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1. IntroductionFiber-optic networking technology using wavelength division multiplexing (WDM) o�ers the poten-tial of building large wide-area networks capable of supporting thousands of nodes and providingcapacities of the order of gigabits-per-second to each node in the network [Gre92, Ram93, CNW90].In WDM optical networks, the vast bandwidth available in optical �ber is utilized by partitioningit into several channels, each at a di�erent optical wavelength. Each wavelength can carry datamodulated at bit rates of several gigabits per second.In general, such a network consists of routing nodes interconnected by point-to-point �ber-opticlinks (Figure 1). Each link can support a certain number of wavelengths. The routing nodes in thenetwork are capable of routing a wavelength coming in on an input port to one or more outputports, independent of the other wavelengths. However, the same wavelength on two input portscannot be routed to a common output port. The �rst class of networks that we consider are non-recon�gurable, or switchless; i.e., the routing patterns at each of these routing nodes is �xed. Sucha routing node is shown in Figure 2. These networks are practically important because the entirenetwork can be constructed out of passive (unpowered) optical components and hence made reliableas well as easy to operate, with all the control being done outside the network.
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NodeFigure 1: A WDM network consisting of routing nodes interconnected by point-to-point �ber-opticlinks. Some of the routing nodes have end-nodes attached to them that form the sources anddestinations for network tra�c.The second class of networks, which we call recon�gurable networks, have optical switches atthe routing nodes. By recon�guring the switches, the routing pattern at a routing node can bechanged. Optical switches will be required to build large networks because the switchless networkrequires a large number of wavelengths to support even simple tra�c patterns (as will be seen laterin this paper). A recon�gurable routing node is shown in Figure 3.Some of the routing nodes in the network have end nodes attached to them via �ber-optic links.1
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Figure 3: Structure of a recon�gurable routing node. The node can switch each wavelength at itsinput ports independent of the other wavelengths. The switch can be recon�gured to allow di�erentinterconnection patterns.We refer to end nodes as nodes. Each end node has a tunable optical transmitter and a tunableoptical receiver. The transmitter can be tuned to transmit at any one of the available wavelengthsand the receiver can be tuned to receive on any one of the available wavelengths.We are interested in the problem of setting up connections between di�erent node pairs andwould like to determine the number of wavelengths and switches required to support di�erent tra�cpatterns in these networks. Each connection is assigned a wavelength. The constraint imposed bythe network is that there can be at most one connection using a given wavelength on any link. Inswitchless networks, once the routing pattern is set, the only choice remaining is in selecting thewavelength at which each node transmits and the wavelength at which it receives. In networks withswitches, additional degrees of freedom are obtained by changing the setting of the switches.1.1. PreliminariesA permutation network is a network that can successfully route all sets of connections that are apermutation of the network nodes. 2



A non-blocking network (abbreviated NBN) is a network that allows communication routesbetween pairs of transmitters and receivers to be connected and terminated dynamically. It han-dles two kinds of requests: connection requests and termination requests. A connection requestspeci�es a pair of (transmitter,receiver) that has to be connected. It is assumed that both thetransmitter and the receiver are idle when the request is initiated. A termination request speci�esa pair (transmitter,receiver) that are currently connected and terminates this connection. FollowingBene�s [Ben62], we distinguish between two types of non-blocking networks.Rearrangeably NBN: This is the weakest type of an NBN. In such networks whenever a newrequest arrives, all existing connections can be rerouted.Wide-sense NBN: In such networks once a route is dedicated for a request, it cannot be reroutedin the future to accommodate later requests.We consider several variations of the routing problem. First, we distinguish between the o�-lineand on-line cases. In the o�-line case all the requests are known in advance, whereas in the on-linecase, future requests are not known in advance. Note that this distinction is relevant only for a wide-sense NBN. Then, we consider oblivious routing schemes in which a connection request (t; r) willalways be satis�ed using the same wavelength, regardless of the rest of the requests. An obliviousscheme is clearly an on-line scheme. We extend this setting to the case of partial obliviousness;i.e., to the case where the number of possible wavelengths that are available to satisfy a connectionrequest is bounded.The congestion of a routing algorithm is the maximum number of paths that go over a singleedge in the network. The dilation of a routing algorithm is the maximum number of edges in apath used by the routing algorithm.1.2. Previous WorkThe routing problem in these networks has been studied by Barry and Humblet[BH92, BH93],Pankaj[Pan92], and Pieris and Sasaki[PS93a]. Barry and Humblet [BH92] derived an information-theoretic lower bound on the number of wavelengths required to support a given number of tra�cstates in networks with and without switches. For example, permutation routing in a switchlessnetwork requires 
(pn) wavelengths, where n is the number of nodes in the network. They alsoshowed that oblivious permutation routing could be done using dn=2e + 2 wavelengths.In a recon�gurable network with w available wavelengths, Barry and Humblet [BH93] showedthat the number of 2 � 2 switches required to support permutation routing is 
(n log(n=w2)).When the transmitters are �xed-tuned and the receivers are tunable, Pieris and Sasaki [PS93a]showed that the number of 2� 2 switches required for permutation routing is 
(n log(n=w)), andconstructed such a network using O(n log(n=w)) switches.Pankaj [Pan92] obtained bounds on the number of wavelengths required for permutation rout-ing in certain network topologies. His network model assumed a multi-wavelength switch at each3



