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Abstract

We attempt to reconcile the two distinct views of ap-
proximation classes. syntactic and computational. Syn-
tactic classes such as MAX SNP permit structural results
and have natural complete problems, while computational
classes such as APX allow usto work with classes of prob-
lems whose approximability is well-understood. Our re-
sults provide a syntactic characterization of computational
classes, and give a computational framework for syntactic
classes.

We compare the syntactically defined class MAX SNP
with the computationally defined class APX, and show that
every problemin APX can be “ placed” (i.e. has approxi-
mation preserving reduction to a problem) in MAX SNP.
Our methods introduce a general technique for creat-
ing approximation-preserving reductions which show that
any “well” approximable problem can be reduced in an
approximation-preserving manner to a problem which is
hard to approximate to corresponding factors. We demon-
strate thistechnique by applying it to the classes RMAX(2)
and MIN FFM5(1) which have the clique problem and the
set cover praoblem, respectively, as complete problems.

We use the syntactic nature of MAX SNP to define a
general paradigm, non-oblivious loca search, useful for
developing simple yet efficient approximation algorithms.
We show that such algorithms can find good approxi ma-
tions for all MAX SNP problems, yielding approximation
ratios comparable to the best-known for a variety of spe-
cific MAX SNP-hard problems. Non-abliviouslocal search
provably out-performs standard local search in both thede-
gree of approximation achieved and the efficiency of the
resulting algorithms.
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1 Introduction

The approximability of NP optimization (NPO) prob-
lems has been investigated in the past via the definition of
two different typesof problemclasses: syntactically-defined
classes such as MAX SNP, and computationally-defined
classes such as APX (the class of optimization problems
to which a constant factor approximation can be found in
polynomial time). The former isuseful for obtaining struc-
tura results and has natural complete problems, while the
latter alows us to work with classes of problems whose
approximability is completely determined. We attempt to
develop linkages between these two views of approxima
tion problems and thereby obtain new insights about both
types of classes. We show that a natural generalization of
MAX SNP rendersit identical to the class APX. Thisisan
unexpected validation of Papadimitriou and Yannakakis's
definition of MAX SNP as an attempt at providing a struc-
tura basisto the study of approximability. Asaside-effect,
we resolve the open problem of identifying compl ete prob-
lems for MAX NP. Our techniques extend to a generic
theorem which can be used to create an approximation hi-
erarchy. We aso develop a generic agorithmic paradigm
which is guaranteed to provide good approximations for
MAX SNP problems, and may also have other applications.

1.1 Background and Motivation

A wide variety of classes are defined based directly
on the polynomial-time approximability of the problems
contained within, e.g., APX (constant-factor approximable
problems), PTAS (problems with polynomia-time ap-
proximation schemes), and FPTAS (problems with fully-
polynomial-time approximation schemes). The advantage
of workingwith classes defined using approximability asthe
criterion is that it allows us to work with problems whose
approximability is well-understood. Crescenzi and Pan-
conesi [9] have recently also been able to exhibit complete
problemsfor such classes, particularly APX. Unfortunately
such complete problems seem to be rare and artificial, and
do not seem to provide insight into the more natural prob-
lems in the class. Research in this direction has to find
approximation-preserving reductionsfrom the known com-
plete but artificial problems in such classes to the natural



problems therein, with aview to understanding the approx-
imability of the latter.

The second family of classes of NPO problems that
have been studied are those defined via syntactic consid-
erations, based on a syntactic characterization of NP dueto
Fagin[10]. Research inthisdirection, initiated by Papadim-
itriou and Yannakakis [21], and followed by Panconesi and
Ranjan [20] and Kolaitis and Thakur [18], has led to the
identification of approximation classes such as MAX SNP,
RMAX(2), and MIN F*5(1). The syntactic prescription
inthedefinition of theseclasseshasproved very useful inthe
establishment of complete problems. Moreover, the recent
results of Arora et al [3] have established the hardness of
approximating complete problemsfor MAX SNP to within
(specific) constant factors unless P = NP. It is natura to
ask why the hardest problems in this syntactic sub-class of
APX should bear any relationto al of NP.

Though the computational view allows us to precisely
classify the problems based on their approximability, it does
not yield structura insights into natural questions such as
why certain problems are easier to approximate than some
others, what is the canonica structure of the hardest rep-
resentative problems of a given approximation class, and
so on. Furthermore, intuitively speaking, this view is too
abstract to facilitate identification of, and reductions to es-
tablish, natural complete problemsfor a class. The syntac-
tic view, on the other hand, is essentialy a structural view.
The syntactic prescription gives a natural way of identify-
ing canonica hard problems in the class and performing
approximation-preserving reductions to establish complete
problems.

Attempts at trying to find a class with both the above
mentioned properties, i.e. natural complete problems and
capturing all problems of a specified approximability, have
not been very successful. Typically the focus has been
to relax the syntactic criteria to alow for a wider class
of problems to be included in the class. However in al
such cases it seems inevitable that these classes cannot be
expressive enough to encompass al problemswith a given
approximability. Thisisbecause each of these syntactically
defined approximation classes is strictly contained in the
class NPO; the strict containment can be shown by syntactic
considerations alone. As a result if we could show that
any of these classes contains al of P, then we would have
separated P from NP. We would expect that every class of
this nature would be missing some problems from P, and
this has indeed been the case with all current definitions.

We explore adifferent direction by studyingthe structure
of the syntactically defined classes when we look at their
closure under approximation-preserving reductions. The
advantage of this is that the closure maintains the com-
plete problems of the set, while managing to include all of

P into the closure (for problems in P, the reduction is to
simply use a polynomia time algorithm to compute an ex-
act solution). It now becomes interesting, for example, to
compare the closure® of MAX SNP (denoted MAX SNP)
with APX. A positiveresolution, i.e, MAX SNP = APX,
would immediately imply the non-existence of a PTAS for
MAX SNP-hard problems, since it is known that PTAS is
adtrict subset of APX, if P # NP. On the other hand, an
unconditional negative result would be difficult to obtain,
sinceit would imply P # NP.

Here we resolve this question in the affirmative. The
exact nature of the result obtained depends upon the pre-
cise notion of an approximation preserving reduction used
to define the closure of the class MAX SNP. The strictest
notion of such reductions available in the literature are the
L-reductionsdueto Papadimitriou and Yannakakis[21]. We
introduce a new notion of reductions, called £-reductions,
which are a dight extension of L-reductions. Using such
reductionsto define the class MAX SNP we show that this
equals APX-PB, the class of al polynomialy bounded NP
optimization problems which are approximable to within
congtant factors. By using slightly looser definitions of
approximation preserving reductions (and in particular the
PTAS-reductionsof Crescenzi et a [8]) thiscan be extended
toincludeal of APX into MAX SNP. We then build upon
thisresulttoidentify aninteresting hierarchy of such approx-
imability classes. An interesting side-effect of our results
isthe positive answer to the question of Papadimitriou and
Yannakakis[21] about whether MAX NP has any complete
problems.

The syntactic view seems useful not only in obtain-
ing structural complexity results but aso in developing
paradigmsfor desi gning efficient approximation a gorithms.
Exploiting the syntactic nature of MAX SNP, we develop
a general paradigm for designing good approximation al-
gorithms for problems in that class and thereby provide a
more computational view of it. We refer to this paradigm
as non-oblivious local search, and it is a modification of
the standard local search technique [23]. We show that
every MAX SNP prablem can be approximated to within
congtant factors by such agorithms. It turns out that the
performance of non-obliviousloca search is comparableto
that of the best-known approximation al gorithmsfor several
interesting and representative problemsin MAX SNP. An
intriguing possibility is that this is not a coincidence, but
rather a hint at the universality of the paradigm or some
variant thereof.

Our resultsarerelated to some extent to those of Ausiello
and Protasi [4]. They define a class GLO (for Guaranteed

§ Papadimitriou and Yannakakis [21] hinted at the definition of
MAX SNP by stating that: minimization problems will be “placed” in
the classes through L-reductionsto maximization problems.



Local Optima) of NPO problems which have the property
that for al locally optimum solutions, the ratio between the
value of the global and the loca optimum is bounded by a
constant. It follows that GLO is a subset of APX, and it
was shown that it isin fact a strict subset. We show that a
MAX SNP problemisnot contained in GLO, thereby estab-
lishing that MAX SNP is not contained in GLO. This con-
trasts with our notion of non-obliviouslocal search which
is guaranteed to provide constant factor approximationsfor
al problems in MAX SNP. In fact, our results indicate
that non-oblivious loca search is significantly more pow-
erful than standard local search in that it delivers strictly
better constant ratios, and also will provide constant factor
approximations to problems not in GLO. Independently
of our work, Alimonti [1] has used a similar local search
technique for the approximation of a specific problem not
contained in GLO or MAX SNP.

1.2 Summary of Results

In Section 2, we present the definitions required to
state our results, and in particular the definitions of an £-
reduction, APX, APX-PB, MAX SNP and MAX SNP. In
Section 3, we show that MAX SNP = APX-PB. A generic
theorem which allows to equate the closure of syntactic
classes to appropriate computational classes is outlined in
Section 4; we also develop an approximation hierarchy
based on thisresult.

The notion of non-oblivious local search and NON-
OBLIVIOUS GLO is developed in Section 5. In Section 6,
we illustrate the power of non-obliviousness by first show-
ing that oblivious local search can achieve a most the
performance ratio 3/2 for MAX 2-SAT, even if it is a-
lowed to search exponentially large neighborhoods; in con-
trast, a very simple non-oblivious loca search agorithm
achieves a performance ratio of 4/3. We then establish
that this paradigm yields a 2% /(2* — 1) approximation to
MAX k-SAT. In Section 7, we provide an aternate char-
acterization of MAX SNP via a class of problems called
MAX k-CSP. It is shown that a simple non-abliviousal go-
rithm achieves the best-known approximation for this prob-
lem, thereby providing a uniform approximation for al of
MAX SNP. In Section 8, we further illustrate the power
of this class of algorithms by showing that it can achieve
the best-known ratio for a specific MAX SNP problem and
for VERTEX COVER (which is not contained in GLO).
Thisimpliesthat MAX SNP is not contained in GLO, and
that GLO is strict subset of NON-OBLIVIOUS GLO. In Sec-
tion 9, we apply it to approximating the traveling salesman
problem. Finally, in Section 10, we apply thistechniqueto
improving a long-standing approximation bound for maxi-
mum independent sets in bounded-degree graphs.

2 Preliminaries and Definitions

Given an NPO problem I and an instance Z of 1, we
use |Z| to denotethelength of Z and O PT(Z) to denotethe
optimum value for thisinstance. For any solution S to Z,
the value of the solution, denoted by V'(Z, S), is assumed
to be a polynomia time computable function which takes
positive integer values (see [7] for a precise definition of
NPO).

Definition 1 (Error) A solution S to an instance Z of an
NPO problem M haserror £(Z, S) if

1 _VESs)
1+£&(Z,5) = OPT(T)

<1+&(Z,59).

Noticethat theabovedefinition of error appliesuniformly
to the minimization and maximization problemsat al levels
of approximability.

Definition 2 (Performance Ratio) An approximation al-
gorithm A for an optimization problem N has performance
ratio R(n) if, given an instance Z of I with |Z| = n, the
solution A(Z) satisfies

V(Z,A(Z)) OPT(Z)
ax{ OPT(I) ’V(I,A(I))} < R(n),

A solution of value within a multiplicative factor » of the
optimal valueisreferred to as an r-approximation.

The performance ratio for A isR if it aways computes
asolutionwith error at most R — 1.

2.1 E-reductions

We now describe the precise approximation preserving
reduction we will use in this paper. Various other notions
of approximation preserving reductions exist in the litera
ture(cf. [16, 2]) but the reduction which we use, referred to
asthe E-reduction (for error-preserving reduction), seems
to be the strictest. As we will see, the E-reduction is es-
sentially the same as the L-reduction of Papadimitriou and
Yannakakis [21] and differs from it in only one relatively
minor aspect.

