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1. IntrodutionFiber-opti networking tehnology using wavelength division multiplexing (WDM) o�ers the poten-tial of building large wide-area networks apable of supporting thousands of nodes and providingapaities of the order of gigabits-per-seond to eah node in the network [Gre92, Ram93, CNW90℄.In WDM optial networks, the vast bandwidth available in optial �ber is utilized by partitioningit into several hannels, eah at a di�erent optial wavelength. Eah wavelength an arry datamodulated at bit rates of several gigabits per seond.In general, suh a network onsists of wavelength routers interonneted by point-to-point �ber-opti links (Figure 1). Eah link an support a ertain number of wavelengths. Wavelength routersare the analogs of swithes in traditional networks. Eah router is an endpoint of several optiallinks. Eah link is onneted to either an input port of the router or an output port. The routerdetermines whih inoming signal is to be transmitted to whih outgoing link. There is a signi�antamount of variane in the funtionality of a router | in terms of when it determines the routingpattern, how it determines the routing pattern and if it hanges the signals it transmits in anyfundamental way. The one ommon feature that all routers share is that they annot route twosignals on the same wavelength on the same outgoing link. We shall presently summarize the mainategories of wavelength routers. In addition to routers and links, a network also onsists of severalend nodes. Eah node is onneted to a router of the network and onsists of a tunable optialreeiver and tunable optial transmitter. The transmitter an be tuned to transmit on any of theavailable wavelengths and the reeiver an be tuned to reeive on any of the available wavelengths.
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Figure 1: A WDM network onsisting of wavelength routers interonneted by point-to-point �ber-opti links. Some of the wavelength routers have nodes attahed to them that form the souresand destinations for network traÆ.Wavelength routers. The simplest form of a wavelength router is a non-reon�gurable router.In a non-reon�gurable router, the inoming to outgoing pattern is determined statially and an1



not be swithed one the router is built. The main feature of suh routers is the fat that therouting pattern an be a funtion of the wavelength of the inoming signal. Thus for eah inputport and eah wavelength, the router assoiates a �xed set of output ports on to whih it willtransmit the inoming signal on the same wavelength (as the inoming signal). Figure 2 showssuh a wavelength router. It is a passive (unpowered) devie, and an be realized in many forms.The realization here uses passive wavelength demultiplexers and multiplexers.
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MuxFigure 2: A non-reon�gurable (swithless) wavelength router with 3 ports apable of handling 3wavelengths per port.A seond form of a wavelength router is the wavelength-independent reon�gurable swith. (Inprevious versions of the paper this swith was also alled an elementary swith.) These swithesare funtionally idential to swithes in the lassial networks. Eah swith an be dynamiallyreon�gured to hange its input-output pattern. However, the input-output pattern is independentof the wavelength of the inoming signal. Thus for a �xed on�guration of the swith, there isa �xed set of output ports on to whih an inoming signal is transmitted independent of theirwavelengths.A third form of wavelength router whih generalizes both the above forms is the wavelength-seletive reon�gurable swith. (In previous versions of the paper this swith was also alled a gener-alized swith.) As in the wavelength-independent ase, the input-output pattern of the wavelength-seletive swith an also be swithed dynamially. However, in this ase the routing pattern analso be a funtion of the wavelength of the inoming signal. Thus for a �xed on�guration, forevery input port and wavelength of the inoming signal, the swith assoiates a �xed set of outputports onto whih it transmits this signal. It is lear that this swith an simulate either of therouters mentioned earlier. It is also true that a ombination of non-reon�gurable routers andwavelength-independent reon�gurable swithes an simulate a wavelength-seletive reon�gurableswith. (See Figures 3(a) and (b) for an example of how a wavelength-seletive swith is simulatedby wavelength multiplexers and demultiplexers, and wavelength independent swithes.)Lastly, we mention that the literature has also onsidered a lass of wavelength routers withan additional feature { that of wavelength onversion. Suh routers are apable of hanging thewavelength of an inoming signal before transmitting it to an outgoing optial. It is possibleto onsider a variant of all the above routers (reon�gurable and non-reon�gurable) with this2
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(b)Figure 3: Two types of reon�gurable wavelength swithes, eah with 3 ports apable of handling3 wavelengths per port. They an swith eah wavelength at its input ports independent of theother wavelengths. The swithes an be reon�gured to allow di�erent interonnetion patterns.(a) This router uses wavelength-independent swithes in ombination with passive wavelength de-multiplexers and multiplexers. (b) This router uses a wavelength-seletive swith.additional feature. However in this paper we shall not be onsidering this type of wavelengthrouter.Classi�ation of Networks. Based on the above lassi�ation of routers, we onsider networkswhih have a subset of these routers available. The �rst lass of networks that we onsider arenon-reon�gurable, or swithless networks. The only form of wavelength routers available in suhnetworks are the non-reon�gurable routers. Swithless networks are of pratial importane be-ause the network omponents are passive and hene reliable, and moreover, all the ontrol is doneoutside the network, making network ontrol easier. Another motivation for studying suh networksis that they form important omponents in the onstrution of reon�gurable networks whih wedesribe next (Setion 3).The seond lass of networks, whih we all reon�gurable networks, are networks whih onsistof some non-reon�gurable routers and some reon�gurable routers. Within the lass of reon�g-urable networks we onsider two subases: (i) networks that allow only wavelength-independentreon�gurable swithes and non-reon�gurable routers, and (2) networks that allow wavelength-seletive reon�gurable swithes and non-reon�gurable ones.In swithless networks, one the routing pattern is set, the only hoie remaining is in selet-ing the wavelength at whih eah node transmits and the wavelength at whih it reeives. Inreon�gurable networks, additional degrees of freedom are obtained by hanging the settings of3



the swithes. We assert that optial swithes will be required to build large networks beause theswithless network requires a large number of wavelengths to support even simple traÆ patterns(as will be seen later in this paper).Problems and parameters of interest. In an optial network several node pairs may requestto be \onneted". A onnetion between a pair of nodes is a path onneting the two nodes anda wavelength. A set of onnetions is legal if no two paths using the same wavelength overlap on alink (or an edge). (See, for example, Figure 1 whih shows a onnetion from node A to node C onwavelength �1 and a onnetion from C to E also on �1. However the onnetion from B to D mustbe arried on a di�erent wavelength, �2.) The primary task we are interested in is the onstrutionof networks whih allows for a fairly general lass of onnetion requests to be legally onneted.A seond task is the task of deiding how to set up the onnetions satisfying a given olletion ofonnetion requests in the given network. For the networks we onstrut we end up solving thisseond task easily, though in general networks this problem may be muh harder.In general the number of wavelengths required is a key parameter that we seek to minimize.For non-reon�gurable networks, the number of routers and their degree are not as important andwe shall ignore these parameters in this paper.In the ase of reon�gurable networks again the parameter of interest is the number of wave-lengths, but this time the number of reon�gurable swithes used and their degree also beomesimportant. In partiular, it appears that the ost of onstruting swithes handling more thana �xed number of ports may be too high. Thus in this paper we restrit attention to boundeddegree swithes and analyze the number of swithes used as a funtion of the number of availablewavelengths.1.1. TerminologyA permutation network is a network that an suessfully route all sets of onnetions where eahtransmitter is onneted to a single reeiver and eah reeiver to a single transmitter.A permutation network handles onnetion establishment requests and onnetion terminationrequests. A onnetion establishment request spei�es the transmitter and reeiver between whiha onnetion is to be established. It is assumed that both the transmitter and the reeiver areidle when a onnetion establishment request is initiated. In this ase a permutation networkmust always be able to set up this onnetion. A onnetion termination request spei�es a pair(transmitter, reeiver) that are urrently onneted and terminates this onnetion. FollowingBene�s [Ben62℄, we distinguish between two types of non-bloking permutation networks (NBNs):rearrangeably NBNs, where existing onnetions an be rerouted to aommodate a new onnetionestablishment request, and wide-sense NBNs, where existing onnetions annot be rerouted toaommodate a new onnetion establishment request.An oblivious routing sheme always uses the same wavelength to satisfy a given onnetion4



