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Abstract

We indicate strong non-approximability factors for cen-
tral problems: N1/4 for Max Clique; N1/10 for Chro-
matic Number; and 66/65 for Max 3SAT.

Underlying the Max Clique result is a proof system in
which the verifier examines only three “free bits” to at-
tain an error of 1/2. Underlying the Chromatic Number
result is a reduction from Max Clique which is more ef-
ficient than previous ones.

1 Introduction

Max Clique is amongst the most important combinato-
rial optimization problems. Unfortunately it is NP-hard
[16], and attention since this discovery has thus focused
on approximation algorithms. Yet the best known ones
can approximate the max clique size of an N node graph
only to within a factor of N1−o(1) [11], scarcely better
than the trivial factor of N .

The first twenty years following the NP-hardness discov-
ery brought little understanding of why this is so. Today
we know a lot more. The results of [12, 3, 2] indicated
the existence of a constant α > 0 for which Nα factor
approximations are unlikely to be achievable. Recent
work [7, 13] has been able to show that α ≥ 1/15.

One of the most basic goals in computational com-
plexity theory is to find the exact complexity of prob-
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lems. With the above advances, the time seems ripe
to attempt something which four years ago may have
seemed unthinkable; namely, to find the exact complex-
ity of approximating Max Clique. That is, let αtrue

be the value such that Max Clique can be approxi-
mated within Nαtrue but no better. We know that
1/15 ≤ αtrue ≤ 1 − o(1). But where in this range does
αtrue lie?

Our approach has been to try to improve the lower
bound. That is, continuing the work of [7, 13], we
wanted to increase the value of the constant α > 0 for
which a factor Nα non-approximability result could be
shown. We were faced with the difficulty that proba-
bilistic proof checking techniques seemed to have been
pushed to their limits. How could one go further? As we
will see, the key was the build proof systems which are
efficient not under “standard” proof checking measures,
but under a new one suggested by [13].

Our proof systems have enabled us to obtain results
strong enough to be surprising. For the first time,
we feel that the gap between upper and lower bounds
may be bridged. Indeed, we feel that our techniques
have the potential to show hardness of approxima-
tion within N1−o(1), leading us to conjecture —perhaps
somewhat pessimistically and certainly in opposition to
other conjectures!1— that αtrue = 1 − o(1) is where
the truth lies; and, furthermore, that probabilistic proof
checking techniques will be able to show this.

We obtain also strong results for the chromatic number
problem, and some improvements for Max 3SAT.

To simplify the presentation, we have elected to first de-
scribe the results and techniques and then give detailed
credits in Section 1.3.

1.1 Non-approximability results

Denote by ω(G) the size of a maximum clique in G. Re-
call that an algorithm approximates Max Clique within

1 It has been conjectured that the Lovász theta function ap-
proximates Max Clique within N1/2.



factor g(N) ≥ 1 if on input an N -node graph G it
outputs a number which is at least ω(G)/g(N) but
at most ω(G). Recall also that a function of T (n) is
“quasi-polynomial” if there is a constant c such that
T (n) ≤ nlogc n for all large enough n. We denote by
P̃,NP̃,RP̃ etc. the analogues of the usual complexity
classes in the quasi-polynomial time domain. Our main
result can be stated right away. It indicates that we
should not hope to be able to approximate Max Clique
to a factor better than N1/4.

Theorem 1.1 Suppose NP̃ 6= coRP̃. Then there is
no polynomial time algorithm to approximate Max Clique
within N

1
4−o(1).

The assumption NP̃ 6= coRP̃ can be decreased at the
cost of a decrease in the factor shown hard. For exam-
ple, for any constant δ > 0, assuming NP 6= coRP we
can show that N

1
5−δ factor approximation is impossible;

and assuming just P 6= NP we can use the constructions
of [15] to show that N

1
6−δ factor approximation is im-

possible.

The technical underpinning of the above result is a new
proof system which will be discussed in Section 1.2. We
turn now to the chromatic number problem.

Denote by χ(H) the chromatic number of a graph H.
Recall that an algorithm approximates the chromatic
number within factor g(N) ≥ 1 if on input an N -
node graph H it outputs a number which is at most
χ(H) · g(N) but at least χ(H). The above mentioned
proof systems combined with known results would di-
rectly imply that N

1
16−o(1) factor approximation of the

chromatic number is impossible unless NP̃ = coRP̃. To
do even better, we provide a new reduction of Max
Clique to chromatic number. Its features are discussed
in Section 1.2. It enables us to show the following.