Definition 3 (E-reduction) A problem N £-reduces to a
problem M’ (denoted M g M) if there exist polynomial
time computabl e functions f, ¢ and a constant /5 such that

e f mapsaninstanceZ of I toan instanceZ’ of I’,

e g mapssolutions .S’ of 7' to solutions S of Z such that

S(I,8) < BET', S).



Remark 1 An E-reduction is essentially the strictest pos-
sible notion of reduction. It requires that the error for N be
linearly related to the error for M’. Most other notions of
reductions in the literature, for example the F'-reductions
and P-reductionsof Crescenzi and Panconesi [9], do not en-
forcethiscondition. Oneimportant consequenceof thiscon-
straint isthat £~-reductions are sensitive, i.e., whenZ € I
is mapped to Z’ € M’ under an E-reduction then a good
solution to Z’ should provide structural information about
a good solutionto Z. Thus, reductions from real optimiza-
tion problems to decision prablems artificially encoded as
optimization problems are implausible.

Remark 2 Having M ocg M’ impliesthat N isas well ap-
proximable as IM’; in fact, an F-reduction is an FPTAS
preserving reduction. An important benefit is that this re-
duction can applied uniformly at all level s of approximabil-
ity. Thisis not the case with the other existing definitions
of FPTAS-preserving reduction in the literature. For ex-
ample, the FPTAS-preserving reduction (F'-reduction) of
Crescenzi and Panconesi [9] is much more unrestricted in
scope and does not share thisimportant property of the £-
reduction. Note that Crescenzi and Panconesi [9] showed
that there exists a problem N’ € PTAS such that for any
problem M € APX, M «p M’. Thus, there is the unde-
sirable situation that a problem M with no PTAS has a
FPTAS-preserving reduction to a problem I’ with a PTAS.

Remark 3 The L-reduction of Papadimitriou and Yan-
nakakis [21] enforces the condition that the optima of an
instance Z of I be linearly related to the optima of the in-
stance Z’ of M’ to which it is mapped. This appears to be
an unnatural restriction considering that the reduction itsel f
isallowed to be an arbitrary polynomial time computation.
This is the only real difference between their L-reduction
and our E-reduction, and an E-reduction in which thelin-
earity relation of the optimasis satisfied is an -reduction.
Intuitively, however, in the study of approximability the de-
sirableattributeis simply that the errors in the correspond-
ing solutions are closdly (linearly) related. The somewhat
artificial requirement of a linear relation between the opti-
mum val ues precludes reductions between problems which
are related to each other by some scaling factor. For in-
stance, it seems desirabl ethat two problemswhose obj ective
functions are simply related by any fixed polynomial factor
should be inter-reducible under any reasonable definition
of an approxi mation-preserving reduction. Our relaxation
of the L-reduction constraint is motivated precisely by this
consideration.

Let C be any class of NPO problems. Using the no-
tion of an £-reduction, we define hardness and complete-
ness of problems with respect C, as well its closure and
polynomially-bounded sub-class.

Definition 4 (Hard and Complete Problems) A problem
M’ is said to be C-hard if for all problems M € C, we have
M g M. AC-hard problemI1 is said to be C-complete if
inadditionn € C.

Definition 5 (Closure) The closure of ¢, denoted by C, is
the set of all NPO problems M such that M «g M’ for some
n ec.

Remark 4 The closure operation maintainsthe set of com-
plete problems for a class.

Definition 6 (Polynomially Bounded Subset) The poly-
nomially bounded subset of C, denoted C-PB, is the set
of all problems N & C for which there exists a polynomial
p(n) such that for all instancesZ € N, OPT(Z) < p(|Z]).

2.2 Computational and Syntactic Classes

We first define the basic computational class APX.

Definition 7 (APX) AnNPO problem isintheclassAPX
if there exists a polynomial time computable function A
mapping instances of M to solutions, and a constant ¢ > 1,
such that for all instancesZ of IM,

VI, AZ))

C

< OPT(Z) < ¢ x V(I, A(T)).

The class APX-PB consists of al polynomially bounded
NPO problems which can be approximated within constant
factorsin polynomial time.

If welet F'-APX denotetheclassof NPO problemswhich
are approximable to a factor /', then we obtain a hier-
archy of approximation classes. For instance, poly-APX
and log-APX are the classes of NPO problems which have
polynomial timealgorithmswith performanceratio bounded
polynomially and logarithmically, respectively, in the input
length. A more precise form of these definitions are pro-
vided in Section 4.

Let us review the definition of some syntactic classes.

Definition 8 (MAX SNP and MAX NP [21]) MAX SNP
is the class of NPO problems expressible as finding the
structure S which maximizes the objective function

V(I’S) = {7 | CD(I’S’ f)}|,

where Z = (U; P) denotes the input (consisting of a finite
universe U/ and a finite set of bounded arity predicates P),
S isafinite structure, and @ is a quantifier-free first-order
formula. The classMAX NP is defined analogously except
the abjective functionis

V(Z,5)=[{7 | gP(Z, 5,7, 4)}-



For the purposes of this abstract, we omit the definition
and treatment of the weighted version of thisclass.

Examplel (MAX k-SAT) The MAX k-SAT problem is:
given a collection of m clauses on n boolean variables
where each (possibly weighted) clause is a digunction of
precisely k literals, find a truth assignment sati sfying a max-
imum weight collection of clauses. For any fixed integer %,
MAX k-SAT belongsto the classMAX SNP. Theresults of
Papadimitriouand Yannakakis[21] can beadapted to show
that for £ > 2, MAX k-SAT iscompleteunder ~-reductions
for the classMAX SNP.

Definition 9 (RMAX(K) [20]) RMAX(k) is the class of
NPO problems expressible as finding a structure S which
maxi mi zes the objective function

V(I’S):{ g{f:S(f)H

where S isasinglepredicateand ®(Z, S, ) isa quantifier-
free CNF formulain which .S occursat most & timesin each
clause and all its occurrences are negative.

if vy, d(Z, S, )
otherwise

The resultsof Panconesi and Ranjan [20] can be adapted
toshow that MAX CLIQUE iscomplete under £-reductions
for the class RMAX(2).

Definition 10 (MIN F* IT, (k) [18]) MIN F*Ty(k) isthe
class of NPO problems expressible as finding a structure .S
which minimizes the objective function

VLS) :{ g{f:S(f)H

where S isasinglepredicate, ®(Z, S, ) isa quantifier-free
CNF formula in which S occurs at most & times in each
clause and all its occurrences are positive.

ifv#, 3y, ®(Z, S, %, )
otherwise

The results of Kolaitis and Thakur [18] can be adapted
to show that SET COVER is complete under £-reductions
for theclassMIN FTM5(1).

3 MAX SNP Closureand APX-PB

In this section, we will establish the following theorem
and examine its implications. The proof is based on the
results of Aroraet a [3] on efficient proof verifications.

Theorem 1 MAX SNP = APX-PB.

Remark 5 The seeming weakness that MAX SNP only
captures polynomially bounded APX problems can be re-
moved by using more looser forms of approximation pre-
serving reduction in defining the closure. In particular,

Crescenz et al [8] define the notion of a PTAS-preserving
reduction under which APX = APX-PB. Using their re-
sult in conjunction with the above theorem, it is easily seen
that MAX SNP = APX. This weaker reduction is neces-
sary to allow for reductions from fine-grained optimization
problems to coarser (polynomially-bounded) optimization
problems (cf. [8]).

Thefollowingisasurprising consequence of Theorem 1.

Theorem 2 MAX NP = MAX SNP.

Papadimitriou and Yannakakis [21] (implicitly) intro-
duced both these closure classes but did not conjecturethem
to bethesame. It would beinteresting to seeif thisequality
can beshownindependent of theresult of Aroraet a [3]. We
also obtain the following resolution to the problem posed
by Papadimitriou and Yannakakis [21] of finding complete
problemsfor MAX NP.

Theorem 3 MAX SAT iscomplete for MAX NP.

The following sub-sections sketch the proof of The-
orem 1. The idea is to first F-reduce any minimiza-
tion problem in APX-PB to a maximization problem in
therein, and then F-reduce any maximization problem in
APX-PB to a specific complete problem for MAX SNP,
viz. MAX 3-SAT.

3.1 Reducing Minimization to Maximization

Observe that the fact that I belongsto APX impliesthe
existence of an approximation algorithm A and a constant ¢
such that

OPT(I)

C

Henceforth, we will use a(Z) to denote V(Z, A(Z)). We
first reduce any minimization problem I € APX-PB to a
maximization problem N’ € APX-PB, where the latter is
obtai ned by merely modifying the objective functionfor I,
asfollows: let M’ have the objective function V/(Z, S) =
(¢ +1)a(Z) — cV(Z,S), for dl instances Z and solutions
S for I. It can be verified that the optimum value for any
instanceZ of N’ always liesbetween «(Z) and (¢ + 1)a(Z).
Thus, A isa(c + 1)-approximation algorithm for M’. If S
isad-error solutionto the optimumof ', i.e,,

<V(ZI,A(T)) < ¢ x OPT(T).

OPT'(T)
1+6

where O PT"(Z) istheoptimal value of V'’ for Z. Weobtain
that

V(Z,S) > > (1-6)0PT'(Z),

(e+Da(Z)-V(Z,S)

C

V(Z,s) =




(¢ + 1)a(Z) — OPT'(T) + 6 x OPT'(T)
¢x OPT(I)+4d x COPT’(I)

C

OPT(Z) + (c+ 1)§ OPT(I).

A

Thus a solution s to M’ with error § is a solution to M
with error at most (¢ + 1)d, implying an E-reduction with
ﬁ =c+ 1.

3.2 NP Languagesand MAX 3-SAT

The following theorem, adapted from a result of Arora
et d [3], is critica to our E-reduction of maximization
problemsto MAX 3-SAT.

Theorem 4 Given a language L € NP and an instance
z € 2", one can compute in polynomial time an instance
Fr of MAX 3-SAT, with the following properties:

1. F, hasm clauses, where m depends only on n.

2. Thereexistsaconstant ¢ > Osuchthat (1—¢)m clauses
of F,, are satisfied by some truth assignment.

3. z € L = F, issatisfiable (completdy).

4. z ¢ L = no truth assignment satisfies more than (1 —
¢)m clauses of 7.

5. Givenatruth assignment which satisfiesmorethan (1—
¢)m clauses of F,,, a truth assignment which satisfies
F. completely can be constructed in polynomial time.

Some of the properties above may not be immediately
obviousfrom the construction given by Aroraet a [3]. Itis
easy to verify that they provide a reduction with properties
(2), (3) and (4). Property (5) isobtained fromthefact that all
assignments which satisfy most clauses are actually close
(in terms of Hamming distance) to valid codewords from
a linear code, and the uniquely error-corrected codeword
obtained from this “corrupted code-word” will satisfy all
the clauses of ..

Property (2) requires a bit more care and we provide a
brief sketch of how it may be ensured. Theideaisto revert
back to the PCP model and redefine the proof verification
game. Suppose that the origina game had the properties
that for z € L then there existsaproof such that the verifier
acceptswithprobability 1, and for = ¢ I theverifier accepts
with probability at most 1/2. We now augment this game
by adding to the proof a Oth bit, which the prover uses as
follows: if the bit is set to 1, then the prover “chooses’ to
play the old game, else heis effectively “giving up” on the
game. The verifier in turn first looks at the Oth bit of the
proof. If thisis set, then she performsthe usua verification,

€l se she tosses an unbiased coin and accepts if and only if it
turnsup heads. Itisclear that for € L there existsa proof
on which the verifier aways accepts. Also, for = ¢ L no
proof can cause theverifier to accept with probability greater
than 1/2. Finally, by setting the Oth bit to 0, the prover can
create a proof which the verifier accepts with probability
exactly 1/2. This proof system can now be transformed
into a 3-CNF formula of the desired form.

3.3 Reducing Maximization to MAX 3-SAT

We have adready established that, without loss of gen-
eraity, we only need to worry about maximization prob-
lems I € APX-PB. Consider such a problem I, and
let A be a polynomia-time algorithm which delivers a ¢-
approximation for I, where ¢ is some constant. Given any
instanceZ of N, let p = ¢ x a(Z) be the bound on the opti-
mum value for 7 obtained by running A oninput Z. Note
that this may be a stronger bound than the a priori polyno-
mial bound on the optimum value for any instance of length
|Z|. Animportant consequence isthat p < ¢ OPT(Z).

We generate a sequence of NP decision problems .; =
{Z|OPT(Z) > i} for 1 < i < p. GivenaninstanceZ, we
create p formulas F;, for 1 < ¢ < p, using the reduction
from Theorem 4, where ith formulais obtained from the NP
language L;.

Consider now the formula 7 = A!_, 7; that has the
following features:

e The number of satisfiable clauses of F is exactly
MAX =(1—¢)ymp+ em OPT(T),
where ¢ and m are as guaranteed by Theorem 4.

¢ Given an assignment which satisfies (1 — ¢)mp + emj
clauses of F, we can construct in polynomial time a
solutionto Z of value at least j. To see this, observe
the following: any assignment which so many clauses
must satisfy more than (1 — €)m clauses in at least
j of the formulas F;. Let ¢ be the largest index for
which this happens; clearly, i > j. Furthermore, by
property (5) of Theorem 4, we can now construct a
truth assignment which satisfies F; completely. This
truth assignment can be used to obtain a solution S
suchthat V(Z,S) > ¢ > j.

In order to compl ete the proof it remainsto be shown that
given any truth assignment with error ¢, i.e., which satisfies
MAX /(1+6) clauses of F, we can find asolution S for
T with error £(Z, S) < 6 for some constant 3. We show
that this is possible for 3 = (¢? + ce)/e. The main idea
behind finding such a solution isto use the second property
above to find a “good” solution to Z using a “good” truth
assignment for F.



Suppose we are given a solution which satisfies
MAX /(1+9) clauses. Since MAX /(1+4) > (1—
HMAX and MAX = (1— e)mp + em OPT(Z), we can
use the second feature from above to construct a solution .Sy
such that

(1-0)MAX —(1—¢)mp

V(T,51) > =
> (1-6)OPT(T) - gp
> (1-6(1+2))opPT(D).

Let 6* = d(1+ ¢/e), thenitisreadily seen that
OPT(T)

1+
where v = ¢*/(1—6*). Assuming 6* < (¢ — 1)/c, we

obtain that )
Y < (c —I—CE) 5
€

Ontheother hand, if 6* > (¢—1)/¢, thentheerror inasolu-
tion S, obtained by running the ¢c-approximation algorithm
for M isgiven by

2
c-15 (SE5)s
€

Therefore, choosing 3 = (c?+ce) /¢, weimmediately obtain
that the solution with larger value, among 57 and .S, has
eror a most 36. Thus, this reduction is indeed an E-
reduction.

V(I, 81) Z

4 GenericReductionsand an Approximation
Hierarchy

In this section we describe a fairly generic technique for
turning a hardness result into an approximation preserving
reduction.

We start by listing the kind of constraints imposed on
the hardness reduction, the approximation class and the op-
timization problem. We will observe at the end that these
restrictions are obeyed by all known hardness results and
the corresponding approximation classes.

Definition 11 (Additive Problems) An NPO problem[T is
said to be additiveif there exists an operator + which maps
a pair of instances Z; and 7 to an instance 7, + Z, such
that OPT(I]_ + Iz) = OPT(I]_) + OPT(Iz)

Definition 12 (Downward Closed Family) A family of
functions F = {f : Z+ — Z*} is said to be down-
ward closed if for all ¢ € F and for all constants e,

g'(n) € O(g(n®)) impliesthat ¢’ € F. A function g is
said to be hard for thefamily F' iffor all ¢’ € F, thereexists
aconstant ¢ such that ¢’(n) € O(g(n°)); thefunction g is
said to be completefor F' if g ishardfor F"and g € F'.

Definition 13 (F-APX) For a downward closed family F,
the class F'-APX consists of all problems approximable to
withinaratio of ¢(|Z|) for some functiong € F.

Definition 14 (Canonical Hardness) An NPO problem N
issaid to be canonically hard for the class F'-APX if there
exists a transformation 7", constants ng and ¢, and a gap
function g whichishard for thefamily /', such that given an
instance x of 3-SAT onn > ng variablesand N > n¢,7 =
T(x, N') isan instance of N with the following properties:

e € 3-SAT = OPT(I) = N.
e & ¢ 3-SAT = OPT(Z) = N/g(N).

e Given a solution S to Z with V(Z,S) > N/g(N), a
truth assignment @ satisfying # can be found in poly-
nomial time.

We defer the proof of the following theorem to the fi-
nal version of this abstract, but note that it is based on a
generalization of the proof of Theorem 1.

Theorem 5 If F' isa downward closed family of functions,
and an additive NPO problemI1 is canonically hard for the
class F'-APX, then all problemsin F'-APX E-reduce to 1.

The following is a consequence of Theorem 5.

Theorem 6 a) RMAX(2) = poly-APX.
b) If SET COVER is canonically hard to approximate to
within Q(logn) factor, then log-APX = MIN F+T,(1).

We briefly sketch the proof of thistheorem. The hardness
reductionfor MAX SAT and CLIQUE are canonicd [3, 11].
The classes APX-PB, poly-APX, log-APX are expressible
as classes F'-APX for downward closed function families.
TheproblemsMAX SAT, MAX CLIQUE and SET COVER
are additive. Thus, we can now apply Theorem 5.

Remark 6 Wewouldliketo point out that almost all known
instances of hardness results seem to be shown for problems
which are additive. In particular, thisis true for all MAX
NP problems, MAX CLIQUE, CHROMATIC NUMBER,
and SET COVER. One case where a hardness result does
not seem to directly apply to an additive problem s that of
LONGEST PATH [17]. However in this case, the closely
related LONGEST s-t PATH problem is easily seen to be
additive and the hardness result essentially stems from this
problem. Lastly, the most interesting optimization problems
which do not seem to be additive are problems related to
GRAPH BISECTION or PARTITION, and these al so happen
to be notabl einstances where no hardness of approximation
results have been achieved!



5 Local Search and MAX SNP

In this section we present a formal definition of the
paradigm of non-obliviousloca search, and describe how
it applies to a generic MAX SNP problem. Given a
MAX SNP problem N, recall that the god isto find a struc-
ture S which maximizesthe objective function: V(Z, S) =
> 2 ®P(Z, S, %). Inthe subsequent discussion, weview S as
a k-dimensional boolean vector.

5.1 Classical Local Search

We start by reviewing the standard mechanism for con-
structing a local search agorithm. A J-local agorithm A
for M is based on a distance function D (S1, S2) which is
the Hamming distance between two k-dimensiona vec-
tors. The d-neighborhood of a structure S is given by
N(5,8)={S"CU"|D(S,S") <4}, whereU istheuni-
verse. A gtructure S is called §-optimal if V5" € N (S, 4),
we have V(Z,S) > V(Z,S5"). The agorithm computes a
d-optimum by performing a series of greedy improvements
to an initia structure Sy, where each iteration moves from
the current structure S; to some S;11 € N (S;, d) of better
value (if any). For constant §, ad-local search agorithmfor
a polynomially-bounded NPO problem runsin polynomial
time because

¢ each local changeis polynomially computable, and

o thenumber of iterationsispolynomially bounded since
the value of the obj ective function improves monoton-
icaly by an integral amount with each iteration, and
the optimum is polynomially-bounded.

5.2 Non-ObliviousLocal Search

A non-obliviouslocal search agorithm is based on a 3-
tuple (So, F, D) where Sy is the initial solution structure
which must be independent of theinput, 7 (Z, S) isarea-
valued function referred to as the weight function, and D is
a real-valued distance function which returns the distance
between two structuresin someappropriately chosen metric.
The distance function D is computable in time polynomial
in |U]. Thus as before, for constant §, a non-oblivious J-
loca agorithm terminates in time polynomia in the input
size.

Theclassical local search paradigm, whichwe call obliv-
iouslocal search, makes the natural choice for the function
F(Z,S), and the distance function D, i.e. it chooses them
tobe V(Z, S) and the Hamming distance. However, as we
show later, thischoice does not awaysyield agood approx-
imation ratio. We now formalize our notion of this more
general type of local search.

Definition 15 (Non-Oblivious L ocal Search Algorithm)
A non-obliviouslocal search algorithmisa é-local search
algorithmwhose weight function is defined to be

F(Z,8)= Zipicbi(z,& I,
7 i=1

xr

where r is a constant, ®;’s are quantifier-free first-order
formulas, and the profits p; arereal constants. Thedistance
function D is an arbitrary polynomial-time computable
function.

A non-obliviouslocal search can beimplementedin poly-
nomial timein much the sameway asabliviousloca search.
Notethat theweareonly considering polynomially-bounded
weight functions and the profits p; are fixed independent of
the input size. In general, the non-oblivious weight func-
tions do not direct the search in the direction of the actual
objective function. In fact, as we will see, thisis exactly
the reason why they are more powerful and allow for better
approximations.

Definition 16 (Non-ObliviousGLO) The class of prob-
lems NON-OBLIVIOUS GLO consists of all problems which
can be approximated within constant factors by a non-
obliviousd-local search algorithmfor some constant 4.

Remark 7 We make some observations about the above
definition. It would be perfectly reasonable to allow weight
functions which are non-linear, but we stay with the above
definition for the purposes of this paper. Allowing only
a congtant number of predicates in the weight functions
enables us to prevent the encoding of arbitrarily compli-
cated approximation algorithms. The structure S is a k-
dimensional vector, and so a convenient metric for the dis-
tance function D isthe Hamming distance. This should be
assumed to be the underlying metric unless otherwise spec-
ified. However, we have found that it is sometimes useful
to modify this, for example by modifying the Hamming dis-
tance so that the complement of a vector isconsidered to be
at distance 1 fromit. Finally, it is sometimes convenient to
assumethat thelocal search makesthe best possiblemovein
the bounded neighborhood, rather than an arbitrary move
which improves the weight function. We believe that this
does not increase the power of non-obliviouslocal search.

6 ThePower of Non-ObliviousL ocal Search

Wewill show that thereexistsachoice of anon-oblivious
weight function for MAX k-SAT such that any assignment
which is 1-optimal with respect to this weight function,
yields a performance ratio of 2% /(2* — 1) with respect to



the optimal. But first, we obtain tight bounds on the per-
formance of obliviouslocal search for MAX 2-SAT, estab-
lishing that its performance is significantly weaker than the
best-known result even when allowed to search exponen-
tially large neighborhoods. We use the following notation:
for any fixed truth assignment 7, S; isthe set of clausesin
which exactly : literalsare true; and, for a set of clauses S,
W (S) denotes the total weight of the clausesin S.

We show astrong separation inthe performance of obliv-
ious and non-obliviouslocal search for MAX 2-SAT. Sup-
pose we use a d-local strategy with the weight function #
being the total weight of the clauses satisfied by the assign-
ment, i.e, F = W(S1) + W(S2). The following theorem
shows that for any § = o(n), an oblivious d-local strategy
cannot deliver a performance ratio better than 3/2. Thisis
rather surprising given that we are willing to allow near-
exponential time for the obliviousa gorithm.

Theorem 7 Theasymptotic performanceratiofor an obliv-
iousd-local searchalgorithmfor MAX 2-SAT is3/2for any
positived = o(n). Thisratio is still bounded by 5/4 when
J may take any valuelessthann /2.

Wenow illustratethe power of non-obliviousloca search
by showing that it achieves a performance ratio of 4/3
for MAX 2-SAT, using 1-loca search with a smple non-
obliviousweight function.

Theorem 8 Non-oblivious 1-local search achieves a per-
formanceratio of 4/3 for MAX 2-SAT.

Proof: We use the non-obliviousweight function

F(ZL,7)= gW(Sl) +2W(S2).

Consider any assignment Z which is1-optimal with respect
to this weight function. Without loss of generality, we
assume that the variables have been renamed such that each
unnegated literal gets assigned the value true. Let 7; ; and
N; ; respectively denote the total weight of clauses in S;
containing the literals z; and z;, respectively. Since 7 is
a 1-optimal assignment, each variable z; must satisfy the
following equation.

1 3 1 3
_épz’j — EP]_J' + éNl’j + ENOJ' < 0.

Summing thisinequality over all the variables, and using

Y Py=) Ny o= W(S)
=1 7j=1
Y Py o= 2W(Sy)
=1

> Noj = 2W(So).
j=1

we get the following inequality:
W(Sz) + W(Sl) > 3W(So).

This immediately implies that the total weight of the un-
satisfied clauses at thisloca optimum is no more than 1/4
timesthetota weight of all theclauses. Thus, thisalgorithm
ensures a performance ratio of 4/3. ]

Remark 8 The same result can be achieved by using the
oblivious weight function, and instead modifying the dis-
tancefunction so that it correspondsto distancesin a hyper-
cube augmented by edges between nodes whose addresses
are complement of each other.

The preceding theorem can be extended to MAX k-SAT.

Theorem 9 Non-ablivious 1-local search achieves a per-
formanceratio of 2% /(2¥ — 1) for MAX k-SAT.

7 Local Search for CSP and MAX SNP

We now introduceaclass of constraint satisfaction prob-
lemssuch that theproblemsin MAX SNPare exactly equiv-
alenttothe problemsinthisclass. Furthermore, every prob-
lem in this class can be approximated to within a constant
factor by anon-abliviousloca search agorithm.

The connection between the syntactic description of op-
timization problems and their approximability through non-
obliviouslocal search is made via a problem caled MAX
k-CSP which captures al the problemsin MAX SNP as a
special case.

Definition 17 (k-ary Constraint) Let 7 = {z1,...,2,}
be a set of boolean variables. A k-ary constraint on 7
isC = (V;P), where VV is a size k subset of Z, and
P:{T,F}* — {T, F}isak-aryboolean predicate. ~ m

Definition 18 (MAX k-CSP) Given a collection 71, ...,
C, Of weighted k-ary constraints over the variables 7 =
{z1,...,2n}, the MAX k-CSP problem is to find a truth
assignment satisfying a maximum weight sub-collection of
the constraints. ]

Thefollowingtheorem showsthat MAX k-CSP problem
isa“universal” MAX SNP problem, in that it contains as
special cases dl problemsin MAX SNP.

Theorem 10 a) For fixed k£, MAX k-CSP € MAX SNP.
b) Let M € MAX SNP. Then, for some constant %,
M € MAX k-CSP. Moreover, the k-CSP instance corre-
sponding to any instance of this problem can be computed
in polynomial time.



A suitable generdization of the non-oblivious loca
search algorithm for MAX k-SAT yields the following re-
sult.

Theorem 11 A non-oblivious1-local search algorithmhas
performanceratio 2* for MAX k-CSP.

Theorem 12 Every optimization problem N € MAX SNP
can be approximated to within some constant factor by a
(uniform) non-oblivious 1-local search algorithm, i.e.,

MAX SNP C NoN-0BLIVIOUS GLO.

For a problem expressible as k-CSP, the performanceratio
isat most 2.

8 Non-Obliviousversus ObliviousGLO

In this section, we show that there exist problems for
which no constant factor approximation can be obtained by
any J-local search algorithmwith obliviousweight function,
even whenweallow ¢ to grow withtheinput size. However,
asimple 1-local search algorithm using an appropriate non-
obliviouswei ght function can ensureaconstant performance
ratio.

81 MAX?2-CSP

Thefirst problemisaninstance of MAX 2-CSPwherewe
are given a collection of monomials such that each mono-
mial isan “and” of precisely two literals. The objectiveisto
find an assignment to maximize the number of monomias
satisfied.

We show an instance of this problem such that for every
d = o(n), thereexistsan instance one of whoselocal optima
has value that is a vanishingly small fraction of the global
optimum.

Theinput instance consists of adisjoint union of two sets
of monomials, say I'; and I',, defined as below:

o=\ @Az
1<i<j<n
N = \/ \/ (2i A zj)

1<i<s i<j<n

Clearly, |1| = (3), and || = nd — (°F1). Consider
thetruthgnmentZ =(1,1,...,1). Itsatisfiesall mono-
mialsin I, but none of the monomialsin ;. We claim that
this assignment is §-optimal with respect to the oblivious
weight function. To see this, observe that complementing
thevalueof any p < § variableswill unsatisfy at least 6p/2
monomiasin I, for any § = o(n). On the other hand, this

will satisfy precisely (5) monomiasinT;. Forany p < 6,
we have (6p)/2 > (3),and so Z isad-local optimum.

The optima assignment on the other hand, namely
ZOPT = (0,0,...,0), satisfies al monomialsin . Thus,
for 6 < n/2, the performance ratio achieved by any ¢-local
agorithmisno morethan (3)/(nd — (°3*)) which asymp-
totically diverges to infinity for any § = o(n). We have
already seen in Section 7 that a 1-local non-oblivious al-
gorithm ensures a performance ratio of 4 for this problem.
SincethisprablemisinMAX SNP, we obtain thefollowing
theorem.

Theorem 13 There exist problemsin MAX SNP such that
for § = o(n), no é-local oblivious algorithm can approxi-
mate them to within a constant performanceratio, i.e.,

MAX SNP Z GLO.
8.2 Vertex Cover

Ausiello-Protasi [4] have shown that VERTEX COVER
does not belong to the class GLO and, hence, there does not
exist any constant § such that an oblivious §-local search
algorithm can compute a constant factor approximation.
In fact, their example can be used to show that for any
d = o(n), the performance ratio ensured by é-local search
asymptotically divergesto infinity. However, we show that
there exists a rather simple non-oblivious weight function
which ensures afactor 2 approximationviaa1-local search.
In fact, the agorithm simply enforces the behavior of the
standard approximation agorithm which iteratively builds
avertex cover by simply including both end-points of any
currently uncovered edge.

We assume that the input graph & is given as a structure
(V.{E}) where V isthe set of verticesand £ C V x V
encodes the edges of the graph. Our solutionis represented
by a 2-ary predicate M which is iteratively constructed so
astorepresent amaximal matching. Clearly, the end-points
of any maxima matching congtitute a valid vertex cover
and such avertex cover can be at most twice aslarge as any
other vertex cover in the graph. Thus M is an encoding of
the vertex cover computed by the algorithm.

The algorithm starts with M initialized to the empty re-
lation and at each iteration, at most one new pair isincluded
init. The non-abliviousweight function used is as bel ow:

1
f(IaM) = Z §¢l(xayaz)_¢2($ayaz)a
where
Pi(z,y,2) = (M(x,y)ANE(x,y) A (2 =2)),

®o(w,y,2) = (M(z,y) A M(z,2)).



It isnot difficult to show that if we start with the empty
matching, any 1-optimal relation A aways encodes amax-
ima matching in ;. We have established the following.

Theorem 14 A 1-local search algorithm using the above
non-obliviouswei ght function achieves a performanceratio
of 2 for the VERTEX COVER problem.

Theorem 15 GLO is a strict subset of NON-OBLIVIOUS
GLO.

9 TheTraveling Salesman Problem

The TSP(1,2) problemisthetraveling salesman problem
restricted to complete graphs where al edge weights are
either 1 or 2; clearly, this satisfies the triangle inequality.
Papadimitriou and Yannakakis [22] showed that this prob-
lemishard for MAX SNP. The natura weight function for
TSP(1,2), that is, theweight of thetour, can be used to show
that a 4-local algorithmyields a % performance ratio. The
algorithm starts with an arbitrary tour and in each iteration,
it checks if there exist two digoint edges (a, b) and (c, d)
on the tour such that del eting them and replacing them with
the edges («, ¢) and (b, d) yieldsatour of lesser cost.

Theorem 16 A 4-local search algorithm using the obliv-
ious weight function achieves a % performance ratio for

TSP(1,2).
The above bound can be shown to be tight.

Theorem 17 There existsa TSP(1,2) instance such that the
optimal solutionhas cost n + O (1) and there existsa certain
4-optimal solution for it with cost 2n + O(1).

10 Maximum Independent Setsin Bounded
Degree Graphs

Theinput instanceto the maximum independent set prob-
lem in bounded degree graphs, denoted MIS-B, is a graph
G such that the degree of any vertex in (G is bounded by
a constant A. We present an agorithm with performance
ratio (v/8A2 + 4A + 1 — 2A + 1) /2 for this problem when
A > 10.

Our agorithmusestwo loca search agorithmssuch that
the larger of the two independent sets computed by these
algorithms, gives us the above claimed performance ratio.
We refer to these two agorithmsas .A; and As.

In our framework, the algorithm .4, can be characterized
asa3-loca algorithm. Let an ¢ <+ j swap be the process of
deleting ¢ vertices from .S (the current independent set) and

including j vertices fromtheset VV — S totheset S. Then
in each iteration, the algorithm .41 performs either a0 « j
swap where1l < j < 3, 0r al < 2 swap; it terminates
when neither operation applies.

Lemmal The algorithm.4; has performance ratio (A +
1)/2for MIS-B.

This nearly matches the approximeation ratio of 2/A due
to Hochbaum [15]. It may be noted that the above result
holds for a broader class of graphs, namely, k-claw free
graphs. A graph is called k-claw free if there does not
exist an independent set of size k£ or larger such that all
the vertices in the independent set are adjacent to the same
vertex. Lemma 1 appliesto (A + 1)-claw free graphs.

Our next objective is to further improve this ratio by
using the algorithm .4, in combination with the algorithm
Asz. Thefollowinglemmauses adlightly different counting
argument to give an aternative bound on the approximation
ratio of the algorithm .4; when there is a constraint on the
size of the optimal solution.

Lemma?2 For any real number ¢ < A, the algorithm .A;
hasperformanceratio (A—c) /2for MIS-Bwhentheoptimal
valueitselfisno morethan ((A— ¢)|V])/(A+ ¢ + 4).

The above lemma shows that the algorithm A; yields
a better approximation ratio when the size of the optimal
independent set isrelatively small.

The algorithm .4, is ssimply the classical greedy algo-
rithm. This algorithm can be conveniently included in our
framework if we use directed local search. The follow-
ing two lemmas characterize the performance of the greedy
algorithm.

Lemma 3 Supposethere existsan independent set X C
such that the average degree of verticesin X isbounded by
a. Then for any o« > 1, the greedy algorithm produces an
independent set of sizeat least | X|/(1 + «).

Lemma4 For A > 10 and any non-negative real number
¢ < 3A—+/8A2 + 4A + 1- 1, the algorithm.A; has perfor-
mance ratio (A — ¢)/2 for MIS-B when the optimal value
itselfisat least (A — ¢)|V|)/(A+ ¢+ 4).

Combining the results of Lemmas 2 and 4 and choosing
thelargest allowablevaluefor ¢, we get thefollowing result.

Theorem 18 An approximation algorithm which simply
outputs the larger of the two independent sets computed
by the algorithms .4; and .4, has performance ratio

(VBD?Z + 4A + 1 — 2A + 1)/2 for MIS-B.



The performance ratio claimed above is essentially
A/2.414. This improves upon the long-standing approx-
imation ratio of A/2 due to Hochbaum [15] when A > 10.
However, very recently, there has been a flurry of new re-
sultsfor this problem. Berman and Furer [6] have given an
agorithm with performance ratio (A + 3)/5+ ¢ when A is
even, and (A+3.25) /5+ ¢ for odd A, wheree > Oisafixed
constant. Halldorsson and Radhakrishnan [14] have shown
that algorithm .4; when run on k-clique free graphs, yields
an independent set of size at |east ﬁn. They combinethis
algorithm with a clique-removal based scheme to achieve a
performanceratio of A/6(1 4+ o(1)).
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