Category Lower Bound Previous Upper Bound Our Upper BoundNon-Recon�gurable (Switchless) NetworksOblivious dn2 e+ 1 [BH93] dn2e + 2 [BH92]Non-oblivious existential 
(pn) [BH92] O(pn logn)Non-oblivious constructive 
(pn) [BH92] O �pn2(logn)0:8+o(1)�Partial oblivious (k � 3) 
(pn) [BH92] O �n k+12k�1 k k2k�1 �Star network, n wavelengths 
(npD) n(pD + 1) [PS93b] n(pD + 0:5)Recon�gurable NetworksElementary switches existential n log nw2 [BH92] n log n logww2Elementary switches constructive O �n log nw2 �[BH92] O�n log n2(logw)0:8+o(1)w2 �O(n) generalized switches 
(logn)[Pan92] O(log2 n), O(log3 n)[Pan92]1 O(logn)O(n) generalized switches 
[cminfd;pmg] O[cminfd;pmg]Table 1: Main results on permutation routing and scheduling. The results hold for both rearrange-able and wide-sense non-blocking cases unless speci�ed otherwise. The number of nodes is n, cdenotes congestion, d denotes dilation, m is the number of edges in the network, and k denotesthe number of wavelengths available for a connection between a pair of nodes. Except for thestar network where the schedule length is given and D denotes the time taken to tune betweenwavelengths, all other results are for the number of wavelengths.routing node; such a switch is a generalized switch in that it can permute each wavelength inde-pendent of the other wavelengths. For this model, Pankaj showed that 
(logn) wavelengths arerequired for permutation routing. He also showed that rearrangeably non-blocking permutationrouting can be done with O(log2 n) wavelengths and wide-sense non-blocking permutation routingcan be done with O(log3 n) wavelengths in popular interconnection networks such as the shu�eexchange network, the DeBruijn network, and the hypercube network.1.3. Contributions of This WorkWe present almost tight bounds for most of the problems considered in the earlier papers. Ourresults are summarized in Table 1.We show that oblivious permutation routing in a switchless network requires bn=2c + 1 wave-1O(log2 n) for the rearrangeable case and O(log3 n) for the wide sense non-blocking case.4



lengths and we demonstrate the existence of a switchless permutation network using O(pn logn)wavelengths. Both these results have been obtained independently by Barry and Humblet [BH93],the latter result however was proved for networks where wavelength converter devices are used.(A wavelength converter is a device that performs a transformation of a data stream coming inat a speci�c wavelength onto an outgoing data stream at a di�erent speci�c wavelength.) Thenon-constructive aspect of the above result may be viewed as a drawback. We complement thisresult with a constructive version which is only slightly weaker; In particular, we show how to con-struct a switchless permutation network using O �pn 2(logn)0:8+o(1)� wavelengths. We also providenon-trivial upper bounds for partially oblivious networks.For recon�gurable networks, we show the existence of a wide-sense non-blocking network usingO(n log nlogww2 ) switches and construct a wide-sense non-blocking network usingO�n log n2logw0:8+o(1)w2 �switches. Clearly all of these results apply also for rearrangeably non-blocking networks.For the class of networks considered by Pankaj, we show a tight bound of �(logn) wavelengthsfor both rearrangeable and wide-sense non-blocking permutation routings. As in his thesis, weonly use n generalized switches that are con�gured as a shu�e exchange network, or a DeBruijnnetwork, or, in fact, as any O(logn) depth permutation network.We also derive an upper bound on the number of wavelengths required for any routing schemein terms of congestion and dilation for the given routing and the given network. We show thatthese exist a class of networks for which this bound cannot be improved.Finally, we deal with an important special case: that of a star broadcast network with n nodesand n wavelengths available. The star network is the �rst network to have been prototyped andundergone �eld tests [JRS93]. In this case, we consider optical transmitters and receivers thattake D units of time (slots) to tune between two wavelengths. We show that any schedule whereeach node pair is assigned a single slot for communication, must have at least 
(npD) slots, thusindicating that an upper bound of n(pD+1) derived in [PS93b] and improved by us to n(pD+1=2)is almost tight.Section 2 deals with non-recon�gurable (switchless) networks and Section 3 with recon�gurablenetworks (with switches). Section 4 presents some results on a scheduling problem in a simplebroadcast network. There are several open problems remaining to be solved; Section 5 gives a fewsuch problems.2. Non-Recon�gurable Optical NetworksIn this section we consider non-recon�gurable (or switchless) optical networks. The network ismodeled as a bipartite multigraph 2 G(T;R;E), where T is the set of transmitters and R is the setof receivers. An edge from a transmitter t to a receiver r does not represent an actual link in the2A multigraph is a graph with multiple edges allowed between nodes.5



network, but represents a wavelength using which t can establish a connection to r. Since t maytalk to r using many possible wavelengths, there can be multiple edges between t and r. Thus, eachedge e 2 E is labelled with a wavelength denoted `(e), and two or more edges between a transmittert and a receiver r must have di�erent labels. If e connects transmitter t 2 T to receiver r 2 R,then whenever t transmits using wavelength `(e), receiver r may receive this information only if ittunes to this wavelength. Moreover, since the network has no switches, all the receivers connectedto t with edges labelled `(e) receive t's message if they tune to this wavelength. Consequently, if areceiver r is tuned to a wavelength �, then only one transmitter that is connected to r by an edgelabelled � may use this wavelength. Note that once the graph G and the labelling are determined,the only choice remaining is in the tuning of the transmitters and receivers.The assumption that G is bipartite is made only to make the presentation clearer. We canachieve the same results for networks where some of the nodes are both transmitters and receivers.In this paper we consider the special case of jT j = jRj = n. However, most of the results can beextended to the case where jT j 6= jRj.We consider the problem of constructing a non-blocking non-recon�gurable optical network.Our goal is to minimize the number of di�erent wavelengths used in the network.2.1. Rearrangeably Non-Blocking NetworksIn this subsection we consider the minimum number of wavelengths required in a non-recon�gurablerearrangeably NBN. Barry and Humblet [BH92] proved that any such network requires at least(1 + �(n))pn=e wavelengths, where e is the base of the natural logarithm, and �(n) goes to zerofaster than (lnpn)=pn. We show that there exists a rearrangeably NBN that uses O(pn logn)wavelengths. De�ne p(n) = 2(logn)0:8+o(1) . We also show how to construct a network that usespnp(n) wavelengths.In our upper bounds, the network has the following structure. The transmitter set T is parti-tioned into b blocks T0; : : : ; Tb�1 each of size at most n=b, where b is a parameter to be �xed later.(For clarity of exposition we omit the d:e b:c operators.) The receiver set R is partitioned k times,where k is to be �xed later. Each partition 1 � i � k partitions R into b blocks Ri0; : : : ; Rib�1. (Thesize of each such block may vary.) Our construction will use w = b � k wavelengths, denoted �i;j,for 1 � i � k, and 0 � j � b� 1. The edges of the network are labelled as follows: for 1 � i � k,0 � j � b � 1, and 0 � a � b� 1, all the transmitters in Ta are connected to all the receivers inRi(a+j)modb by edges labelled �i;j.The construction above has the following two properties:G1 Transmitters in each block are identically connected to all of the receivers.G2 For any wavelength �, if transmitters t1 and t2 belong to di�erent blocks, then the set ofreceivers connected to t1 by edges labelled � is disjoint from the set of receivers connected tot2 by edges labelled �. 6



It is not di�cult to see that to get a rearrangeably NBN, it is necessary and su�cient toconstruct a network such that for any permutation � = �(1); : : : ; �(n), there is a way to tune thetransmitters and receivers such that the connection requests (t; �(t)), for 1 � t � n, are satis�ed.A given tuning satis�es these connection requests if the following two properties are satis�ed forall 1 � t � n. (i) Both t and �(t) are tuned to the same wavelength �, and there exists an edge econnecting t to �(t) with `(e) = �. (ii) For all transmitters t0 6= t such that there exists an edge e0labelled � connecting t0 to �(t), t0 is not tuned to �.Consider a permutation � = �(1); : : : ; �(n) that is to be routed. Property [G2] of our networkimplies that we can tune the transmitters of each block independently from the transmitters ofother blocks. This is because transmitters from di�erent blocks do not interfere. Property [G1]implies that in order to route �, for any block of transmitters Ti, we have to use n=b di�erentwavelengths. For this, the n=b destination receivers of the transmitters in Ti have to belong to n=bdi�erent blocks. Note that these blocks may belong to di�erent partitions.Given a network G, de�ne the bipartite graph H(S;B; F ), where S, the input set, correspondsto the set of receivers, and B, the output set, corresponds to the set of blocks of receivers. A noder 2 S is connected by an edge in F to vij 2 B if and only if the corresponding receiver r belongs tothe corresponding block Rij.It is not hard to verify that the graph H has the following two properties and that each graphhaving these properties de�nes a network.H1 The degree of each node in S is at most k.H2 Each node in S is connected to exactly one node in vi0; : : : ; vib�1, for any �xed i.Theorem 1: The network G(T;R;E) is non-blocking if the corresponding graph H(S;B; F ) hasthe following matching property:H3 The subgraph induced by any subset of n=b receivers and their neighbors in B contains amatching of size n=b.Proof: Consider a permutation �. Recall that Property [G2] of the construction implies thattransmitters of each block can be tuned independently from the transmitters of other blocks. Fix ablock of transmitters Ti. The destination receivers of the transmitters in Ti, may be any subset ofn=b receivers. Thus for any subset of n=b receivers, the receivers have to belong to di�erent blocks.By the de�nition of H , this translates to the matching property [H3]. 2In the rest of this section we prove the existence of a graph H with properties [H1], [H2], and[H3] for b = pn= logn and k = O(logn). Then, we show how to construct such a graph withb = pn and k = p(n).The results of [FFP88] imply the existence of a graph H having all three properties in whichb = pn and k = O(logn). The following theorem improves this result by a factor of plogn usinga di�erent proof. 7



Theorem 2: There exists a graph H(S;B; F ) with properties [H1], [H2], and [H3] in which b =pn= logn and k = O(logn).Proof: We construct H(S;B; F ) probabilistically as follows. Let jSj = n, and let B be partitionedinto k blocks B1; : : : ; Bk of size b each. We let each vertex in S pick k neighbors { one in each Biindependently and at random. We now analyze the probability that this graph has the matchingproperty: i.e., any subset of up to n=b vertices from S is contained is some matching.By Hall's Theorem [Hal35], such a matching does not exist if and only if there exists a set A ofa vertices from S (a � n=b), such that jN(A)j< jAj, where N(A) denotes the set of neighbors of A.For a �xed set A � S and for sets Ai � Bi such that j [i Aij < a, we estimate the probability thatN(A) � [iAi. Let ai = jAij. Then this probability is at most Qki=1(aib )a. Thus, the probabilitythat there exist A and Ai's of size a and ai respectively such that N(A)j < jAj is at most na! kYi=1 bai!�aib �a �  nak�2kk�1bk�1!a :Thus if kb � cn=b � ca for some constant c > 2 and k � 
(logn), then this probability goes to zeroas n�O(a). The probability that there exist a and ai's such that this happens can now be boundedby o(1).Thus under the conditions k = �(logn) and cn=b � kb (or b = �(q nlogn)), we get that with apositive probability H(S;B; F ) has the required three properties. 2We now show how to construct such a graph with b = pn and k = p(n). First, we de�ne aconcentrator.De�nition: An (n;m; `)-concentrator with expansion � is a network with n inputs and m outputssuch that every set of t � ` inputs expands to at least ct outputs.We use the following result from Wigderson and Zuckerman [WZ93].Theorem 3: For all n, there are explicitly constructible (n; 2�pn;pn)-concentrators with expan-sion �, depth one and size �n � p(n).Application of Theorem 3For our case we set � to be one, and get that there exists a bipartite graph H 0(S 0; B0; F 0), wherejS 0j = 2n, B0 = 4pn, and jF j = n � p(n) with the desired matching property. However, graph H 0does not satisfy Properties [H1] and [H2]. We modify H 0 so that it satis�es these two properties.First, we consider a subgraph of H 0 which excludes all input nodes whose degree is more has thantwo times the average degree in H 0. Speci�cally, the degree of each input node in this subgraph isat most p(n). Clearly, this subgraph still has the desired matching property. Because the size ofthe graph is n � p(n), there are at least n input nodes in this subgraph. Next, we duplicate eachoutput node p(n) times and split the neighbors of each output node among the copies as follows.8



We number the edges outgoing from each input node with the numbers 1 to p(n). Now, the �rstcopy will have as edges the subset of the edges of the original node numbered one, the second willhave the subset numbered two, and so forth. It is easy to see that the resulting graph has all thethree properties.2.2. Wide-Sense Non-Blocking NetworksFirst, de�ne a-limited wide-sense one-sided NBNs.De�nition: A connection request is one-sided if it speci�es only an input. It is satis�ed byconnecting the input to any of its neighboring outputs. A network H is wide-sense one-sided NBNif it can satisfy any sequence of one-sided connection and termination requests without rerouting.De�nition: A network H is a-limited wide-sense one-sided NBN if it can satisfy any sequence ofrequests in which at most a transmitters are connected simultaneously.We show that to get a wide-sense NBN G, it is su�cient to make the corresponding graph Hn=b-limited wide-sense one-sided NBN.Theorem 4: The network G(T;R;E) is wide-sense NBN if the corresponding graph H(S;B; F ) isn=b-limited wide-sense one-sided NBN.Proof: Recall that Property [G2] of our construction implies that transmitters of each block canbe tuned independently from the transmitters of other blocks. Fix a block of transmitters Ti. Thedestination receivers of the transmitters in Ti at any given time, may be any subset of at mostn=b receivers. Thus, in order to satisfy any sequence of requests for this block in G, at any giventime, all the receivers connected to transmitters in Ti have to belong to di�erent blocks. By thede�nition of H , this translates to the property that H is n=b-limited wide-sense one-sided NBN. 2The following theorem is from [FFP88].Theorem 5: A network H(S;B; F ) is a-limited wide-sense one-sided NBN if it has the followingproperty:H4 Every set X of inputs of size at most 2a has at least 2jX j neighbors.We prove the existence of a graph H with properties [H1], [H2], [H3], and [H4], for b = pn= lognand k = O(logn). Then, we show how to construct such a graph with b = pn and k = p(n). Detailsomitted.There is one problem with our construction. Any algorithm which decides how to tune thetransmitters and receivers seems not to be polynomial. Borrowing terminology from [FFP88] wehave to maintain the maximum critical set of inputs. For this, it seems that after each request,we have to check all subsets of idle inputs. There are two ways to alleviate this problem, one thatworks for the o�-line case and the other for the on-line case.9



If the sequence of requests is given in advance then the tuning decisions can be done in poly-nomial time. Roughly speaking, given a connection request, we decide which of the edges in H touse as follows. For each possible edge we check if after using it, the rest of the requests can besatis�ed. If so, we use the edge. Because of our construction, we are guaranteed to have at leastone such edge.Suppose now that future requests are not known in advance. In this case we show how to geta polynomial decision algorithm by strengthening the properties H has to satisfy. We note thatprevious research on non-blocking networks did not address the problem of designing a networkthat can be operated by a polynomial time algorithm.Theorem 6: A network H(S;B; F ) is a-limited wide-sense one-sided NBN and has a polynomialtime decision algorithm if it has the following property:H5 For every subset X of inputs of size at most 2a, even after we arbitrarily erase half of theedges adjacent to each input in X , subset X has at least 2jX j neighbors.Proof: The algorithm for making the assignment decision maintains the following invariant:Let A be the set of inputs for which connections requests are currently active; and let the setM(A) denote the set of outputs to which these inputs are connected. Then, for any subset S ofthe remaining inputs of cardinality at most a, the size of the neighborhood of S outside of M(A)is at least jSj. (In other words, Hall's condition is satis�ed by all potential sets of inputs.)It is clear that the invariant above is maintained upon termination of requests. We now showhow to satisfy a new request while maintaining the above invariant.Let v be a new input for which a connection is requested. We tentatively match v to someneighbour outside M(A) - say t(v). We maintain a set C of \critical" inputs - inputs which posebottlenecks to the invariant. Initially C consists of only v. For every vertex in C we maintaina tentative match t(C). While there exist inputs w outside A [ C such that more than half theneighbours of w are in M(A)[t(C), we add w to the set C; and �nd an output w0 such that C[fwgcan be matched into t(C) [ fw0g. Note that such an output w0 must exist because of the invariantand the property of matchings. We repeat this step till no such vertex w is found. By property H5we must terminate before the size of C becomes larger than the size of A. Details omitted. 2It can be shown that such a network that uses O(pn log n) wavelengths exists. We remark thata similar construction is used in [BRSU93] for a di�erent purpose.2.3. Oblivious and Partial Oblivious RoutingIn this subsection we assume that whenever a transmitter has to communicate with a receiver itwould use one out of a �xed number k of wavelengths. The case k = 1 is called the obliviousrouting problem since there is no freedom in choosing wavelengths. Notice that this implies that G10



is a graph rather than multigraph. The case k � 1 is called the partial oblivious routing problem.In this case, G is a multigraph with bounded multiplicity.An oblivious routing network can be described by an n�n matrix M . The entry M(i; j) in thematrix is an integer in the range 1; : : : ; w where w is the total number of wavelengths in the solution.The entry M(i; j) indicates that i transmits to j using wavelength M(i; j) in any permutation �for which �(i) = j.Let the matrix M be a solution to the oblivious routing.Lemma 7: If � = M(i; j) = M(i0; j 0) for i 6= i0 and j 6= j 0, then M(i; j 0) 6= � and M(i0; j) 6= �.Proof: If either M(i; j 0) or M(i0; j) is � then any permutation � such that �(i) = j and �(i0) = j 0can not be satis�ed. 2De�ne L(�) to be the number of entries in the matrix that are equal to �.Lemma 8:  L(�) � 2n� 2.Proof: If a row has two or more �-entries, then these entries belong to columns that have a single�-entry. Therefore, the number of �-entries coming from rows which have 2 or more �-entries isbounded by n. Denote this number by �. If � = n then there is no row with a single �-entry andwe get that L(�) � n. Otherwise � � n�1. The number of �-entries coming from rows which haveexactly a single �-entry is also bounded by n. Denote this number by �. If � = n then obviouslyL(�) � n. Otherwise � � n � 1. Together we get that L(�) � 2n� 2. 2The following lower bound follows directly from the above lemma.Theorem 9: A solution matrixM for the oblivious routing problem must contains at least l n22n�2m ��n+12 � = bn=2c+ 1 wavelengths.Now, we construct a solution for an even n using (n=2) + 2 wavelengths. The idea of theconstruction is well demonstrated by the routing matrix presented in Figure 4. The formal detailsand the case of an odd n will appear in the full version. In the example n = 12, and the wavelengthsare denoted by a,b,c,d,e,f,1,2. Note that the northwest and the southeast quadrants are identicaland so are the northeast and the southwest quadrants. Moreover the northeast quadrant is areection of the northwest quadrant along the northwest-southeast diagonal.Partial Oblivious RoutingWe now sketch the case of the partial oblivious routing. Let k be a bound on the number ofwavelengths permitted to be used between any pair of transmitter receiver. In case k = O(logn)then w = 
(pn) wavelengths are required, O(pn logn) are su�cient (existentially), and pnp(n)are su�cient (constructively). (See Section 2.1.)The existential upper bound for k = o(logn) can be achieved as follows. Assume as in the caseof the k = O(logn) that we are looking at partitions of the receivers. If the degree is k this implies11



a a a a a 2 j b c d e f 1f f f f 2 a j b c d e 1 fe e e 2 f a j b c d 1 e ed d 2 e f a j b c 1 d d dc 2 d e f a j b 1 c c c c2 c d e f a j 1 b b b b b{ { { { { { j { { { { { {b c d e f 1 j a a a a a 2b c d e 1 f j f f f f 2 ab c d 1 e e j e e e 2 f ab c 1 d d d j d d 2 e f ab 1 c c c c j c 2 d e f a1 b b b b b j 2 c d e f aFigure 4: The solution for the oblivious routing for n = 12 with 8 wavelengthsthat we are looking at k di�erent partitions. Assume that each such partition is to b blocks eachof size n=b. In this case the number of wavelength is w = maxfn=b; kbg. To get the bound we haveto �nd the maximum w such that the failure probability is less than 1.Our results are based on the claim that the failure probability is dominated by the expression: nn=b! kbnb � 1!� nb � 1kb �knbDenote � = n=b we get that the expression is n�! kn=�� � 1!�(�� 1)�kn �k� � �(2k�1)r+1k(k�1)�+1n(k�2)�+1 :This expression is less than one if�(2k�1)�+1 � n(k�2)�+1k(k�1)�+1 :Recall that w, the number of wavelength is given by maxf�; kn=�g. For such values of � it isalways the case that kn=� � �. For example, for k = 2 it gives w = O(n log logn= logn). Thingslook better for k > 2. Then, the number of wavelengths isO �n k+12k�1 k k2k�1 � :For k = 3 it is O(n4=5), for k = 4 it is O(n5=7), and so on. As k increases the exponent of n tendsfrom above to 1=2. 12



3. Recon�gurable Optical NetworksIn this section we consider recon�gurable optical networks, i.e., networks with optical switches. Thenetwork is modeled by a layered multigraph G(T;R;M), where T is the set of transmitters, R is theset of receivers, and M is an undirected graph (where each edge is considered to be bidirectional)that connects T and R. We assume that M has nodes of degree four, corresponding to two by twoswitches. (This assumption is made for simplicity, as well as due to current technological limitationsthat only allow for construction of switches with constant degree.) An edge of Gmay be used severaltimes each with a di�erent wavelength. However, a routing with congestion c would require at leastc wavelengths. Again, we assume that a connection is carried on the same wavelength on all linksof the path; i.e., there is no wavelength conversion. The case with wavelength converters will beconsidered in the �nal version of this paper.In this paper we consider the special case of jT j = jRj = n. However, most of the results canbe extended to the case where jT j 6= jRj. We consider the problem of constructing a recon�gurableoptical NBN. Our goal is to study the tradeo�s between the number of switches and the number ofdi�erent wavelengths used in the network. As in Section 2 we di�erentiate between rearrangeablyNBNs and wide-sense NBNs, and consider several variations of this problem. These variants arisebecause of di�erent capabilities that can be attributed to the transmitters, or receivers, or theswitches. Finally, we distinguish between the o�-line and on-line cases.We consider two kinds of optical switches: generalized switches and elementary switches. Gen-eralized switches, considered by Pankaj [Pan92] are fairly powerful in that they can change theirstate di�erently for di�erent wavelengths. Elementary switches are considered in [BH92, PS93a];these switches may not set di�erently for di�erent wavelengths.3.1. Non-Blocking Networks with Generalized SwitchesIn his thesis, Pankaj [Pan92] considered networks of generalized switches of constant degree inwhich each receiver-cum-transmitter (i.e., each end-node) can be tuned to any wavelength. Pankajshowed that in order to permute n messages any network that uses n switches must use 
(logn)wavelengths. He also described permutation routing algorithms for popular networks such as theshu�e-exchange network, the Debruijn network, and the hypercube. These algorithms use O(log2 n)wavelengths to route messages in rearrangeable NBNs and O(log3 n) wavelengths to route messagesin wide sense NBNs. Theorem 11 creates an optical network for routing in rearrangeable NBNs andgives a routing algorithm which routes messages using �(logn) wavelengths, using any rearrange-able NBN which uses n logn switches to route n messages. Theorem 12 modi�es this algorithmto obtain a similar result for the wide-sense non-blocking network. Indeed, this algorithm is fairlygeneral in that it will work on any O(logn) depth permutation network.Our constructions are based on the following proposition given in [Lei92].Proposition 10: Given any permutation � from kl elements to kl elements fxijgk;li=1;j=1, � can be13



expressed as the product of three permutations �1, �2 and �3, where �1 and �3 preserves the rowindex of the elements and �2 preserves the column index. (That is, if �1(xij) = xi0j0 then i = i0 andsimilarly for �2 and �3.)Theorem 11: We can construct an optical recon�gurable rearrangeably NBN with n generalizedswitches and O(logn) wavelengths.Proof: We construct a network G with n inputs and n outputs labelled with a pair (i; j) fori 2 f1; : : : ; nlogng and j 2 f1; : : : ; logng. Our network uses a traditional rearrangeably non-blockingnetwork H for nlogn inputs and nlogn outputs, as a black box. It is well-known that such networksusing O(n) switches exist. (See, e.g. [Lei92].) The switches of G are just the switches of H replacedby generalized ones. In addition to the edges of H , for a �xed i, network G carries edges from everyinput (i; j) in G to the ith input in H , and similarly from the ith output of H to the outputs (i; j)of G. Each edge in G can carry all wavelengths �1; : : : ; �logn.To route a permutation � in this network, we decompose � into �1 � �2 � �3 using Proposition 10above (with k = nlogn and l = logn). The wavelength allotted to the message at the (i; j)th inputis � i� �1(xij) = xi�. Similarly, the wavelength allotted to the message at the (i; j)th output is � i��3(xi�) = xij. Observe that exactly one message in each wavelength arrives at any input of H , andsimilarly for the outputs. Notice further that the task of routing the messages within H , which isbasically performing the permutation �2, decomposes into logn di�erent permutation routing tasks{ one for each wavelength. We are done now since H can route any such permutation. 2Theorem 12: We can construct an optical recon�gurable wide-sense NBN with n generalizedswitches and O(logn) wavelengths.Proof: The idea here is similar to that of Theorem 11. The network here is the same as the oneabove, except for two di�erences: First, we now use a wide-sense NBN H as our black box (ratherthan the rearrangeable network). Again, it is well-known that such networks using O(n) switchesexist [ALM90]. Second, each edge can now carry 2 logn�1 wavelengths (rather than exactly logn).To route a request from input (i; j) to output (i0; j 0) we look for a wavelength � such that boththe ith input of H and the i0th output of H are not currently using the wavelength �. Such awavelength must exist since the ith input of H is connected to at most log n� 1 inputs of G (otherthan (i; j)), and hence must have at least log n unused wavelengths. Similarly for the i0th outputof H . Thus they must have one common unused wavelength. The message can now be routed onthe wavelength � since H is a wide-sense NBN. 23.2. Tunable Non-Blocking Networks with Elementary SwitchesA di�erent class of questions is posed by Barry and Humblet in [BH92], who considered elementaryswitches. This scenario is also important since currently the estimated cost of making a generalizedswitch is much more than that of the elementary switch. For this case, Barry and Humblet showeda lower bound trade-o� for the number of switches and the number of wavelengths used. More pre-14



cisely, they showed that in a elementary switch network with w wavelengths, the number of switchesmust be 
(n log nw2 ) for both rearrangeable and wide-sense NBNs. Pieris and Sasaki [PS93a] con-struct such networks that use 
(n log nw) switches. Here, we show tighter upper bounds on thenumber of switches required in such networks by combining the arguments from Sections 2 and theprevious subsection. We prove the following two theorems.Theorem 13: Given w wavelengths, there exists an optical rearrangeable NBN of size n that usesO(n log nlogww2 ) switches. Furthermore, we can construct an optical rearrangeable NBN that usesO(n log np(n)w2 ) switches.Proof: Again, the idea is to use Proposition 10 about decompositions of permutations. Thenetwork G is constructed in three layers. The �rst and third layer do the "row" permutations andthe second layer does the "column" permutation. For each of the �rst and third layers we use arearrangeable non-blocking network of the traditional type with traditional switches replaced byelementary ones. The middle layer consists of the switchless network(s) described in Section 2.For w wavelengths, the middle layer can hence route up to m = w2logw messages existentially andm = w2p(w) messages constructively. This gives a bound on the number of rows. Hence, the numberof columns must be at least n=m. To route along the columns we use any traditional rearrangeablenetwork and this will require O(n=m log(n=m) switches per row. Thus the total number of switchesis O(n log(n=m)). 2Theorem 14: Given w wavelengths, there exists an optical wide-sense NBN of size n that usesO(n log nlogww2 ) switches. Furthermore, we can construct an optical wide-sense NBN that usesO(n log np(n)w2 ) switches.The proof of this theorem follows from the proofs of Theorem 13, 12 and the results in Section 2.Details are omitted.Finally, we consider the special case where only the transmitters can be tuned whereas thewavelengths of the receivers are �xed (or vice-versa). For this case we have the following theorem.Theorem 15: Given w wavelengths, we can construct an optical wide-sense NBN of size n inwhich only the transmitters (receivers) are tunable that uses �(n log nw ) switches.3.3. Bounding Number of Wavelengths via Congestion and DilationIn this section, we give bounds on the number of wavelengths required to route a set of messageson optical networks with n nodes, each having a generalized switch. Our bounds here relate thenumber of wavelengths to two classical parameters associated with routing i.e., the congestion(denoted c) and the dilation (denoted d).Given a graph G with n nodes and m edges, suppose some messages can be routed in it suchthat the maximum congestion (i.e., number of messages using any edge) is c and the maximum15



dilation (i.e., the maximum path length from any source to any sink) is d. Then, observe that bya greedy coloring of the interference graph of paths cd wavelengths are su�cient to achieve thisrouting. Our �rst observation shows that for if the dilation is su�ciently large then it is possibleto beat this bound. In particular, if d > pm then 2cpm wavelengths su�ce to route the messages.Next we show that this bound is optimal up to a constant factor, in that there exist graphs andmessage requests for which 
(cminfd;pmg) wavelengths are required to route the given messages.Lemma 16: For any graph G, and any set of routing requests with congestion of c, 2cpm wave-lengths are su�cient to achieve the given routing.Proof: The number of paths of length greater than pm is at most cpm. Give each such path itsown dedicated wavelength. Each of the remaining paths (of length less than pm), conicts withfewer than cpm paths, so again can be given a wavelength without conicting by a greedy coloringof the interference graph of the paths of length less than pm. 2Theorem 17: There exist graphs and message routing requests which can be routed with conges-tion c and dilation d, but require w = 
(cminfd;pmg) wavelengths under any routing.Proof: De�ne the graph G with n transmitters and n receivers as depicted in Figure 5. G has ncolumns with O(n) nodes each and the number of edges is O(n2).
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4. The Passive Optical Star NetworkModel We consider one of the simplest networks described in the optical network setting - namelythe passive star network (see Figure 6). The model consists of n transmitters and n receiverstransmitting messages over a passive medium. The transmitters can transmit on any wavelengthfrom the set � of wavelengths available for tuning. The message is then broadcast over the mediumand can be picked up by any of the receivers which is tuned to this wavelength. The only constraintsare that only one transmitter may transmit on any one wavelength at any time slot. The importantparameter here is the tuning time of D units that it takes for a transmitter or a receiver to changeits transmitting or receiving frequency. In the bipartite graph model, for every transmitter ti andevery receiver rj and every wavelength �, there exists an edge between ti and rj with label �.
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   StarFigure 6: The passive star networkAll-to-All transmission problem In this section we consider the complexity of performingall-to-all transmission on the passive optical star network; i.e., each transmitter has to transmitone message to each receiver and it takes one unit of time for any such message to be sent. Theobjective is to �nd a schedule of transmission/tuning for these messages which minimizes the totalbroadcast time.This problem was considered by [PS93b] who showed a schedule that achieves the all-to-alltransmission in n(pD+ 1) steps. This paper also considered the all-to-all transmission problem inwhich at any time either all transmitters and receivers are tuning or all are transmitting/receiving.With this constraint [PS93b] showed another schedule which takes 2npD steps, and proved thatthis is an optimal schedule. This constraint does pose an unnatural restriction on the schedule.[PS93b] also showed a lower bound of 
(npD) for the case where only one end is tunable. However,they left open the question of what is the optimal complexity for unrestricted schedules.Results We show a lower bound for the general scheduling problem which is tight to withinconstant factors. The bound shows that the schedule described by [PS93b] is nearly optimal. Wecan also slightly improve the upper bound to be n(pD + 0:5). Details for the upper bound areomitted. 17



The Lower BoundDe�nition: A schedule S is an assignment of a wavelength and a time slot to each message. For aschedule to be valid, two messages may not be assigned the same (wavelength,time) pair. Further-more, if a transmitter (receiver) transmits (receives) successive messages on di�erent frequencies,then these messages must be scheduled at least D units of time apart.De�nition: The waiting time of a transmitter (receiver) on a message m is de�ned to bethe time passed since the previous message was sent (received) by the transmitter (receiver). Thewaiting time of a message is the sum of the waiting time of the transmitter and the receiver onthat message.It follows that the time taken by the all-to-all broadcast is at least (Pmessages waiting time ofmessage )=2n. Since by an averaging argument there must exist some party (transmitter/receiver)messages from whom take the average time.To show the lower bound we de�ne a graph G�, for every wavelength �. We associate avertex in the graph G� for each time that a transmitter or a receiver tunes into the wavelength�. For instance, if the transmitter t tunes k times into the wavelength �, then there are k verticest1; t2; : : : ; tk corresponding to these k tunings. The edges of this graph are as follows: ti$rj if andonly if the transmitter t transmits a message during its ith tuning into the wavelength � to thereceiver r during its jth tuning into �.Notice that a valid schedule S assigns a distinct positive integer as a label to every edge in G�.Based on this labels assignments we de�ne the notion of the stretch of the graph.De�nition: The stretch stretch(u; S) of a vertex u in G� is the di�erence between the largest labeland the smallest label on the edges incident to u. The stretch stretch(G�; S) of the graph G� is thesum Pu stretch(u; S).The graph G� naturally captures the two possible causes for a message to wait. Each vertexgives a �xed delay of D steps corresponding to the tuning associated with it. In addition byde�nition each vertex corresponding to a transmitter (receiver) spends at least stretch(u; S) unitsof time to �nish transmitting (receiving) its messages before tuning out. Thus for every vertexu 2 G� we have a wait of D + stretch(u) associated with it.Lemma 18: The total waiting time for all the messages using the wavelength � is stretch(G�; S)+v� �D (where v� denotes the number of vertices in G�).In the rest of this section we lower bound the stretch of any graph under any schedule.Lemma 19: For every graph G = (V;E) and every schedule S for the edges of G,stretch(G; S)� 112 X(u;w)2E minfdu; dwg:(where du denotes the degree of the vertex u in the graph G.)18