Theorem 1.2 Suppose NP̃ 6= coRP̃. Then there is no
polynomial time algorithm to approximate the chromatic
number within N

1
10−o(1).

Again, the assumption can be traded off with the factor
shown hard. For any constant δ > 0, assuming NP 6=
coRP we can show that N

1
13−δ factor approximation is

impossible; and assuming P 6= NP we can show that
N

1
14−δ factor approximation is impossible.

Max 3SAT is the problem of determining the maximum
number of simultaneously satisfiable clauses in a 3cnf-
formula. It is a canonical Max SNP complete problem
[22]. An algorithm approximates it within 1 + γ if it
produces a value which is at least 1/(1 + γ) times op-
timal, and at most optimal. An algorithm due to [24]
achieves γ = 1/3.

Theorem 1.3 Suppose NP̃ 6= P̃. Then there is no poly-
nomial time algorithm to approximate Max 3SAT within
1 + 1/65.

The factor decreases to 1+1/73 if the assumption is just
P 6= NP. See Section 5 for a discussion of the proof.

1.2 Underlying results and techniques

We discuss here two things: first, the new proof systems
underlying our non-approximability results; second, our
chromatic number reduction. We view the new proof
systems as the most important contribution of this pa-
per. To discuss them we first need some definitions.

We are in the probabilistically checkable proof (PCP)
setting. A verifier V has access to an input x of length
n, a string of r = r(n) random bits, and a proof string
σ which he queries non-adaptively. He runs in time
poly(2r(n)). One can define in the usual way what it
means for this system to have error-probability ε = ε(n)
with respect to some underlying language L.

The efficiency measure that has been most important
to previous work is the number q = q(n) of bits of the
proof examined by the verifier. We focus on a differ-
ent measure which we call the number of “free bits.”
Roughly speaking, we say that the verifier uses (or
queries) f = f(n) ≤ q(n) free bits if, from the answers
returned to his first f queries, he is able to compute bits
b1, . . . , bq−f such that he only accepts if the sequence
of answers to his remaining q − f queries is exactly
this sequence of bits. (For a more formal definition see
Section 2. For history and an explanation of why this
is the right measure in our context, see Section 1.3).

The complexity class FPCP[ r, f ] that we now define
should be viewed, informally, as the free bit analogue
of PCP[ r, q ]; thus think of it as the class of languages
which can be recognized with error 1/2 using r(n) ran-
dom bits and f(n) free bits. This rough idea should
suffice for what follows. However the actual definition
is a different. Rather than say it takes f(n) free bits to
get error 1/2, we will require that the “rate” at which
the error decreases for every additional f(n) bits ex-
amined is roughly 1/2. Specifically a language L is in
FPCP[ r, f ] if for any function k(n) = ω(1) there is
verifier Vk which recognizes L with error 2−k(n) using
r(n)[k(n) + o(k(n))] random bits, f(n)[k(n) + o(k(n))]
free bits, and a proof size of 2r(n). For more information
see Section 2.

The theorem that follows thus says, roughly, that free
bits and randomness need to be expended at rates of 3
and polylog(n), respectively, for every 1/2 factor reduc-



tion in error.

Theorem 1.4 NP̃ ⊆ FPCP[ polylog(n), 3 ].

If the randomness is required to be logarithmic, we will
use slightly more than one more free bit. Specifically we
can show that for any constant δ > 0 it is the case that
NP is contained in FPCP[O(log n), 4+δ ].

The actual statements we prove are stronger: see The-
orems 3.1 and 3.2.

The connection with Max Clique, which we state with-
out proof, is as follows. Suppose FPCP[ polylog(n), f ]
is not equal to coRP̃. Then there is no polynomial
time algorithm to approximate the Max Clique within
Nα−o(1) where α = 1/(1+f). Thus we get Theorem 1.1.

We can show that that many aspects of our construc-
tions and analysis are tight. We feel that proof systems
of a different nature are required to do better.

Following [20], non-approximability results for Chro-
matic Number have been obtained by “reduction”
from the Max Clique problem on the specific set of
graphs constructed by the Max Clique reduction of [12].
For the purpose of discussing our contribution the prob-
lem can be abstracted as follows.