request, regardless of the other onnetions in the network. Oblivious shemes are learly on-lineshemes. (An on-line sheme is a sheme that does not require the prior knowledge of futurerequests.) In partially oblivious routing, the wavelength that an be used to satisfy a onnetionrequest must be hosen from a subset of the available wavelengths in the network.The ongestion of a routing algorithm is the maximum number of paths that go over a singleedge in the network. The dilation of a routing algorithm is the maximum number of edges in apath used by the routing algorithm.1.2. Previous WorkThe simplest form of a swithless optial network is a broadast star network, shown in Figure 4.In a star network, a transmission from a node is broadast to all the nodes in the network. Clearlya star network with n nodes requires n wavelengths for permutation routing. Also it is suÆient toprovide eah node with a �xed-tuned transmitter at a wavelength di�erent from the other nodes,and a tunable reeiver in order to be able to route permutations. An alternative is to make thetransmitters tunable and the reeivers �xed-tuned.
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Figure 4: A broadast star network.However by using wavelength routers it is possible to route n onnetions using fewer than nwavelengths even in swithless networks. Barry and Humblet [BH92℄ showed that permutationrouting in a swithless network with n nodes requires 
(pn) wavelengths. They also showed [BH92,BH93a℄ that oblivious permutation routing requires at least bn=2+1 wavelengths and an be doneusing dn=2e+ 2 wavelengths.In a reon�gurable network with w available wavelengths, Barry and Humblet [BH93a℄ showedthat the number of wavelength-independent 2�2 swithes required to support permutation routingis 
(n log(n=w2))y. For the speial ase in whih the transmitters are �xed-tuned and the reeiversare tunable, Pieris and Sasaki [PS93℄ showed that the number of wavelength-independent 2 � 2yAll logarithms in this paper are to the base 2. 5



swithes required for permutation routing is 
(n log(n=w)), and onstruted suh a network usingO(n log(n=w)) wavelength-independent swithes.Pankaj [Pan92℄ obtained bounds on the number of wavelengths required for permutation rout-ing in ertain network topologies using wavelength-seletive swithes. His network onsisted of nwavelength-seletive swithes of �xed degree with eah node being onneted to a di�erent router.For this model, Pankaj showed that 
(logn) wavelengths are required for permutation routing. Healso showed that rearrangeably non-bloking permutation routing an be done with O(log2 n) wave-lengths and wide-sense non-bloking permutation routing with O(log3 n) wavelengths in popularinteronnetion networks suh as the shu�e exhange, de Bruijn, and hyperube networks.1.3. Contributions of This WorkWe present almost tight bounds for most of the problems onsidered in the earlier papers. Ourresults are summarized in Table 1.Our �rst set of results are for swithless networks. We prove that oblivious permutation routingin swithless networks an be done using dn=2e + 2 wavelengths, and prove that this is optimal;i.e., oblivious permutation routing in suh networks requires dn=2e + 2 wavelengths. The upperbound has been obtained independently by Barry and Humblet [BH92, BH93a℄. They have alsoobtained a lower bound that is lower than ours by at least 1. We demonstrate the existene of aswithless permutation network using O(pn logn) wavelengths. This result has been also obtainedindependently by Barry and Humblet [BH93b℄. Both results give networks whih are non-blokingin the wide-sense. We also give a polynomial time algorithm whih ditates the tuning of thetransmitters and reeivers as the requests ome online.Unfortunately the above result is not a onstrutive one. We omplement it with a onstrutiveversion whih is only slightly weaker. De�ne �(n) = 2(log n)0:8+o(1) . We show how to onstrut aswithless permutation network using O (pn�(n)) wavelengths.z We also provide non-trivial upperbounds for partially oblivious networks.An important fat in our results for swithless networks is that the wavelength routers are notof �xed degree. In other words we ignore the omplexity of swithless (passive) wavelength routers.In ative swithes however the omplexity of a swith strongly depends on its degree, and all ouronstrutions for reon�gurable networks use swithes of �xed degree.For reon�gurable networks with wavelength-independent swithes, we show the existene of awide-sense non-bloking network using O(n log nlogww2 ) wavelength-independent swithes and on-strut a wide-sense non-bloking network using O �n log n�(w)w2 � wavelength-independent swithes.Clearly all of these results apply also for rearrangeably non-bloking networks.For reon�gurable networks with wavelength-seletive swithes, we prove that any permutationnetwork using w wavelengths requires 
( nw log nw2 ) wavelength-seletive swithes of onstant degree.zUnfortunately, pn�(n) < n only for n > 1010. 6



Non-Reon�gurable (Swithless) NetworksNumber of WavelengthsLower Bound Upper BoundsPrevious OursOblivious Routing �n2 �+ 2 dn2 e+ 2 [BH92℄ dn2 e+ 2Non-oblivious (existene) 
(pn) [BH92℄ O(pn logn)[BH93b℄ O(pn log n)Non-oblivious (onstrutive) 
(pn) [BH92℄ O(pn�(n)Partially oblivious (k � 3) 
(pn) [BH92℄ O�n k+12k�1 k k2k�1�Reon�gurable NetworksNumber of WavelengthsO(n) wavelength-seletive swithes Lower Bound Upper BoundsPrevious OursFixed topologies O(log2 n) [Pan92℄(rearrangeable)
(log n) [Pan92℄ O(log3 n) [Pan92℄(wide-sense) O(log n)Arbitrary topologies 
[minfd;pmg℄(existential) (**) O[minfd;pmg℄Number of Swithes (w = number of wavelengths)Lower Bound Upper BoundsPrevious OursWavelength-independent swithes(existene) 
�n log nw2� [BH92℄ O �n log n logww2 �Wavelength-independent swithes(onstrutive) 
�n log nw2� [BH92℄ O �n log n�(w)w2 �Wavelength-seletive swithes 
� nw log nw2� O � nw log nw �Table 1: Summary of results.The results hold for both rearrangeable and wide-sense non-bloking ases unless spei�ed oth-erwise. Notations used in the table: The number of nodes is n,  denotes ongestion, d denotesdilation, m is the number of edges in the network, k denotes the number of wavelengths availablefor a onnetion, and �(n) = 2(log n)0:8+o(1) .(**) We show that there exist networks and onnetion requests that require 
(minfd;pmg)wavelengths to be onneted. 7



We onstrut a permutation network with w wavelengths and O( nw log nw ) wavelength-seletive 4�4swithes. Thus we an onstrut a permutation network with n wavelength-seletive swithes usingonly O(log n) wavelengths, an improvement over Pankaj's results [Pan92℄.Next we onsider networks with arbitrary topologies and arbitrary (not just permutation) on-netion establishment requests. We derive an upper bound on the number of wavelengths requiredfor any routing sheme in terms of ongestion and dilation for the given routing and the givennetwork. We show that there exists a lass of networks for whih this bound annot be improved.The rest of the paper is organized as follows. Setion 2 deals with non-reon�gurable (swithless)networks and Setion 3 with reon�gurable networks (with swithes). There are several openproblems remaining to be solved; Setion 4 gives a few suh problems.2. Non-Reon�gurable Optial NetworksIn this setion we onsider non-reon�gurable (or swithless) optial networks. We use � =f�1; : : : ; �wg to denote the set of available wavelengths. Observe that in suh a network onewe deide whih wavelength a transmitter hoose to transmit on, the set of reeivers whih an re-eive this signal is �xed. This allows us to model the network as a bipartite multigraphx G(T;R;E)and a labelling funtion ` : E ! �, where T is the set of transmitters and R is the set of reeiversand for an edge e from a transmitter t to a reeiver r, the label `(e) denotes the wavelength whih tan use to establish a onnetion to r. Sine t may transmit to r using many possible wavelengths,there an be multiple edges between t and r. Thus two or more edges between a transmitter t anda reeiver r will have di�erent labels. A \tuning on�guration" of the reeivers and transmittersis formally desribed by a funtion W : T [ R ! �. The tuning on�guration is interpreted asfollows. Every transmitter t transmits on the wavelength W (t). Every reeiver r reeives on thewavelength W (r). If e onnets transmitter t 2 T to reeiver r 2 R, then whenever t transmitsusing wavelength `(e), reeiver r may reeive this information only if it tunes to this wavelength.Moreover, sine the network has no swithes, all the reeivers onneted to t with edges labelled`(e) reeive t's message if they tune to this wavelength. Consequently, if a reeiver r is tuned to awavelength �, then only one transmitter that is onneted to r by an edge labelled � may use thiswavelength.Note that one the graph G and the labeling are determined, the only hoie remaining is inthe tuning on�guration of the transmitters and reeivers. This motivates the following de�nition:A tuning on�guration W : T [ R ! � is valid for a permutation � : T ! R in a network G,if for every t 2 T , W (�(t)) = W (t) and for every pair of distint transmitters t1; t2 2 T , eitherW (�(t1)) 6= W (t2) or if W (�(t1)) = W (t2) = �, then there is no edge labelled � between �(t1)and t2 in G.We onsider the problem of onstruting a non-bloking network using a minimum number ofxA multigraph is a graph with multiple edges allowed between nodes.8
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The onstrution above has the following two properties:G1 The transmitters are partitioned into b bloks where transmitters in eah blok are identiallyonneted to all of the reeivers.G2 For any wavelength �, if transmitters t1 and t2 belong to di�erent bloks, then the set ofreeivers onneted to t1 by edges labelled � is disjoint from the set of reeivers onneted tot2 by edges labelled �.To get a rearrangeably NBN, it is neessary and suÆient to onstrut a network suh that forany permutation � = �(1); : : : ; �(n), there is a way to tune the transmitters and reeivers suhthat the onnetion requests (t; �(t)), for 1 � t � n, are satis�ed. A given tuning satis�es theseonnetion requests if the following two properties are satis�ed for all 1 � t � n: (i) Both t and �(t)are tuned to the same wavelength �, and there exists an edge e onneting t to �(t) with `(e) = �.(ii) For all transmitters t0 6= t suh that there exists an edge e0 labelled � onneting t0 to �(t), t0is not tuned to �.Consider a permutation � = �(1); : : : ; �(n) that is to be routed. Property [G2℄ of our networkimplies that we an tune the transmitters of eah blok independently from the transmitters ofother bloks. This is beause transmitters from di�erent bloks do not interfere. Property [G1℄implies that in order to route �, for any blok of transmitters Ti, we have to use n=b di�erentwavelengths. For this, the n=b destination reeivers of the transmitters in Ti have to belong to n=bdi�erent bloks. Note that these bloks may belong to di�erent partitions.Given the network G, de�ne the bipartite graph H(S;B; F ), where S, the input set, orrespondsto the set of reeivers (i.e., S = R), andB, the output set, orresponds to the set of bloks of reeivers(i.e., B = fRij : 1 � i � k; 0 � j � b� 1g). A node r 2 S is onneted by an edge in F to Rij 2 B ifand only if the orresponding reeiver r belongs to the orresponding blok Rij. This onstrutionis illustrated in Figure 6.Observe that the graph H is haraterized by the following two properties.H1 The degree of eah node in S is at most k.H2 For 1 � i � k, eah node in S is onneted to exatly one node from the set fRi0; : : : ; Rib�1g.Theorem 1: A network G(T;R;E) with Properties [G1℄ and [G2℄ is non-bloking i� the orre-sponding graph H(S;B; F ) has the following mathing property:H3 The subgraph indued by any subset of n=b reeivers and their neighbors in B ontains amathing of ardinality n=b.Proof: We �rst prove that ifG(T;R;E) is non-bloking thenH(S;B; F ) has the mathing property.Let S0 � S be a set of ardinality at most n=b. Then onsider a permutation � from T to R10
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Proof: We onstrut H(S;B; F ) probabilistially as follows. Let jSj = n, and let B be partitionedinto k bloks B1; : : : ; Bk of ardinality b eah. We let eah vertex in S pik k neighbors { one ineah Bi independently and at random. We now analyze the probability that this graph has themathing property: i.e., any subset of up to n=b verties from S is ontained in some mathing.By Hall's Theorem [Hal35℄, suh a mathing does not exist if and only if there exists a set A ofat most n=b verties from S suh that jN(A)j < jAj, where N(A) denotes the set of neighbors ofA. Sine the degree of every vertex is k, it suÆes to onsider sets A of ardinality it at least k.Let � and a1; : : : ; ak satisfy the onditions: k � � � n=b and Pi ai < �. Fix a set A � S and setsAi � Bi suh that � = jAj and ai = jAij. The probability that N(A) � [iAi is at most Qki=1(aib )�.Thus, the probability that there exist A and Ai's of ardinality � and ai respetively suh thatjN(A)j < jAj is at most  n�! kYi=1 bai!�aib �� �  ne2�k�2kk�1bk�1!� :Thus if kb � n=b � � for some onstant  � 2 and k = 4 log n, then this probability goes tozero as n��(�). For a �xed �, there are at most �k = n4 log � hoies for the ai's. Sine there areat most n=b hoies for �, it follows that the probability that there exist � and ai's suh that thishappens is bounded by (n=b) �maxk���n=bfn��(�)+4 log �g = o(1).Thus under the onditions k = 4 log n and b = pn= log n, we get that with a positive probability,H(S;B; F ) has the required three properties. 2Theorem 3: A graph H(S;B; F ) with properties [H1℄, [H2℄, and [H3℄ in whih b = 2p2n andk = 2�(2n) an be onstruted.Proof: First, we de�ne a onentrator.De�nition: An (x; y; `)-onentrator with expansion � is a network with x inputs and y outputssuh that every set of t � ` inputs expands to at least �t outputs. The size of the network is thenumber of edges and the depth of the network is the length of the longest path from an input toan output.We use the following result from Wigderson and Zukerman [WZ93℄.Theorem 4 (WZ93): For all x, there are expliitly onstrutible (x; 2�px;px)-onentratorswith expansion �, depth 1 and size �x � �(x).We now show how to apply Theorem 4. For our ase, we set x = 2n and � = 1 and get thatthere exists a bipartite graph H 0(S0; B0; F 0), where jS0j = 2n, B0 = 2p2n, and jF 0j = 2n � �(2n)with the desired mathing property. However, graph H 0 does not satisfy Properties [H1℄ and [H2℄.We modify H 0 so that it satis�es these two properties. First, we onsider a subgraph of H 0 whihexludes all input nodes whose degree is more than two times the average degree in H 0. Spei�ally,the degree of eah input node in this subgraph is at most 2�(2n). Clearly, this subgraph still hasthe desired mathing property. Beause the size of the original graph H 0 is 2n � �(2n), there are atleast n input nodes in this subgraph. Next, we dupliate eah output node 2�(2n) times and split12



the neighbors of eah output node among the opies as follows. We number the edges outgoingfrom eah input node with the numbers 1 to 2�(2n). Now, the �rst opy will have as edges thesubset of the edges of the original node numbered 1, the seond will have the subset numbered 2,and so forth. It is easy to see that the resulting graph has all the three properties. 22.2. Wide-Sense Non-Bloking NetworksIn this subsetion we apply the above results to wide-sense NBNs.De�nition: A onnetion request is one-sided if it spei�es only an input. It is satis�ed byonneting the input to any of its neighboring outputs. A network H is wide-sense one-sided NBNif it an satisfy any sequene of one-sided onnetion and termination requests without rerouting.De�nition: A network H is a-limited wide-sense one-sided NBN if it an satisfy any sequene ofrequests in whih at most a transmitters are onneted simultaneously.We show that to get a wide-sense NBN G, it is suÆient to make the orresponding graph Hn=b-limited wide-sense one-sided NBN.Theorem 5: A network G(T;R;E) with Properties [G1℄ and [G2℄ is wide-sense NBN if and onlyif the orresponding graph H(S;B; F ) is n=b-limited wide-sense one-sided NBN.Proof: The proof is similar to the proof of Theorem 1. We �rst prove that if G(T;R;E) is wide-sense NBN then H(S;B; F ) is n=b-limited wide-sense one-sided NBN. We have to show how tosatisfy in H any sequene of one-sided onnetion and termination requests as long as no morethan n=b onnetions are ative simultaneously. We do this by onverting a sequene of one-sidedonnetion and termination requests in H to a sequene of onnetion and termination requestsin G, and then identify the mathes in H with the wavelengths used to satisfy the requests in G.Consider a request to onnet vertex s 2 S in H. Reall that s orresponds to a reeiver in G.We assoiate with it a request to onnet one of the transmitters in T0 to the reeiver s. (Sine nomore than n=b onnetions are ative, and beause of the way we onvert termination requests, weare guaranteed to �nd a transmitter in T0 that is not ative.) Suppose that the wavelength used tosatisfy this onnetion request in G is �i;j. Then, we math s to Rij. As in the proof of Theorem 1it an be argued that sine G is an NBN, Rij must be unmathed in H. A request to terminate theonnetion of vertex s in H, translates to a termination request of the onnetion that requestedreeiver s in G.We now prove the reverse diretion, i.e., If H(S;B; F ) is n=b-limited wide-sense one-sided NBNthen G(T;R;E) is wide-sense NBN. Consider a sequene of onnetion requests in G. Reall thatProperty [G2℄ of our onstrution implies that transmitters of eah blok an be tuned indepen-dently from the transmitters of other bloks. Thus is suÆes to onsider only the onnetionrequests in whih all transmitters are from some �xed blok Ta. The destination reeivers of thetransmitters in Ta at any given time, may be any subset of at most n=b reeivers. Thus, in order tosatisfy any sequene of requests for this blok in G, at any given time, all the reeivers onneted13



to transmitters in Ta must belong to di�erent bloks. By the de�nition of H, this translates to theproperty that H must be n=b-limited wide-sense one-sided NBN. 2The following theorem is from [FFP88℄.Theorem 6 (FFP88): A network H(S;B; F ) is a-limited wide-sense one-sided NBN if every setX of inputs of ardinality at most 2a has at least 2jXj neighbors.We remark that by following the proof in [FFP88℄ we an atually prove that for our speial asewe may weaken the property, and onsider only sets of ardinality at most a.We onlude that the graph H(S;B; F ) is n=b-limited wide-sense one-sided NBN if it has thefollowing property.H4 Every set X of inputs of ardinality at most 2n=b has at least 2jXj neighbors.Note that Property [H4℄ is stronger than Property [H3℄.Theorem 7: There exists a graph H(S;B; F ) with properties [H1℄, [H2℄, and [H4℄ in whih b =pn= log n and k = 10 log n.Proof: The proof is the same as the proof of Theorem 2. The only di�erene is in the value of theonstants. 2Theorem 8: A graph H(S;B; F ) with properties [H1℄, [H2℄, and [H4℄ in whih b = 4pn andk = 2�(4n) an be onstruted.Proof: We follow the onstrution given in the proof of Theorem 3. We use an expliit onstrutionof (4n; 8pn; 2pn)-onentrators with expansion 2, depth 1, and size 8n � �(4n), and extrat from ita graph with properties [H1℄, [H2℄, and [H4℄ in whih b = 8pn and k = 2�(4n). 2There is one problem with our onstrution. Any algorithm that deides how to tune thetransmitters and reeivers appears not to be polynomial. Borrowing terminology from [FFP88℄ wehave to maintain the maximum ritial set of inputs. For this, it appears that after eah request,we have to hek all subsets of idle inputs. Below, we show how to alleviate this problem. Weremark that it is not always easy to get polynomial deision algorithms for the routing questionsbased on the existential results. Arora, Leighton and Maggs [ALM90℄ give one suh algorithm fortheir routing problem, other instanes may be found from their paper. Our tehnique seems to bedi�erent from the previous methods.We get a polynomial deision algorithm by strengthening the properties H has to satisfy.Theorem 9: A network H(S;B; F ) is a-limited wide-sense one-sided NBN and has a polynomialtime deision algorithm if for every set X of inputs of ardinality at most a, even after we arbitrarilyerase half of the edges adjaent to eah input in X, X has at least 2jXj neighbors.Proof: At any stage, let A denote the subset of S orresponding to mathing requests. For v 2 A,let T �(v) denote its mathed vertex in B and let T �(A) denote the set of all mathed verties in14



B. The algorithm maintains: (i) a ritial set C whih ontains the set A, and (ii) a math T (v)for every vertex v 2 C, suh that T is an extension of T �. The sets C, and T (C) = fT (v)jv 2 Cgsatisfy the following invariants.Invariant 1: For eah x 2 C n A, jN(x) \ T (C)j � 12j N(x)j; i.e., for eah vertex x in C that is notin A, at least half of the neighbors of x are in T (C).Invariant 2: For every x 62 C, jN(x) \ T (C)j � 12j N(x)j; i.e., at least half of the neighbors of eahof the verties not in C is outside T (C).Invariant 3: jT (C)j = jCj � 2jAj � 1.We remark that the ritial set above is not equivalent to the ritial set in [FFP88℄, though itattempts to apture the same set. We also remark that ritial set is not unique and is a funtionof T .We now show how the algorithm satis�es onnetion and termination requests, maintainingthese invariants (under the assumption that these invariants held prior to these requests).Case 1: A onnetion request for x 2 C. In this ase the algorithm mathes x to T (x). The setC and the map T remain unhanged. It is easy to see that invariants (1){(3) above still hold.Case 2: A onnetion request for x 62 C. In this ase the algorithm piks a tentative math tox, denoted t(x), outside T (C). Suh a neighbor must exist due to Invariant (2) above. Now, weompute the new inputs that have to be added to C. This is done inrementally. Let D be theurrent set of new inputs (D is initialized to fxg), and let D0 be the set of outputs tentativelymathed to these inputs (D0 is initially ft(x)g). While there exists an y outside D [ C suh thatmore than half of its neighbors are in D0 [ T (C), �nd an output y0 outside D0 [ T (C) suh thatD [ fyg an be mathed to D0 [ fy0g, and add y to D and y0 to D0.This is done as follows. First, �nd a mathingM1 of D[fyg to outputs outside T (C). Observethat as long as jDj < a, it follows from Invariant (2) and the property of H asserted in the theoremthat D [ fyg satis�es the onditions of Hall's Theorem [Hal35℄, and hene suh a mathing exists.(In the laim below we prove that if suh a vertex y exists, then jC [Dj < 2jAj + 1, or jDj � jAj.Sine we deal with a onnetion request jAj < a, and thus also jDj < a.) Consider the graph givenby the union of M1 and the mathing M0 of D to D0. The onneted omponent of this graph thatinludes y must be an odd path that starts with y and ends with an output y0 not in D0. The linksof the path alternate between M0 and M1. The rest of the omponents must be either even pathsor even yles with alternating links. We onstrut the desired mathing as follows: all the vertiesfrom D that are in the \even" omponents are mathed using the edges from M0; vertex y, and allother the verties from D that are in the \odd" omponent are mathed using the edges from M1.It is easy to see that the new mathing mathes D [fyg to D0 [fy0g. We update D to be D[fyg,D0 to be D0 [ fy0g, and t(x) to be the mate of x in the new mathing.We repeat this step till no suh vertex y is found. Then, we update our mathing T �(x) to bethe �nal t(x), the new set A to be A [ fxg, the new set C to be C [ D, and the new set C 0 to15



be C 0 [D0. It is lear that the invariants (1) and (2) hold upon termination. It remains to showthat the proedure does eventually terminate and that when it does Invariant (3) above holds. Thefollowing laim shows that termination must our when jC [Dj � 2jAj+1. In addition of provingtermination, sine the size of A is inremented by one upon termination, this shows that Invariant(3) holds after the sets are updated.Claim: If jC [Dj = 2jAj + 1 then there is no input vertex y outside C [D suh that more thanhalf of the neighbours of y are in T (C) [D0.Proof: To obtain a ontradition suppose that suh a vertex y exists. We get that more than halfof the neighbors of every input in I = (C n A) [ (D n fxg) [ fyg are in a subset of outputs of size2jAj+ 1. Sine jAj � a� 1, jIj = jCj � jAj+ jDj � 1 + 1 = 2jAj+ 1� jAj = jAj+ 1 � a. However,the ardinality of the neighbors set of I is jT (C)[D0j = jC [Dj = 2jAj+1 < 2jIj; a ontraditionto the property of H stated in the theorem. 2Case 3: A termination request for x. Let x be an input for whih a onnetion is terminated andlet T (x) be its mathed output. We now need to show how to update C so that invariants (1){(3)are satis�ed. The obvious solution would be to retain the old C, but this may violate Invariant(3). Instead, we onstrut the set C \from srath", as follows. Initially, we set C to be A, andT (C) to be T �(A). Inrementally, we grow C similar to the previous ase: As long as there existsan input y 62 C suh that more than half the neighbours of y are in T (C), then add y to C. Notethat y must have been in C also before the termination and thus T (y) is de�ned. We add T (y)to T (C). This proedure is repeated until no suh vertex y is found. Again, it is lear that if theproess terminates invariants (1) and (2) hold. An argument similar to that in the laim above,shows that the proess indeed terminates and that Invariant (3) holds as well. 2We onlude that the graph H(S;B; F ) is n=b-limited wide-sense one-sided NBN and has apolynomial time deision algorithm if it has the following property.H5 For every subset X of inputs of ardinality at most n=b, even after we arbitrarily erase halfof the edges adjaent to eah input in X, subset X has at least 2jXj neighbors.Note that this property does not seem to imply Property [H4℄.Theorem 10: There exists a graph H(S;B; F ) with properties [H1℄, [H2℄, [H3℄, and [H5℄ in whihb = pn= log n and k = 16 log n.Proof: We follow the onstrution given in the proof of Theorem 2. The onstrution would yielda graph that does not have Property [H5℄ if there exists a set A of a verties from S of ardinalityat most n=b, and a set T of verties from B, with ardinality less than 2a, suh that for eah inputw in A half the neighbours of w are in T . For a �xed size a, we upper bound the probability thatsets A � S of size a, and T � B of size at most 2a with the above property exist by: na! kk=2!a � k=2Yi=1 b4a=k!�4a=kb �a �  ne322k�4ak=2�3kk=2�2bk=2�2 !a :16



Thus if kb � n=b � a for some onstant  � 32 and k � 2 log n, then this probability goes tozero as n��(a), and the probability that there exist a suh that this happens an now be boundedby o(1).Thus under the onditions k = 32 log n and b = pn= logn, we get that with a positive proba-bility, H(S;B; F ) has the required four properties. 2We remark that a similar onstrution is used in [BRSU93℄ to obtain eÆient routing in \lassial"networks.2.3. Oblivious and Partially Oblivious RoutingIn this setion we assume that whenever a transmitter has to ommuniate with a reeiver itmust use one out of a �xed number k of wavelengths. In previous setions we onsidered the asek = w, where w denotes the total number of wavelengths available. Here, we onsider the asek < w. The ase k = 1 is alled the oblivious routing problem sine there is no freedom in hoosingwavelengths. Note that this implies that G is a graph rather than multigraph. The ase k � 1is alled the partially oblivious routing problem. In this ase, G is a multigraph with boundedmultipliity.An oblivious routing network an be desribed by an n�n matrix M . The entry M(i; j) in thematrix is an integer in the range 1; : : : ; w where w is the total number of wavelengths in the solution.The entry M(i; j) indiates that i transmits to j using wavelength M(i; j) in any permutation �(:)for whih �(i) = j.Lemma 11: Let the matrix M be a solution to the oblivious routing. If � = M(i; j) = M(i0; j0)for i 6= i0 and j 6= j0, then M(i; j0) 6= � and M(i0; j) 6= �. Conversely if this ondition is satis�edfor all (i; j) then M is a solution to the oblivious routing.Proof: If eitherM(i; j0) orM(i0; j) is � then any permutation �(:) suh that �(i) = j and �(i0) = j0an not be satis�ed. Conversely if the ondition holds, then a onnetion from i to j an always bearried on � without interfering with any other ommuniation. 2De�ne a legal oloring of an n � n matrix M to be an assignment of olors to the entries ofM with the following property: if � is the olor of M(i; j) and M(i0; j0) for i 6= i0 and j 6= j0,then M(i; j0) and M(i0; j) are not olored with �. The above lemma redues the oblivious routingproblem to the problem of �nding a legal oloring of an n� n matrix with a minimum number ofolors. We �rst prove that dn=2e+2 olors are needed and then onstrut an optimal solution withdn=2e+ 2 olors.Theorem 12: For n � 6 and n = 4, any legal oloring of an n � n requires at least dn=2e + 2olors.Proof: To obtain a ontradition, assume that we are given a legal oloring with dn=2e+1 olors.We mark eah entry of the matrix with either R or C aording to the following rule:17



An entry M(i; j) is an R-entry if its olor appears more than one in row i; it is aC-entry if its olor appears more than one in olumn j. In ase its olor does notappear again in both row i and olumn j it is marked arbitrarily.Sine the oloring is legal it follows that an R-entry annot math the olor of any other entry in itsolumn and a C-entry annot math the olor of any other entry in its row. For eah line (row orolumn), let N(line) be the number of entries in the line marked ompatibly with the line: N(row)ounts the number of R-entries in that row, and N(olumn) ounts the number of C-entries in thatolumn. It follows that the sum of N(line) over all 2n lines is n2 sine eah entry is ounted one,either in its row or in its olumn. Thus the average value for N(line) is n=2.Assume now that n � 4 is even. Sine all the C-entries in a row (or all R-entries in a olumn)are olored with di�erent olors, it follows that the number of olors in eah line is at least 1+n�N(line). Consequently, 1 + n � N(line) � n=2 + 1 whih implies that N(line) � n=2. However,sine the average value for N(line) is n=2, it must be that N(line) = n=2. Sine the number ofolors is n=2 + 1, all of the lines have the following struture: one olor appears n=2 times andeah of the other n=2 olors appears exatly one. We refer to the olor that appears n=2 timesas the dominating olor of the line. For n � 4: 2 � (n=2 + 1) < 2n. Therefore, there are threelines with the same dominating olor, say . Without loss of generality, assume that two of theselines are rows. We laim that in this ase  annot appear in any entry outside these two rows { aontradition. To see this, note that sine the oloring is legal, the entries olored  in these tworows annot share a olumn. Sine there are n entries olored  in these two rows, for every olumnin the matrix, there is an entry in one of these rows olored . However, this implies that  annotappear anywhere else in all of these olumns.Assume now that n � 7 is odd. In this ase we assume that we are given a legal oloring with(n+ 3)=2 olors. Similar arguments to the even ase show that 1 + n�N(line) � (n+ 3)=2. Thisimplies that N(line) � (n � 1)=2. However, sine the average value for N(line) is n=2, it followsthat there are at least n lines with N(line) = (n� 1)=2. Sine the number of olors is (n + 3)=2,all these lines have the following struture: one olor appears (n� 1)=2 times and eah of the other(n+1)=2 olors appears exatly one. We refer to the olor that appears (n� 1)=2 times in suh aline as the dominating olor of the line, and to the line as a dominated line. For n � 7, the numberof olors (n+ 3)=2 is stritly less than the number of dominated lines n. Therefore, there are twodominated lines with the same dominating olor, say . Suppose that these two lines are one rowand one olumn. Consider the entry where this row and this olumn interset. This entry annotbe olored by . If this entry is an R-entry (respetively, a C-entry), then this row (respetively,olumn) has at least (n� 1)=2 + 1 entries marked R (respetively, C), ontraditing the de�nitionof a dominated line. Thus, these two lines are either both rows or both olumns. Without lossof generality assume that both are rows. The entries olored  in these two rows annot share aolumn. Sine there are n� 1 entries olored  in these two rows, there is only one olumn whereolor  may olor entries not in these two rows. So, if we eliminate these two rows, and the oneolumn, we are left with an (n� 2) � (n� 1) matrix that is legally olored with (n+ 1)=2 olors.18



We proeed to show that this is impossible.As before, we mark the (n�2) �(n�1) entries with R and C. By similar arguments, we get thatN(row) � (n�1)=2 and N(olumn) � (n�3)=2. We refer to the lines for whihN(row) = (n�1)=2or N(olumn) = (n � 3)=2 as dominated lines. In a dominated line there must be a dominatingolor appearing N(line) times while all the other olors appear exatly one. To lower bound thenumber of dominated lines note that if for all rows, N(Row) > (n � 1)=2 and for all olumnsN(olumn) > (n � 3)=2, the sum of N(line) over all lines is at least n+12 (n � 2) + n�12 (n � 1) =2n2�3n�12 . However, there are only (n � 1)(n � 2) entries in the matrix. Therefore, there are atleast 2n2�3n�12 � (n� 1)(n� 2) = 3n�52 dominated lines.For n > 7: 2 � (n+ 1)=2 < (3n� 5)=2. Therefore, there exists a olor whih dominates at leastthree dominated lines. Following the same arguments as before it an be shown that these threelines annot be either all rows or all olumns. Thus, one of these lines is a row and one is a olumn.We get a ontradition by examining the entry where these lines interset, as before.The remaining ase is when n = 7, and the number of olors is four. Again, no olor dominatesthree lines or one line and one olumn. Sine 2 � (7+ 1)=2 = (3 � 7� 5)=2, it follows that eah of thefour olors dominates exatly two lines. One of them must dominate two olumns beause thereare only 7 � 2 = 5 rows. Moreover, this olor appears in these two dominated olumns and in atmost one row. If we omit these three lines, we are left with a 4 � 4 matrix that is olored legallywith the remaining three olors. This is impossible by the even ase proved earlier. 2We note that for n = 2; 3; 4 we need n olors to over the matrix. The ase n = 5 is uniquesine we an olor a 5� 5 matrix with 4 < d5=2e + 2 olors as shown in Figure 7.1 1 3 4 23 4 1 1 22 2 3 4 13 4 2 2 14 3 4 3 1Figure 7: Optimal solution for the oblivious routing for n = 5 with 4 wavelengthsNow, we onstrut a solution using dn=2e + 2 wavelengths for n � 6. We will onstrut amatrix M satisfying the onditions of Lemma 11. For an even n, the idea of the onstrution iswell demonstrated by the routing matrix presented in Figure 8. In the example n = 12, and thewavelengths are denoted by 0; : : : ; 7. In general, for an even n, we have the following matrix. Theentries of wavelength 0 are Mn[0; i℄, for i = 0; : : : ; n=2 � 2, Mn[j; n=2 � 1℄, for j = 1; : : : ; n=2 � 1,Mn[n=2; i℄, for i = n=2; : : : ; n � 2, Mn[j; n � 1℄, for j = n=2 + 1; :::; n � 1. It is easy to see thatwavelength 0 obeys the onditions of Lemma 11. Now, for � = 1; : : : ; n=2 � 1, the entries ofwavelength � are given by adding � (modulo n) to the row index and subtrating � (modulo n)from the olumn index of every entry of wavelength 0. Again, it is easy to see that these wavelengths19



also obey the onditions of Lemma 11. The rest of the entries are �lled with the two wavelengthsleft. The entries of wavelength n=2 are Mn[i; n � i � 1℄, for i = 0; : : : ; n � 1, and the entries ofwavelength n=2 + 1 are Mn[i; n=2 � i� 1℄, Mn[n=2 + i; n� i� 1℄, for i = 0; : : : ; n=2� 1.0 0 0 0 0 7 j 5 4 3 2 1 61 1 1 1 7 0 j 5 4 3 2 6 12 2 2 7 1 0 j 5 4 3 6 2 23 3 7 2 1 0 j 5 4 6 3 3 34 7 3 2 1 0 j 5 6 4 4 4 47 4 3 2 1 0 j 6 5 5 5 5 5{ { { { { { j { { { { { {5 4 3 2 1 6 j 0 0 0 0 0 75 4 3 2 6 1 j 1 1 1 1 7 05 4 3 6 2 2 j 2 2 2 7 1 05 4 6 3 3 3 j 3 3 7 2 1 05 6 4 4 4 4 j 4 7 3 2 1 06 5 5 5 5 5 j 7 4 3 2 1 0Figure 8: Optimal solution for the oblivious routing for n = 12 with 8 wavelengthsNext, assume that n is odd. The matrix Mn is the matrix Mn�1 with an additional top lineand an additional last olumn. Sine dn=2e + 2 = (n + 1)=2 + 2 = (n � 1)=2 + 3, we have anextra wavelength whih is denoted by (n � 1)=2 + 2. The entries are as follows: (i) Mn[0; j℄ =Mn[i; n� 1℄ = (n� 1)=2 + 2, for j = 0 : : : n� 2 and i = 1 : : : n� 1, (ii) M [0; n� 1℄ = (n� 1)=2, and(iii) Mn[i; j℄ =Mn�1[i� 1; j℄, for i = 1 : : : n� 1 and j = 0 : : : n� 2.The following theorem is implied by the above onstrution.Theorem 13: The matrix Mn is a solution to the oblivious routing using dn=2e+ 2 wavelengths.2.3.1. Partially Oblivious RoutingWe now onsider the ase of partially oblivious routing. Let k be a bound on the number ofwavelengths permitted to be used between any pair of transmitter reeiver. In ase k = O(log n)then w = 
(pn) wavelengths are required, O(pn logn) are suÆient (existentially), and pn�(n)are suÆient (onstrutively). (See Setion 2.1.)The existential upper bound for k = o(log n) an be ahieved as follows. Assume as in the aseof the k = O(log n) that we are looking at partitions of the reeivers. If the degree is k this impliesthat we are looking at k di�erent partitions. Assume that eah suh partition is to b bloks eahof ardinality n=b. In this ase the number of wavelengths is w = kb. To get the bound we have to�nd the minimum w suh that the failure probability is less than 1.20



Assume that n=b � kb, otherwise the failure probability is learly 1. Let � = n=b. Borrowingthe terminology of the proof of Theorem 2, we fail if and only if there exists a set A of � vertiesfrom S, suh that jN(A)j < �. For a �xed set A � S and sets Ai � Bi (where ai = jAij) suh thatj [i Aij = � � 1, the probability that N(A) � [iAi is at most Qki=1(aib )�. Thus, the probabilitythat there exist A and Ai's of ardinality � and ai respetively suh that jN(A)j < � is at most n�! kYi=1 n=�ai !� ain=��� �  n�! n=��=k � 1!�(�� k)�kn �� k�1Yi=1  n=��=k! �2kn!�� e2��1�(2k�3)�+2n(k�2)�+1k(k�1)�+1 :For k = 2, this expression is less than 1 if � �  log n= log logn, for some onstant . This givesw = kn=� = O(n log logn= log n). Things look better for k > 2. Then, this expression is less than1 if � �  log n(k�2)=(2k�3)k(k�1)=(2k�3), for some onstant . Thus, the number of wavelengths isO�n k�12k�3 k k�12k�3� :For example, for k = 3 it is O(n2=3), for k = 4 it is O(n3=5), and so on. As k inreases theexponent of n tends from above to 1=2. Note that for suh values it is always the ase thatkb = kn=� � � = n=b.3. Reon�gurable Optial NetworksIn this setion we onsider reon�gurable optial networks, i.e., networks with optial swithes.The number of wavelengths required to support a partiular traÆ set in reon�gurable networksis expeted to be muh smaller than in swithless networks, and is a funtion of the number ofswithes in the network. We remind the reader that the networks of this setion ontinue to usenon-reon�gurable routers whih were used in Setion 2.We onsider the problem of onstruting a reon�gurable optial NBN. Our goal is to studythe tradeo�s between the number of swithes and the number of di�erent wavelengths used in thenetwork. As in Setion 2 we di�erentiate between rearrangeably NBNs and wide-sense NBNs, andonsider several variations of this problem. These variants arise beause of di�erent apabilitiesthat an be attributed to the transmitters, or reeivers, or the swithes.We onsider two kinds of optial swithes: wavelength-seletive swithes and wavelength--independent swithes. Wavelength-seletive swithes, onsidered by Pankaj [Pan92℄, are morepowerful than wavelength-independent swithes in that they an hange their state di�erentlyfor di�erent wavelengths. Wavelength-independent swithes are onsidered in [BH92, PS93℄; theseswithes may not be set di�erently for di�erent wavelengths.21



3.1. Non-Bloking Networks with Wavelength-Seletive SwithesPankaj [Pan92℄ onsidered networks with n wavelength-seletive swithes of �xed degree with eahof the n input (and output) nodes being onneted to a di�erent swith. For this model, 
(log n)wavelengths are required for permutation routing [Pan92℄. Pankaj also showed that rearrangeablynon-bloking permutation routing an be done with O(log2 n) wavelengths and wide-sense non-bloking permutation routing with O(log3 n) wavelengths.Theorem 14 proves a lower bound of 
( nw log nw2 ) on the number of onstant degree swithesrequired as a funtion of the number of nodes n and wavelengths w. Theorem 16 reates a permu-tation network using w wavelengths and s = O( nw log nw ) onstant degree swithes. In our networkthe input nodes are partitioned into s groups of size n=s{ eah. Eah suh group is onneted toan \optial ombiner": a non-reon�gurable router with n=s input ports and one output port thatroutes any signal on any input port on to the unique output port. The output ports of the s om-biners are eah onneted to a di�erent swith. Similarly, the output nodes are partitioned into sgroups of size n=s eah. Eah suh group is onneted to an \optial splitter": a non-reon�gurablerouter with one input port and n=s output ports that routes any signal oming in on the input nodeon to all output nodes. The input ports of the s splitters are eah onneted to a di�erent swith.For the speial ase of n swithes onsidered by Pankaj, we have a network that uses O(log n)wavelengths and n swithes to route permutations in whih eah input (output) node is onnetedto a di�erent swith. Thus, improving over the result obtained by Pankaj. Theorem 17 obtains asimilar result for the wide-sense non-bloking network.Theorem 14: Permutation routing of n messages using w wavelengths requires 
( nw log nw2 ) wavelength-seletive swithes of onstant degree.Proof: Let s denote the number of onstant degree swithes required, and let  be the degree ofthese swithes. Using an argument similar to that used in [BH92℄, we observe that the numberof swithing states in the network is upper bounded by wsw2n. This must be greater than thenumber of \traÆ states" in the network, whih is n! for permutation routing. Thus we havewsw2n � n!;and using Stirling's approximation this yields s = 
( nw log nw2 ). 2Our onstrutions are based on the following proposition given in [Lei92, Thm. 1.16,p.190℄.Proposition 15: Given any permutation � from k` elements to k` elements fxijgk;`i=1;j=1, � anbe expressed as the produt of three permutations �1, �2 and �3, where �1 and �3 preserve the\row" index of the elements and �2 preserves the \olumn" index. (A permutation � preserves the\row" index if there are k permutations �1; : : : ; �k from ` elements to ` elements, suh that for eahxij, �(xij) = xij0, where j0 = �i(j). A permutation that preserves the \olumn" index is de�nedsimilarly.){To avoid umbersome notation we assume that s divides n. Otherwise, b� and d�e have to be added appropriately.22



Theorem 16: We an onstrut an optial reon�gurable rearrangeably NBN with w wavelengthsand O( nw log nw ) wavelength-seletive 4� 4 swithes.Proof: The network G we onstrut uses a \traditional" rearrangeably non-bloking network H fornw inputs and nw outputs, as a \blak box". It is well-known that suh networks using s = O( nw log nw )2�2 swithes exist. (See, e.g. [Lei92℄.) Suh networks an be onstruted inm = O(log nw ) layers ofnw swithes eah, where the input nodes are onneted to the �rst layer of swithes and the outputsare onneted to the last layer.The swithes of G orrespond to the swithes of H, and the �rst two input and output portsof eah 4 � 4 swith of G are onneted as the orresponding swith of H. Note however, thatsine the swithes of G are wavelength-seletive, we an view this portion of G as w rearrangeablyNBNs superimposed, one for eah wavelength. Denote a swith of G by Si;j, where i denotes itslayer index and j denotes its position within the layer. The third and fourth ports of the swithesonnet all the swithes in the same position in all the layers ylially. Spei�ally, the third(fourth) output port of Si;j is onneted to the third (resp. fourth) input port of Si+1;j, where the�rst layer is onsidered the suessor of the last layer.In addition, as mentioned above, the input nodes are partitioned into s groups of size n=s eah.Eah suh group is onneted to an \optial ombiner", whose output is onneted to a di�erentswith. Similarly, the output nodes are partitioned into s groups of size n=s eah. Eah suh groupis onneted to an \optial splitter", whose input is onneted to a di�erent swith. We partitionthe (input and output) nodes into n=w sets of w nodes eah, where eah suh set orresponds tothe nodes onneted to swithes in the same position in all the layers, and view them as w olumnsof size n=w eah.To route a permutation � in this network, we deompose � into �1 � �2 � �3 using Proposition 15above with k = nw and ` = w, aording to the partition of the nodes into w olumns of size n=weah. Let �(i; j) = (i0; j0), and let �1(i; j) = (i; j00), �2(i; j00) = (i0; j00), �3(i0; j00) = (i0; j0). We assignthe input (i; j) the wavelength �j00 , and route it as follows. Using the third ports we route (i; j)to swith S1;j. Note that sine eah input in a row is assigned a di�erent wavelength, this an bedone. Then, using the rearrangeably NBN for wavelength �j00 we route (i; j) to the fourh outputport of Sm;j0 Finally, using the fourth ports we route (i; j) from Sm;j0 to Si0;j0. Again, sine all theoutputs in a row are assigned a di�erent wavelength, this an be done. 2Theorem 17: We an onstrut an optial reon�gurable wide-sense NBN with 2w�1 wavelengthsand O( nw log nw ) wavelength-seletive swithes.Proof: The idea here is similar to that of Theorem 16. The network here is the same as the oneabove, exept for two di�erenes: (1) We replae the rearrangeably NBN H in that onstrutionwith a wide-sense NBN with n=w inputs and n=w outputs. It is well-known that suh networksusing s = O( nw log nw ) swithes exist [ALM90℄. (2) To route a onnetion establishment requestfrom input (i; j) to output (i0; j0) we look for a wavelength �k that is not urrently in use at thethird ports of swithes in position i in all the layers, and also not in use at the fourth ports of23



swithes in position i0 in all the layers. At the time of establishing a new onnetion, at most w� 1wavelengths are used at the third ports of swithes in position i (to onnet at most w � 1 otherinputs) and at most w � 1 wavelengths are used at the fourth ports of swithes in position i0 (toonnet at most w � 1 other outputs). Sine there are a total of 2w � 1 wavelengths, we are thusguaranteeed to �nd a ommon wavelength that is not in use in all these ports. 23.2. Non-Bloking Networks with Wavelength-Independent SwithesNetworks with wavelength-independent swithes merit onsideration sine wavelength-seletiveswithes are muh harder to build than wavelength-independent swithes. As for the wavelength-seletive ase there is a trade-o� between the number of swithes and the number of wavelengthsused. Barry and Humblet [BH92℄ showed that in a wavelength-independent swith network withw wavelengths, the number of swithes must be 
(n log nw2 ) for both rearrangeable and wide-sense NBNs. Pieris and Sasaki [PS93℄ onstruted suh networks that use O(n log nw ) wavelength-independent swithes. Here, we show tighter upper bounds on the number of swithes required insuh networks by ombining the arguments from Setions 2 and the previous subsetion.Theorem 18: Given w wavelengths, there exists an optial rearrangeable NBN of size n that usesO(n log nlogww2 ) wavelength-independent swithes. Furthermore, we an onstrut an optial rear-rangeable NBN that uses O(n log n�(n)w2 ) wavelength-independent swithes.Proof: Our onstrution is shown in Figure 9. Again, we use Proposition 15 about deompositionsof permutations. We �rst present an informal desription: The network is onstruted in three lay-ers. The �rst and third layer are used to do the \row" permutations and the seond layer does the\olumn" permutation. The �rst and third layer are onstruted from m wavelength-independentswithes with n=m inputs and n=m outputs. Eah suh swith is basially a \traditional" rear-rangeable NBN and thus an be built from nm log( nm ) 2�2 swithes. (See, e.g. [Lei92℄.) The middlelayer is onstruted from n=m opies of a non-reon�gurable network with m inputs and outputs.(The parameter m is to be hosen as a funtion of the number of wavelengths w as desribed below.)We now desribe the onstrution more formally.Fix m = w2logw . Let F be a non-reon�gurable rearrangeable NBN for m inputs and m outputs.Suh a network exists, as shown in Setion 2. We will use nm opies of F labelled F1; : : : ; F nm . LetH be a \traditional" rearrangeable network with nm inputs and outputs. We will need 2m opiesof H labelled H1j and H2j for j 2 f1; : : : ;mg. Let the inputs for our optial network G be labelled(i; j) for i 2 f1; : : : ;mg and j 2 f1; : : : ; nmg. Then, the edges of G (apart from the edges within F 'sand the H's) are as follows:The input (i; j) of G is onneted to the jth input of H1i.The jth output of H1i is onneted to the ith input of Fj .The ith output of Fj is onneted to the jth input of H2i.24
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m, n/mFigure 9: A permutation network using w wavelengths and O(n log nw ) wavelength-independentswithes.The jth output of H2i is onneted to the (i; j)th output of G.All edges exept those within the F 's an arry any of the legal wavelengths, but in the way they areused will only arry one wavelength at a time. Observe that the network uses n log nm = n log n logww2swithes.We now show how to route a permutation �. We use the row-olumn-row deomposition withk = m and ` = nm and deompose � into �1 � �2 � �3. Consider a soure (i; j) and let �1(i; j) = (i; j0)and �2(i; j00) = (i0; j00) and �(i0; j00) = (i0; j0). Then the path assigned to this request is from the(i; j)th soure to the j00th output of H1i. From there it gets routed through the network Fj00 tothe i0th output node of Fj00 . From there on we use the network H2i0 to ontinue the path on tothe sink (i0; j0). Note that at most m soures use the j00th olumn in �2. All these requests use thenetwork Fj00 to route these pairs from their row soure to their row destination. In order to do so,we pik their wavelengths as ditated by Fj00 . This hoie �xes the wavelength of all onnetionsrouted using the j00th olumn inluding the one with soure (i; j). This determines the path andwavelength assignment of a soure-sink pair. It is an easy exerise to verify that no two paths ofthe same wavelength overlap on any edge.Lastly by reduing m above to w2=�(w), we an use the onstrutive non-reon�gurable rear-rangeable NBN above. This yields the onstrutive bound laimed in the assertion. 2Theorem 19: Given w wavelengths, there exists an optial wide-sense NBN of size n that usesO(n log nlogww2 ) wavelength-independent swithes. Furthermore, we an onstrut an optial wide-sense NBN that uses O(n log n�(n)w2 ) wavelength-independent swithes.Proof: The proof is similar to the proof of Theorem 18. The network here is almost the sameas the one above, exept for some minor di�erenes: The �rst layer uses m n=m-input, 2n=m-25



output \traditional" wide-sense NBNs. The middle layer onsists of 2n=m wide-sense swithlessNBNs with m-inputs and m-outputs as desribed in Setion 2. The third layer uses m 2n=m-inputn=m-output wide-sense NBNs that an route any permutation of upto n=m elements at a time. (Itis easy to see that the onstrution in [ALM90℄ also yields imbalaned wide-sense NBNs that arerequired here. All one has to do is use a 2n=m to 2n=m NBN and throw away half the inputs oroutputs as the ase may be.)Similar to the proof of Theorem 17, we an argue that any sequene of onnetion requests withat most one onnetion requested from any soure or sink at any time an be routed in this network.In partiular to satisfy a request from (i; j) to (i0; j0) we �rst determine the orret middle levelnetwork to use to set up this onnetion. For eah of the networks H1i and H2i0 upto n=m�1 of thenetworks from the middle layer may already be in use. This still allows for at least one (atuallyat least two) networks from the middle level whih neither network is using. This network an nowbe used to set up this onnetion. 2Finally, we onsider the speial ase where only the transmitters an be tuned whereas thewavelengths of the reeivers are �xed (or vie-versa). For this ase we have the following theorem.Theorem 20: Given w wavelengths, we an onstrut an optial wide-sense NBN of size n inwhih only the transmitters (reeivers) are tunable that uses �(n log nw ) wavelength-independentswithes of onstant degree.Proof: We prove for the ase in whih only the transmitters are tunable. The other ase is similar.The lower bound proof is similar to the proof of Theorem 14. Let s denote the number of onstantdegree swithes required, and let  be the degree of these swithes. Using an argument similarto that used in [BH92℄, we observe that the number of swithing states in the network is upperbounded by swn. This must be greater than the number of \traÆ states" in the network, whihis n! for permutation routing. Thus we haveswn � n!;and using Stirling's approximation this yields s = 
(n log nw ). The upper bound proof is similar tothe proof of Theorem 19. We use a three-layer onstrution with the �rst layer using m opies ofn=m to 2n=m \traditional" wide-sense NBNs. The middle layer onstrution is 2n=m opies of aswithless NBN but di�erent from the one in the proof of Theorem 19. The third layer is again mopies of 2n=m to n=m \traditional" wide-sense NBNs.Sine in this network the reeivers annot be tuned, the destination of a request determines thewavelength of a onnetion. This prevents us from using the NBNs used in Theorem 19. Instead, weuse a non-reon�gurable NBN that uses w wavelengths to route upto w messages with non-tunablereeivers. (Constrution of suh a network is easy as shown in Figure 4.) This fores m = w andshows that the number of swithes is at most O(n log nw ).To route a message from input (i; j) to output (i0; j0) the message is allotted to the kth non-reon�gurable network in the middle layer if no message with soure from ith row or destined to26



the i0th row is urrently using the kth network. One again sine the number of suh networksis twie the number of elements per row, there must be an unused network whih an be used toahieve this permutation. 23.3. Bounding Number of Wavelengths via Congestion and DilationIn this setion, we give bounds on the number of wavelengths required to route a set of messages onoptial networks with n nodes, eah having a wavelength-seletive swith. Our bounds here relatethe number of wavelengths to two lassial parameters assoiated with routing: the ongestion andthe dilation.Given a graph G with n nodes andm edges, suppose some messages an be routed in it suh thatthe maximum ongestion (i.e., number of messages using any edge) is  and the maximum dilation(i.e., the maximum path length from any soure to any sink) is d. Clearly at least  wavelengths arerequired in order to realize the routing. Now onstrut a new graph Gp with eah path in G beinga node in Gp with an edge between two nodes in Gp if the orresponding paths in G overlap on anyedge in G. Then, the problem of assigning wavelengths to paths in G redues to that of oloringnodes in Gp. Sine the maximum degree of a node in Gp is (� 1)d, ( � 1)d + 1 wavelengths aresuÆient to ahieve this routing. Our �rst observation shows that if the dilation is suÆiently largethen it is possible to beat this bound. In partiular, if d > pm then 2pm wavelengths suÆe toroute the messages. Next we show that this bound is optimal up to a onstant fator, in that thereexist graphs and message requests for whih 
(minfd;pmg) wavelengths are required to routethe given messages.Lemma 21: For any graph G, and any set of routing requests with ongestion of , 2pm wave-lengths are suÆient to ahieve the given routing.Proof: The number of paths of length at least pm is at most pm. Give eah suh path its owndediated wavelength. Eah of the remaining paths (of length less than pm), onits with fewerthan pm paths, so again an be given a wavelength without oniting by a greedy oloring ofthe interferene graph of the paths of length less than pm. 2Theorem 22: There exist graphs and message routing requests whih an be routed with ongestion and dilation d, but require w = 
(minfd;pmg) wavelengths under any routing.Proof: De�ne the graph G with n transmitters and n reeivers as depited in Figure 10. Inaddition to the transmitters and reeivers, G has n olumns, eah olumn i onsists of 2n � 1nodes: ai;j; j = 1; : : : ; n and bi;j ; j = 1; : : : ; n � 1. The edges are as follows: For i = 1; : : : ; n,ti is onneted to a1;i and ri is onneted to an;i. For j = 1; : : : ; n � 1 and i = 1; : : : ; n, bi;j isonneted to ai;j and ai;j+1. For j = 1; : : : ; n and i = 3; 5; : : : ; n, ai;j is onneted to ai�1;j. Forj = 1; : : : ; n � 1 and i = 2; 4; : : : ; n, bi;j is onneted to bi�1;j. Note that the number of edges isO(n2). 27
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in many ases; it would be useful to obtain polynomial time onstrutive algorithms for theseases.3. We provided an algorithm to onvert any network with m edges that routes messages withongestion , dilation d, into a network that uses O((min(d;pm))) wavelengths, and we alsogave a network and a message pattern for whih this bound is optimal up to a onstant fatorHowever, a muh more interesting and pratially useful question is getting a good bound onthe number of wavelengths required for a given network and a given message pattern. Here,we have no results and getting even an approximate bound on the number of wavelengthswould be very interesting.4. One researh topi not studied in this paper is that of strit-sense non-bloking networks. Astrit-sense non-bloking network is one that allows a new onnetion to be always routedthrough irrespetive of how the previous onnetions were routed.5. Another topi not studied here is the use of wavelength onverters. A wavelength onverteran onvert a signal from one wavelength to another. Clearly all the upper bounds in thepaper hold for networks with wavelength onverters. We an also show that the lower boundshold for networks with stati wavelength onverters. With dynami onverters, we are addingstates to the network and hene the lower bounds may not apply.A related model not studied here is that of networks that are not all-optial. In these networks,a onnetion need not be arried on a single wavelength all the way to its destination; it ouldbe arried on one wavelength to an intermediate node, where it is reeived and swithedeletronially onto another wavelength enroute to its destination. In this ase, it is alsopossible to multiplex several onnetions on to a single wavelength, allowing paket swithing.6. The area of fault tolerane in optial networks is an open area for researh. Also, there is theset of problems of dynamially maintaining topology of optial networks (espeially when thelinks are reated and/or destroyed), and maintaining information regarding link utilization,ongestion, et.AknowledgmentsWe wish to thank the anonymous referees for numerous omments whih have hopefully improvedthe larity of this paper.Referenes[ALM90℄ S. Arora, T. Leighton, and B. Maggs. On-line algorithms for path seletion in a non-bloking network. In Pro. of the ACM Symp. on Theory of Computing, pages 149{158,1990. 29
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