Proof: Consider the vertex umax which has the largest stretch.Claim: stretch(umax; S) � 16P(umax;w)2E dw:Proof: Consider the set of all edges adjacent to the neighbors of umax. There are atleast 12 P(umax ;w)2E du many such edges. Thus the di�erence in time between the earliestscheduled edge, adjacent to u, and the latest scheduled edge, adjacent to u0, is at least12P(umax;w)2E dw. This implies thatstretch(u; S) + stretch(u0; S) + stretch(umax; S) � 12 X(umax ;w)2E dw:But since stretch(umax; S) is no smaller than the other two quantities, it must be atleast 16P(umax;w)2E dw. 2Let G0 be the induced graph on G � fumaxg, let E 0 be its edges, and let d0 denote degrees ofvertices in G0. By induction on the number of vertices we have:stretch(G0; S) � 112 X(u;w)2E0 minfd0u; d0wg� 112 0@ X(u;w)2E0 minfdu; dwg � X(u;w)2E0: (u;umax)2E or (w;umax)2E 11A� 112 0@ X(u;w)2E0 minfdu; dwg � Xu$umax du1ABy applying the claim about the stretch of umax we now get:stretch(G; S) � 112 0@ X(u;w)2E0 minfdu; dwg � Xu$umax du1A + 16 Xu$umax du � 112 X(u;w)2E minfdu; dwg :2Lemma 20: For any (multi)graph G with m edges and n vertices, the following inequality holds:Pfu;vg2E minfdu; dvg � m2=n:Proof of Lemma 20: Consider the multigraph G which minimizes the summation above, andnumber the vertices 1; : : : ; n in non-decreasing order of degrees. Consider a pair of edges (j1; j2)and (k1; k2) with j1 � j2 � k1 � k2. We can switch these edges to go from j1 to k1 and j2 to k2without increasing the summation (see Figure 7). Consequently, there exists an index i such thatif (j; k) is an edge in this graph, with j < k, then j � i and k � i. Now in this graph thesummation above is the same as Pik=1 d2k where Pik=1 dk � m (since we count each edge at leastonce this way). Thus Pik=1 d2k � m2i � m2n . 219
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k2k1j2Figure 7: Edge switchingTheorem 21: For every scheduling of all-to-all broadcasts on the passive optical star network, thetotal broadcast time is at least 
(npD).Proof: Consider the messages scheduled to use the wavelength �. By Lemmas 18, 19 and 20 wehave that the average waiting time per message is at least 1e� (v� �D + e�212v� ) which is at least qD3 .Thus by an averaging argument there must exist a transmitter or a receiver the waiting time ofwhich is at least n2pD32n = npD2p3 : This implies that the broadcast time is at least 
(npD). 25. Open ProblemsThere are several unresolved problems related to the models in this paper; some of them are listedbelow:1. We do not have tight bounds for switchless non-oblivious networks. The same is true forthe switchless, partially oblivious networks also that allow at most k wavelengths on any edge.2. Our algorithms for the wide-sense, non-oblivious networks take exponential time in many cases;it would be useful to obtain polynomial time algorithms for these cases.3. We provided an algorithm to convert any network with m edges that routes messages withcongestion c, dilation d, into a network that uses O(c(min(d;pm))) wavelengths, and we also gavea network and a message pattern for which this bound is optimal up to a constant factor. However,a much more interesting and practically useful question is getting a good bound on the number ofwavelengths required for a given network and a given message pattern. Here, we have no resultsand getting even an approximate bound on the number of wavelengths would be very interesting.4. One research topic not studied in this paper is that of strict-sense non-blocking networks. Astrict-sense non-blocking network is one that allows a new connection to be always routed throughirrespective of how the previous connections were routed.5. Another research topic not studied in this paper is that of wavelength converters. It appearsthat technology in the future will be able to sustain switches that will be able to statically and/or20



dynamically convert the wavelength on which an incoming signal is traveling. This implies thatthe path from a source to a sink need to be of one wavelength (or one color). Clearly all the upperbounds in the paper hold for networks with �xed wavelength converters. We can also show that allthe lower bounds hold too. However, with dynamic wavelength converters, we are adding to thenumber of possible states in the network and the bounds may no longer hold. For instance, if we areallowed to use dynamic wavelength converters arbitrarily, then the number of wavelengths su�cientfor permutation routing in a recon�gurable network with generalized switches is c, where c is thecongestion of the routing algorithm (the network becomes identical to a classical circuit-switchednetwork). It would be useful to study this topic in detail.6. The area of fault tolerance in optical networks is an open area for research. Also, there is theset of problems of dynamically maintaining topology of optical networks (especially when the linksare created and/or destroyed), and maintaining information regarding link utilization, congestion,etc.7. An important model not studied here is that of networks that are not all-optical. In thesenetworks, a connection need not be carried on a single wavelength all the way to its destination;it could be carried on one wavelength to an intermediate node, where it is received and switchedelectronically onto another wavelength enroute to its destination. In this case, it is also possible tomultiplex several connections on to a single wavelength, allowing packet switching.References[ALM90] S. Arora, T. Leighton, and B. Maggs On-line algorithms for path selection in a non-blocking network. In Proc. of the ACM Symp. on Theory of Computing, pages 149{158,1990.[Ben62] V.E. Bene�s. Heuristic remarks and mathematical problems regarding the theory ofswitching systems. Bell System Tech. Journal, 41:1201{1247, 1962.[BH92] R. A. Barry and P. A. Humblet. Bounds on the number of wavelengths needed in wdmnetworks. In LEOS'92 Summer Topical Mtg. Digest, pages 21{22, 1992.[BH93] R. A. Barry and P. A. Humblet. On the number of wavelengths and switches in all-opticalnetworks. To appear in IEEE Trans. on Commun., 1993.[BRSU93] A. Borodin, P. Raghavan, B. Schieber, and E. Upfal. How much can hardware helprouting? In Proc. of the 25th ACM Symp. on Theory of Computing, San Diego, CA,May 1993.[CNW90] N. K. Cheung, K. Nosu and G. Winzer (eds.) IEEE JSAC: Special Issue on Dense WDMNetworks. volume 8, Aug. 1990.[FFP88] P. Feldman, J. Friedman, and N. Pippenger. Wide-sense nonblocking networks. SIAMJournal on Discrete Math., 1(2):158{173, May 1988.21
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