We say that G is a (R,Q)-clique graph (Q > R and Q,R
both powers of 2) if its nodes are arranged in a Q by R
matrix with each column an independent set. We say
that a polynomial time map µ(·) is a chromatic number
reduction if there is a polynomial time map A(·), always
returning a positive integer, such that the following is
true. For any (R,Q)-clique graph G and any integer
g ≥ 1 the graph H = µ(G) computed by the reduction
has the property that if ω(G) = R then χ(H) ≤ A(G)
and if ω(G) ≤ R/g then χ(H) ≥ A(G) · g. We say that
µ is a (a, b)-chromatic number reduction if the size of H
equals RaQb.

One can show the following, which we state without
proof. Suppose FPCP[ polylog(n), f ] is not equal to
coRP̃. Then there is no polynomial time algorithm to
approximate the Chromatic Number within Nβ−o(1) for
β = 1/(a+bf). Thus the problem is to design (a, b)-
chromatic number reductions with a, b as small as pos-
sible.

The reduction of [20] achieves a = 1 and b = 5. (A
simple reduction supplied later by [17] is slightly less
efficient, achieving a = 6 and b = 5.) Applying this
and Theorem 1.4 we can conclude that approximating
Chromatic Number within N

1
16−o(1) is hard, which is

already better than the best previous hardness factor
of N1/71 due to [13]. However, we have the following
improvement in the reduction.

Theorem 1.5 There is a (a, b)-chromatic number reduc-
tion achieving a = 1 and b = 3.

Theorem 1.2 follows.

Our reduction is an extension of the one of [17], stay-
ing within the same framework but using linear algebra
and coding theory techniques to implement “shifts” in
a different way. See Section 4.

1.3 History and explanations

Non-approximability results based on PCPs begin with
[12]. They have since been proved under many different
assumptions. These include: P̃ 6= NP̃ [12]; P 6= NP [3,
2]; NP 6= coRP [25, 7, 13]; and NP̃ 6= coRP̃ [7].2 Since
our focus is on the factor g(N) shown hard rather than
on the assumption, we will talk of a problem being hard
to approximate within a certain factor; it is understood
that we mean that no polynomial time approximation
algorithm achieving this factor exists under one of the
above assumptions.

The basic connection of PCPs to Max Clique is due to
[12]. Until the work of [13], it has been expressed in
terms of query bits, and we’ll begin by discussing this
part of the literature. Our discussion is in terms of
PCPav[ r, q ], the average case version of PCP defined
by [7] to equal the class of languages which can be rec-
ognized with error 1/2 by a PCP which uses r = r(n)
random bits and makes a number of queries whose ex-
pectation is a constant strictly less than q. The connec-
tion, which we state without proof, is that if NP̃ is in
PCPav[ polylog(n), q ] then approximating Max Clique
within Nα is hard for α = 1/(1+q). This is a slightly
tighter version of the original connection of [12] which
can be viewed as derived in two alternative ways: ei-
ther apply the randomized graph products of [9] to the
construction of [12], or apply [25].

The connection described above led researchers to focus
on reducing the (expected) number of bits queried in
the PCP. Extending [4, 5, 12, 3] it was shown by [2]
that NP̃ is in PCPav[ polylog(n), q ] for a value q which,
although not specified in the paper, has been said by the
authors to be around 104. Thus they could show that
approximating Max Clique within N0.0001 is hard. The
problem of reducing q was first tackled in earnest in [7],

2 Note NP 6= coRP (resp. NP̃ 6= coRP̃) is a slight improvement
on the assumption actually stated in the works in question, which
is NP 6⊆ BPP (resp. NEXP 6⊆ BPEXP). For instance, NP =
coRP implies that the polynomial hierarchy collapses to its first

level. Also note NP 6= ZPP (resp. NP̃ 6= ZPP̃) is equivalent to

NP 6= coRP (resp. NP̃ 6= coRP̃).



and they showed that NP̃ is in PCPav[ polylog(n), 24 ].
It followed that approximating Max Clique withinN1/25

is hard, a pretty substantial improvement. Amongst
their technical contributions are a simplified framework
for proof checking and the idea of reusing query bits.
We use both.

To reduce below 24 the number of queried bits in a PCP
seemed hard. The door to better results was opened by
Feige and Kilian [13]. They suggested the notion of
free bits (they didn’t name it so; that was our doing)
and observed that the Max Clique connection actually
achieved what in our language would be the following:
if NP̃ is in FPCPav[ polylog(n), f ] then approximating
Max Clique within Nα is hard for α = 1/(1+f). They
then observed that of the 24 query bits used in the
proof system of [7] only 14 were free; that is, NP̃ is in
FPCPav[ polylog(n), 14 ]. It followed that approximat-
ing Max Clique within N1/15 is hard.3 It was indicated
in [13] that better results could probably be obtained
by optimizing proof checking systems with the new pa-
rameter in mind. Our results show that they were right.

The first non-approximability result for Chromatic
Number was that of Lund and Yannakakis [20]. They
showed that there is a constant β > 0 such that approx-
imating the chromatic number of a graph within Nβ is
hard. A value of β = 1/121 was obtained in [7]. This
was improved to β = 1/71 in [13].

The first non-approximability result for Max 3SAT was
that of [2]. Assuming P 6= NP they showed that there
exists a constant γ > 0 such that no polynomial time
algorithm can approximate Max 3SAT within 1 + γ.
Next it was shown by [7] that assuming P̃ 6= NP̃, no
polynomial time algorithm can approximate Max 3SAT
within 1 + 1/93. The assumption was improved to P 6=
NP in [13].

2 Definitions

A PCP is defined by a verifier V who has access to
the input x of length n, a random string R of length
r = r(n), and a proof string σ which has a length
l = l(n) assumed wlog to be a power of 2. The verifier is
specified by a poly(2r(n)) time computable query func-
tion Qx,R(·) and an answer checking function Cx,R(·).

3 The observation of [13], and the reason it is the free bits
rather than the query bits that are relevant, can be explained
another way to a reader familiar with the construction of [12].
Recall that each node of the graph built by the latter encodes
a computation of the verifier, and only nodes corresponding to
accepting computations need be in the graph. The number of
nodes is 2r+q but the number of accepting ones is only 2r+f .

He computes queries qi = Qx,R(i) for i = 1, . . . , q(n)
which are lg l(n) bit strings, each indicating an “ad-
dress” in the proof string; the total number of queries
q(n) is poly(2r(n)). The corresponding bits a1, . . . , aq(n)

of the proof are returned. He now computes his deci-
sion according to Cx,R(a1 . . . aq(n)). We ask that Cx,R
be computed by a circuit which can be generated in
poly(2r(n)) time and has size poly(q(n)).

The probability that V accepts x, σ is taken over the
choice of R and is denoted Acc [V σ(x) ]. As usual,
the verifier defines a ε = ε(n) error proof system for
a language L if for every x ∈ L there is a σ such that
Acc [V σ(x) ] = 1, and for every x 6∈ L and every σ it is
the case that Acc [V σ(x) ] ≤ ε(n).

We say that V uses f = f(n) free bits if there is
a function Gx,R(·) which, given answers a1, . . . , af(n)

to the first f(n) queries, returns q(n) − f(n) bits
bf(n)+1, . . . , bq(n) such that the following is true: if there
is some i ∈ {f(n) + 1, . . . , q(n)} such that bi 6= ai, then
Cx,R(a1 . . . aq(n)) = 0. In other words, the verifier can
accept only if bi = ai for all i = f(n) + 1, . . . , q(n). As
with Cx,R we also ask that Gx,R be computed by a cir-
cuit which can be generated in poly(2r(n)) time and has
size poly(q(n)). We call Gx,R the guessing function.

Whenever n is understood we drop it as an argument
to the proof system parameters.

Traditionally the important efficiency measures have
been the number of queries q and the amount of ran-
domness r. Instead of q, we focus on the number of free
bits f . We continue to consider the randomness, but we
consider also the proof size l which is actually more rele-
vant in the kinds of reductions we discuss. Accordingly,
FPCP[ r, f, ε, l ] is the class of languages recognizable
with error ε using r random bits, f free bits and proofs
of size l. A language is in FPCP[ r, f ] if for every func-
tion k(n) = ω(1) there is a function δk(n) = o(k(n))
such that L is in FPCP[ (k+δk)r, (k+δk)f, 2−k, 2r ].

We’ll also discuss verifiers who talk to a collection of
p = p(n) provers rather than to a proof string [8]. Defi-
nitions for such things are standard.

If Ω is a probability space then ω
R← Ω denotes the

operation of selecting an element at random according
to Ω, and Pr

ω
R←Ω

[·] is the corresponding probability. If

S is a set then ω
R← S is the operation of selecting

ω uniformly at random from S. When we say X is a
random variable over a probability space Ω we mean
that it is a map whose domain is the support of Ω; the
probability Pr[X = b] that X attains a value b is hence
by definition Pr

ω
R←Ω

[X(ω) = b].



3 Efficient FPCPs

We prove Theorem 1.4 and the statement directly fol-
lowing it. In fact we will establish something stronger.

Theorem 3.1 There exists a constant c and a function
r(n) = polylog(n) such that for all m ≥ 1 the language
SAT is in FPCP[mr, 3m, c2−m + 1/ log n, 2r ].

Given any function k(n) = ω(1) a careful error reduc-
tion shows that SAT is in FPCP[ r(k+δk), 3(k+δk), 2−k,
2r ] where

δk(n) = O(1) +
⌈
k log log log n

log logn

⌉
.

Theorem 1.4 follows.

Theorem 3.2 There exists a constant c and a polynomial
κ(·) such that for all m ≥ 1 and all constants ε > 0 the
language SAT is in FPCP[mrε, 4m, c2−m+ε, 2rε ], where
rε(n) = κ(1/ε) · log n.

The statement following Theorem 1.4 is again obtained
by a careful error reduction.

We now simultaneously prove the two theorems above.

We look at l bit strings as l-dimensional vectors over Z2.
Let a(i) denote the i-th coordinate of a string a ∈ Z l2.
For a, b ∈ Z l2, we use a·b to represent their inner product,
i.e. the scalar

∑l
i=1 a

(i)b(i). The outer product of a and
b, denoted a◦b, is the l2 bit string c with c(ij) = a(i)b(j).
We often view c as an l × l matrix.

A function π: Z l2 7→ Zt2 is a projection function if there
exist 1 ≤ i1 < . . . < it ≤ l such that ∀a ∈ Z l2 and
all j = 1, . . . , t it is the case that π(j)(a) = a(ij). The
canonical inverse π−1: Zt2 → Z l2 of this projection is
the function which maps b ∈ Zt2 to the string a ∈ Z l2
satisfying a(ij) = b(j) for j = 1, . . . , t and a(i) = 0 for
i 6∈ {i1, . . . , it}. For a1, . . . , am ∈ Z l2, the set of vectors

{
∑m
i=1 biai : b1, . . . , bm ∈ Z2 }

is called the span of a1, . . . , am and is denoted
Span(a1, . . . , am).

The distance between strings a, b ∈ Z l2, denoted d(a, b),
is |{ i : a(i) 6= b(i) }|/l. Similarly the distance d(f, g)
between functions f, g is the fraction of points of their
(common) domain on which they differ. Function f is
said to be ε-close to function g if d(f, g) ≤ ε. The
Hadamard (robust) encoding of a string a ∈ Z l2 is the
2l-bit string which may be described as the function
Ea: Z l2 → Z2 given by Ea(x) = a · x. Notice that Ea
is a linear function; i.e. it satisfies Ea(x) + Ea(y) =
Ea(x+ y). Observe further that every linear function f

from Z l2 to Z2 is the Hadamard encoding of some unique
string a ∈ Z l2. This string a is denoted E−1(f). Finally,
observe that d(Ea, Eb) = 1/2 for a 6= b.

3.1 Canonical verifiers

We begin by defining a class of verifiers which we call
canonical and which can be used as the starting point
for our construction. A canonical verifier V1 has access
to p provers and the following features.

Preprocessing. The verifier V1 reads the input x and
tosses r1(n) random coins. Let R be the outcome of
the coin tosses. Based on R and x the verifier gen-
erates questions q0, . . . , qp−1, a circuit Cq0 which de-
pends only on q0 (and x) but not on R given q0, the
lengths l0, . . . , lp−1 expected of the answers, and pro-
jection functions π1, . . . , πp−1, where πk: Z l02 → Z lk2 .
Quite often we will omit the subscript of C if it is clear
from the context.

Interaction. For k = 0, . . . , p − 1 the verifier asks the
question qk of the prover Pk and receives response ak
from him.

Postprocessing. The verifier checks that C(a0) = 1 and
πk(a0) = ak for all i = 1, . . . , p− 1 and accepts if all the
checks work out.

Guarantees. If x ∈ L, then there exist provers
P0, . . . , Pp−1 such that V1 always accepts. If x 6∈ L
then for all provers P ′0, . . . , P

′
p−1, the probability that

the verifier accepts is at most ε.

Parameters. The parameters of interest are p, ε, r1 and
l = ||C||+ l0.

Our transformation applies to any canonical proof sys-
tem. The above theorems are obtained by plugging in
specific canonical proof systems as we now describe.

The only property missing to make the proof system
of [19, 14] canonical is that the second prover’s an-
swers are not expressible as a projection of those of
the first. This is simple to fix. To see how, recall
that the first prover sends a sequence of polynomials
A1, . . . , Ad: F → F where d = O(|F | · log2 n) and F
is the underlying field. These polynomials are specified
by their coefficients. The verifier evaluates A1, . . . , Ad
at points t1, . . . , td, respectively, to obtain xi = Ai(ti)
for i = 1, . . . , d. Meanwhile the second prover has sent
points y1, . . . , yd. The verifier checks that xi = yi for
all i = 1, . . . , d. The modification is that for each i
instead of having the first prover specify Ai by its co-
efficients, have him send the list 〈Ai(t) : t ∈ F 〉 of the
values of the polynomial on all points in the field. Now



the values xi can be obtained by an appropriate pro-
jection. If we set the size of the field to O(log n) we
end up with a canonical proof system having p = 2,
r1(n) = O(log3 n), ε = 1/ log n and l = polylog(n). Ap-
plying the transformation that follows to this system
will yield Theorem 3.1.

In the proof system of [13] the answers of the second
prover are not determined by those of the first. How-
ever, we observe that any p-prover proof system can
be converted into a p + 1 prover canonical proof sys-
tem. Applying this to the system of [13] we can con-
clude that there is a polynomial κ(·) such that for any
constant ε > 0 there is a canonical proof system with
p = 3, r1(n) = κ(1/ε) · log n, error ε, and l = O(r1(n)).
Theorem 3.2 is derived by applying what follows to this
system.

3.2 Protocol

We now extend the task of the provers P0, . . . , Pp−1 so
as to make the verifier’s task easier, using the idea of
recursive proof checking [3]. Notice that the circuit C
may be assumed wlog to be an algebraic circuit over
Z2. Hence there exists an augmented input set z (of
length ||C||) and an efficiently constructible degree 2
polynomial PC of a0 and z, such that for all a0 there
exists a unique z such that C(a0) = 1 iff PC(a0, z) =
0. We will refer to the string a0z as the C-augmented
representation of a0, denoted Caug(a0).

We now describe how the “honest” extended provers
behave. For each question q0 the extended prover P0

writes down the 2l bit string ECaug(ao) and the 2l
2

bit
string ECaug(a0)◦Caug(a0). For k ∈ {1, . . . , p − 1}, the
extended prover Pk writes down the 2lk bit string Eak .
Notice that if P0 is expected to provide the encodings
described above then it is important that C be a func-
tion of q0 alone, and this is indeed a property of the
canonical verifier.

We now describe the extended verifier.

Simulating V1. The verifier first simulates the prepro-
cessing phase of the verifier V1 and generates the ques-
tions qk, the circuit C and the projection functions πk.
Based on these questions the extended verifier now de-
cides to focus its attention on a small subset of the
provers’ responses, namely the responses to q0, . . . , qp−1.
Let P0’s response to q0 be functions f : Z l2 7→ Z2 and
g : Z l22 7→ Z2 respectively. Let the other provers’ re-
sponses to their questions be the functions f1, . . . , fp−1

respectively, where fk: Z lk2 → Z2.

Random choices. The verifier picks

– x1, . . . , xm
R← Z l2.

– y1, . . . , ym
R← Z l22 .

– z1k, . . . , zmk
R← Z lk2 for k = 1, . . . , p− 1.

Let X denote the span of x1, . . . , xm. Let Y denote
the span of y1, . . . , ym. Let Zk denote the span of
z1k, . . . , zmk.

Linearity tests. The verifier verifies that f restricted to
the span of x1, . . . , xm is linear; i.e., for all x, x′ ∈ X

f(x) + f(x′) = f(x+ x′) .

Similarly it verifies that g restricted to Y is linear and
for each k the restriction of fk to Zk is linear.

Quadraticity tests. The verifier verifies that for all
x, x′ ∈ X and for all y ∈ Y,

f(x)f(x′) = g(y + x ◦ x′)− g(y) .

Projection Tests. The verifier verifies that for all k =
1, . . . , p− 1, all z ∈ Zk and x ∈ X ,

fk(z) = f(π−1
k (z) + x)− f(x) .

Circuit Test. The verifier verifies that for all x ∈ X ,

g(α+ x)− g(x) = 0 ,

where α ∈ Z l22 is the vector of coefficients of the poly-
nomial PC .

3.3 Analysis

Observe that in the case that the verifier accepts,
the values of f(x1), . . . , f(xm), g(y1), . . . , g(ym) and
fk(z1k), . . . , fk(zmk), for k ∈ {1, . . . , p − 1}, completely
specify all the other bits that are read. Thus the number
of free bits examined by this protocol are (p+ 1)m.

We now analyse the error of this protocol. It is clear
that if x ