In fact, it is not difficult to see
that this is an optimal plan from 7 to clear U. In
the subsequent analysis of our problem with a ro-
bot, several variations of the matching principle are
used to simplify given plans and to obtain optimal
subplans.

2. Trees

In this section we study the case when G is a tree.

2.1. Canonical plans

In this subsection we define a canonical form for a
complete plan, and show the existence of an optimal
complete plan that is canonical. This will allow us
to consider only canonical plans when we design al-
gorithms in the later sections. The proofs of all the
lemmas in this section can be found in the full paper.

In the example of Figure 1, we saw that the moves of
the robot in an optimal plan may not be monotonic.
It may back up from s, and may sidestep at several
points on its way towards t. Qur first goal is to
establish that these are the only ways that the robot
may deviate from a monotonic advance along the s—¢
path.

We call a sequence of robot moves quasi-monotonic
along an oriented path P from u to v, if it starts
from u towards v and, on arriving at each internal

vertex w of P, either (1) immediately proceeds to
the next vertex on P, or (2) “sidesteps” to a vertex
adjacent to w not on P, returns to w and proceeds
to the next vertex on P. We call an internal vertex
of P at which a sidestep occurs a branch verter and a
vertex to which the robot sidesteps a sidestep vertez.
We call a valid complete plan S quasi-monotonic if
the robot’s walk in S is quasi-monotonic along the
path from s to t. Let G, denote the forest that
results from removing a vertex v from the tree G.
For a vertex u # v, the u—side of v is the tree of G,
that contains u. The u—side of an edge e is similarly
defined. A vertex u is behind a vertex v # w if u is
not in the t—side of v. The following lemma asserts
the existence of an optimal complete plan in which
the robot, once having stepped into the t-side of s,
behaves quasi-monotonically.

Lemma 2: There exists an optimal complete plan
which consists of two parts: (1) a back up part
(which may be empty) in which the robot stays away
from the t-side of s, followed by (2) a forward part
which is a quasi-monotonic complete plan that brings
the robot from s to t.

As we saw in the example of Figure 1, the purpose
of the back up part is to liberate some holes behind
s, which would otherwise be unavailable until the
robot reaches the first side-step vertex in its quasi-
monotonic move towards ¢. For this purpose, it is
always sufficient for the robot to monotonically back
up to the closest fork vertex s’ behind s, visit up
to two vertices adjacent to s, which we call back
up vertices, and return to s monotonically. We call
a valid complete plan quasi-bitonic if it consists of
a back up plan, which either is empty or takes the
above form, followed by a quasi-monotonic forward
plan.

Lemma 8: There exists an optimal complete plan
which is quasi-bitonic.

We also want the obstacles in an optimal plan to
behave nicely. Let S be a quasi-bitonic plan. We
denote by Bgs (T's) the tree consisting of the set of
vertices visited by the robot in the back up part

(forward part, respectively) of S, including s. An
obstacle move from a vertex v in T’s is outward if its
destination is in the t—side of s and not in Ts; for-
ward if its destination is in the t—side of v and in Ts;
backward if its destination is either behind s or in
the intersection of Ts and the s—side of v. We call a
quasi-bitonic plan S canonicalif it has the following
properties.

(P1) No obstacle ever moves from outside of Bs UTs
into By U Ts.

(P2) All obstacles that are in Bs move out of Bg
without passing s, before the robot starts moving.
(P3) All outward and forward moves from Ts occur
before the robot starts moving.

(P4) Each obstacle initially on T's either moves once,
outward or backward, or moves twice, first forward
and then backward.

(P5) When an obstacle moves backward, it passes
through at least one branch vertex. When the ob-
stacle is from a vertex strictly between two branch
vertices, the meaning of this statement is clear. We
need clarifications for a few special cases. If the ob-
stacle originates from a branch vertex v or a sidestep
vertex adjacent to v, it passes another branch ver-
tex. If the obstacle originates from a vertex on the
path from s to the first sidestep vertex, then it passes
through the fork vertex in Bgs, i.e. the one the robot
backed up to. Moreover, when an obstacle moves
backward, the robot is on the sidestep vertex adja-
cent to the branch vertex it first passes through (or
on a leaf of By in the above special case.)

Lemma 4: There exists an optimal complete plan
that is canonical.

2.2. An exact algorithm

The algorithm for GMP1R below fully exploits the
properties of canonical optimal plans. Hereafter, the
only complete plans we will be concerned with are
canonical plans.

Given a canonical plan S and an edge e from u to v
lying on the path from s to ¢ (all edges are thought
of as directed towards the sink ¢), the subsequence
of moves that only involve edges on the s-side of v
(including e) is denoted left(S,e). (Here, think of

S as a plan in our original formulation of GMP1R
in which each move of an obstacle is across a single
edge.) This sequence left(.S, e) is almost a valid plan
except that it may pile up obstacles or holes on wv.
Similarly all moves on the t-side of e form an almost
valid plan, which is denoted right(.5, e).

Consider the flow of objects over e while executing
a canonical plan. From the definition of a canonical
plan, we can verify that this flow occurs in the fol-
lowing sequence. It starts with the preflow across e,
i.e., obstacles which cross from u to v and is followed
by some backflow across e, i.e., obstacles going from
v to u. This is followed by the crossing of the robot
over e. Lastly, there is a postflow of more obstacles
going from v to w. In the following lemma we show
that the amount of preflow, backflow and postflow
completely characterize the decomposition of a plan
into two pieces across an edge e.

We will say that a canonical plan § is (e, ny, ng, n3)-
respecting if the preflow across e is nq, the backflow
is my and the postflow is ns.

Lemma 5: Let e be any edge on the path from
s tot and left S; and S> be two (e,ny,nq,n3z)-
respecting canonical plans. Then there ezists an

(e, n1,ng, n3)-respecting canonical plan S such that

left(.S) = left(S1) and right(S) = right(S;).

Proof [Sketch]: Decompose S; into partial plans
Si”,sf),... where SY) is the sequence of moves
which occur between the (¢ — 1)st move across e
and the ¢th move across e. Similarly decompose
S5. The plan S obtained by replacing SY) with
left(5)), right($$"), for all is our target plan. An
induction on ¢ shows that the sequence of moves be-
fore the ith move across e is a valid sequence. It
can also be verified that the resulting sequence is

complete and canonical. O

The above lemma enables us to decompose the con-
struction of the optimal plan into the construc-
tions of the optimal plans to the left and the right
of e, while making them (e,ny,n,,n3)-respecting.
Let opt(e,nq,n2,n3) represent the cost of the left
part left(.S, e) of an optimal canonical (e, nq,ns, n3)-
respecting plan 5. We focus on the task of comput-

ing opt(e, ny,na, n3).

Let e and €’ be edges appearing on the s to ¢t path
in this order and suppose that the tail of e is a fork
vertex. We define the cost of an “atomic” move as
follows. Let us call a canonical plan S (e, e’)-atomic
if it causes the robot to sidestep at the tail of e, but
not again until the robot crosses e’. The atomic cost
atomic-opt(e, ny, ng, n3, €/, 0, nh,ny) is defined to
the minimum over all (e, ¢')-atomic, (e, nq,n2,ns)-
respecting, and (e, n}, nq, nj)-respecting plans 5, of
the quantity that is the cost of left(.S, ¢’) minus the
cost of left(S, e).

The cost opt(e’, n, na, n%) can now be computed eas-
ily using the recurrence

min {opt(e,ny, n2,n3)

€,n1,Nn2,Ns

opt(e’,n), na,ny) =

: / / /
+ atomic-opt(e, ny, na, n3, €', 0], Ny, n5) 1},

where e ranges over all the e on the s—t path such
that the tail of e is a fork vertex.

It is relatively straightforward to compute an opti-
mal complete plan based on this recurrence for opt.
A precise description of this is included in the full
paper. We now concentrate on the harder task of
computing atomic-opt(e, ny, ng, n3, €', n}, nhH, nj)

Let v be the tail of e and v’ the tail of ¢'. Let w
be the vertex adjacent to v that is used as the side-
step point. Let P denote the path from w to the
head of edge e’. We will show how to compute the
atomic-opt(e, ny, ng, n3, €', 0}, nh, ny) given that w is
the sidestep point. By minimizing over all possible
ws we get atomic-opt(e,ny, na, na, ', ny, ny, nt).

This computation turns out to be a minimum cost
flow computation on an appropriately defined lay-
ered network. The network has three layers of nodes,
the source set, the sink set and intermediate set.
Arcs may go from the source layer to the sink layer
directly, or may go from the source to the interme-
diate layer and from the intermediate layer to the
sink layer. There is one source node in this network
for each obstacle that ever uses P, and one sink node
for each possible ultimate destination of these obsta-
cles. Every arc of the network has unit capacity and
the flow constraint is that (1) every source should
have one unit of flow out of it and (2) at most one

unit of flow can enter each intermediate or sink node.
There are ny + nf + nj sources corresponding to the
obstacles that flow into P through v and ¢, in ad-
dition to the sources corresponding to the obstacles
on P in the initial configuration. Each hole on the
path from v to v’ (excluding v and ') in the initial
configuration, is a node on the intermediate layer.
The sink layer has one node for each of the ny + na
obstacles that get pushed behind v, one for each of
the n) obstacles get pushed ahead of v’, one for each
hole on the subtrees hanging off the v—v' path and
one for each vertex on P. The rules for arcs between
these nodes can be inferred by analyzing the possible
moves of obstacles in a canonical plan. The details
are given in the full paper. The cost of an arc is the
length of the path (in the tree G) between the obsta-
cle and the corresponding (virtual) hole. Here, for
example, if the source represents one of the preflow
obstacles then the cost of the arc is determined as if
the obstacle were at v. Similar rules are applied to
compute the cost of the remaining arcs.

A minimum cost flow in the above network gives the
cost of moving the obstacles so as to allow the robot
to move from v to w to v’. Minimizing over all possi-
ble ws gives us atomic-opt(e, ny, ny, n3, €, 0}, nhH, nj).

We now analyze the complexity of the entire algo-
rithm. The properties of a canonical plan imply that,
if an (e, nq, n2, n3)-respecting canonical plan uses the
tail of e as a branch vertex, then 0 < ny < 2 when-
ever n; > 0. Therefore, there are only O(n®) quadru-
ples (e,n4,n2,n3) among which we need to compute
atomic-opt. Each of O(n°) atomic cost computations
generates O(1) flow problems when amortized over
all possible paris (e, ¢’). Therefore, we need to solve
O(n°) mincost flow problems. Once this is done, the
optimal plan is obtained by solving a shortest path
problem in a network in which these O(n®) quadru-
ples are the nodes.

Theorem 6: If there is a solution of finite cost for
an instance of GMP1R on a tree, an optimal solu-
tion can be computed by solving O(n®) mincost flow
problems on networks with O(n) nodes each, and a
shortest path problem on a graph with O(n®) nodes.

2.3. A fast T-approximation for trees

In this section, we describe an algorithm for GMP1R
on a tree that gives a solution with cost at most
7 times the optimal. The idea is to simplify the
problem by fixing the set of side-stepping vertices.
Let Ty be a subtree of G consisting of the path from
s to t and, for each branch vertex v strictly between
s and t, an arbitrary vertex adjacent to v but not
on the s—t path. Recall that, for a canonical plan
S, Ts (Bs) denotes the subtree consisting of the set
of vertices visited by the robot in the forward part
(back up part, respectively) of S.

Lemma 7: There exists a complete canonical plan
S with Ts = Ty with cost at most 7 times the cost of
the optimal complete plan.

The proofis a simple simulation and is omitted. Our
algorithm searches for an optimal canonical plan as-
suming that it side-steps according to 7,. This is
done by solving a mincost flow problem very sim-
ilar to the one we used in computing the atomic
cost in the exact algorithm of Section 2.2. Since
the side-step vertices are fixed, we can construct
one flow graph (for each potential shape B of Bjg)
which corresponds to a complete canonical plan 5
with Ty = Ty and Bs = B. The source layer con-
sists of the obstacles initially in 7o U B and the sink
layer consists of the holes outside of T, U B and the
vertices in Tpo U B. The intermediate layer consists
of the vertices of Ty which are initially vacant and
thus potential temporary locations of obstacles be-
tween the forward and the backward moves. The
rules for the presence and costs of the arcs are very
similar to those in Section 2.2. We need to solve a
flow problem for each of O(n?) potential shapes of
B. However, combining the problems for B with mi-
nor differences, we can reduce the number of flow
problems required down to n.

Theorem 8: An approzimate solution for GMP1R
on a tree, with cost at most 7 times the optimal,
can be computed by solving at most n mincost flow
problems on a graph with O(n) vertices.

3. An approximation algorithm
for general graphs

In this section, we consider general graphs and con-
struct polynomial time algorithms to solve GMP1R
approximately. In the following, we assume that s
is a fork vertex. This assumption is justified, in the
context of approximation , by the following observa-
tion.

Lemma 9: Let s be an internal vertex of a chain
C, and let s; and sy be two endpoints of C'. Suppose
further that t is not on this chain. Let S;, ©1 = 1,2,
be the optimal plan to bring the robot from s to s;
and let S] be the optimal plan to bring the robot to
t starting with the final configuration of S;. Then,
for either « = 1 or 2, the plan S; followed by S is
a solution to the original problem whose cost is at
most three times the optimal.

Proof: If the robot in the optimal plan exits C' from
s;, the optimal cost must be greater than the cost of
S;. But S/ can do no worse than undoing 5; and
then executing the optimal s-to-t plan. DO

A natural heuristic for an approximate solution is to
let the robot follow the shortest path from s to ¢,
with possible side-steppings. It is easy to see that
the plan obtained by this heuristic can be as bad as
Q(lynes) times the optimal, where /.4, is the length
of the longest chain in G. This is because a chain of
length [packed with obstacles requires Q(1?) steps to
clear, while the optimal plan may choose a slightly
longer path with few obstacles. In fact, a much worse
case exists. Suppose that there are two disjoint paths
from s to t of different lengths. Each internal vertex
of the shorter path has a single leaf attached to it.
In the longer path, any two vertices having distance
2 on the path are connected by an additional chain
of length 2. Thus, the chains on both paths are all
of length 1. If there are only 2 holes in the entire
graph, the longer path can be traversed in a number
of steps that is linear in its length, while the shorter
one requires a quadratic number of steps (at each
robot move, a hole must be recycled through the
cycle consisting of the two s—t paths). Yet another
case in which the shortest path performs poorly is

when there is a rich pool of holes “closer” to the
longer path than the shorter path.

These examples motivate the following estimates of
the cost of traversing a chain, in addition to the ob-
vious estimate — its length.

1. Evacuation cost w(C): the cost required to clear
chain € assuming that an infinite source of holes
is attached to each end of the chain.

2. Cycle cost x,(C): the cost to be spent for recy-
cling holes when the robot traverses the chain
using exactly h distinct holes. If A holes are
enough to fill up the chain, this cost is set to 0.
If there is no cycle containing C' and h holes are
not enough to fill up the chain, this cost is set
to oo.

3. Hole-fetch cost a,(C):
bring A holes to chain C' in the initial configura-
tion, regarding the robot as one of the obstacles.

the cost required to

More formal definitions of these measures are given
in the full paper. Note that all of these measures can
be computed efficiently based on the initial configu-
ration.

Suppose that the optimal plan uses at most h dis-
tinct holes in the robot’s traversal of any single chain.
Then its cost is at least >_,(I(C;) + w(C;) + xn(C:)),
where the summation is over all chains C; traversed
by the robot in the optimal plan. Its cost is also
at least max;(miny<p <p(on (C;) + xn(C;)), because
the traversal of any chain C; requires globally fetch-
ing some holes to C; and recycling them. Moreover,
if the optimal plan uses exactly h distinct holes on
some chain, its cost is at least min; a,(C;). There-
fore, the cost of the optimal plan is at least

%{Z(l(a) + w(Ci) + x1(C1))
+ m?X(zgifIglh(ahl(Ci) + xn(Ci))

+ min o, (C;) }.

For each path P from s to
t, let T',(P) denote Y, (I(C;) + w(C;) + xn(Cy)) +
ma‘Xi(min2§h’§h(ah’(Ci) + xw(Cs)) + min; a,(C;),

where ¢ indexes all chains in P. Our algorithm tries
all values of h, finding for each a path P that min-
imizes I',(P), and constructing a plan in which the
robot traverses this path, side-stepping at every fork
vertex. Such a path can be found as follows. Let
C; denote the set of chains of G with the I small-
est values of mins<p<n(an(C) 4+ xn (C) and let Dy
denote the set of chains of G with the J largest val-
ues of o, (C). Let Gy denote the network obtained
from G by replacing each chain C in C; N D; by an
arc of length [(C') 4+ w(C) + x»(C), and removing all
other chains. Solve the s—t shortest path problem
on each Gr; and take the solution that minimized
I',(P). The following Lemma compares the cost of
a plan based on P with our estimate I'y(P).

Lemma 10: For any h > 2 and path P from s
to t such that T,(P) < oo, we can construct, in
polynomial time, a complete plan with cost at most
O (ks [lmin + D)IR(P), where ky.e is the mazi-
mum number of obstacles on a single chain of P
m the tnitial configuration and l,... and l,,;, are
the lengths of the logest and the shortest chains of
P. The cost of this plan is also bounded above by
O(kpanl(P) 4+ Th(P)).

Combined with the above observations, the first part
of this lemma immediately leads to:

Theorem 11: There 1s a poly-
nomial time O(lyap/lmin)—approzimation algorithm
for GMPI1R on a general graph, where l,,., and l,,;,
are the lengths of the longest and the shortest chains

of G respectively.

Although the bound in this theorem, as it is pre-
sented, appears to be sensitive to an addition of
even one short chain to the graph, a closer look
at the proof reveals that this is not the case: ad-
dition of short chains does not essentially change
the bound on the approximation ratio as long as
their total length is O(l,,4z). The second bound in
Lemma 10 implies n/k,,.,—approximation because
Th(P) > (kmaz)®. Combined with the first bound,

we have:

Theorem 12: There is a polynomial time O(y/n)-
approzimation algorithm for GMPIR on a general
graph.

4. Extensions and further work

In this section we outline extensions of our algo-
rithms and directions for further work.

The case in which each edge of G has a positive
weight associated with it is an interesting generaliza-
tion of the unweighted case. The problem becomes
significantly different, even in the case of a tree. For
instance, the quasi-monotonicity of robot’s motion
does not hold any more, even in the case when the
robot starts at a leaf (Figure 3). We refer to the
movement depicted in Figure 3 as a wiggle. However
we are able to establish that the path of the robot
still adheres to a certain canonical form. This is de-
scribed informally in Lemma 13. In the case where
the robot does not start from a leaf vertex, the ro-
bot does not necessarily back up to the first branch
vertex behind it, and the motion on the backward
journey need not be simple. Lemma 14 addresses
this issue informally. The canonical obstacle moves
are similar to the unweighted case. These features
suffice to establish the existence of polynomial time
algorithm for the GMP1R on weighted trees.

Lemma 13: There exists an optimal plan for the
GMPI1R on weighted trees for the case where s is a
leaf, where the robot moves monotonically towards t,
except to make sidesteps or wiggles.

Lemma 14: In an optimal plan for the GMP1R on
weighted trees, the robot may start by moving back-
ward initially. In such cases, there exists an opti-
mal plan where the robot proceeds monotonically to
some vertexr s’ behind it (without wiggles or side-
steps), and then proceeds almost monotonically (as
in Lemma 18) towards the destination t.

The proof is omitted. Using these lemmas, we set
up a dynamic programming algorithm to solve the
GMP1R on weighted trees.

100

O—1—@—"—O0—+—0—10
*)
[3
5
100
1@ ——0O0——0—20
The Robot An Obstacle
® @

Figure 3: A wiggle in the robot’s path

Theorem 15: There exists a polynomial time algo-
rithm to solve the GMP1R on the weighted tree.

A solution to the weighted version of GMP1R ex-
tends immediately to the case when each vertex of
G has a positive integral capacity, representing the
number of objects that may sit on it at one time,
because we can simulate a vertex with capacity & by
a k-vertex star consisting of weight 0 edges. This
models situations in which we have intersections at
which objects can move past one another (say, a rail-
way junction).

We conclude by mentioning the most interesting di-
rections for further research:

(1) Show that a simple geometric version of GMP1R
is PSPACE-hard. The related warehouseman’s prob-
lem is PSPACE-hard[4]; however, that reduction
breaks down if all the objects have the same size.
(2) Study the case of several robots, each with its
own destination, i.e., GMPEKR discussed in the in-
troduction.

(3) In situations such as railway networks, several
objects can move simultaneously under their own
power. This version is closely related to deflection
routing for packets [3]. Thus, we would study plans

with parallel moves allowed, and study the number
of steps to deliver every robot to its destination.

References

[1] G. Frederickson and D. J. Guan. Preemptive
ensemble motion planning on a tree. SIAM J.
Comput., 21:1130-52, 1992.

O. Goldreich. Shortest move-sequence in the
generalized 15-puzzle is NP-hard. Manuscript,
Laboratory for Computer Science, MIT, June
1984.

B. Hajek. Bounds on evacuation time for de-
flection routing. Distributed Computing, 5:1-6,
1991.

J. Hopcroft, J. T. Schwartz and M. Sharir. On
the complezity of motion planning for multiple
independent objects; PSPACE-hardness of the
“Warehousmen’s Problem”. International Jour-
nal of Robotics Research, 3:76—88, 1987.

D. Kornhauser, G. Miller, and P. Spirakis. Co-
ordinating pebble motion on graphs, the diam-

eter of permutation groups, and applications.
Proceedings of the 25th Annual Symposium on
Foundations of Computer Science, pages 241-
250, 1984.

[6] D. Lichtenstein. Planar Formulae and Their
Uses. SIAM J. Comput., 11:329-343, 1982.

[7] J. T. Schwartz, M. Sharir, and J. Hopcroft.
Planning, Geometry and Complexity. Ablex,
1987.

[8] R.M. Wilson. Graph Puzzles, Homotopy, and
the Alternating Group. Jounal of Combinatorial
Theory (B), 16:86-96, 1974.

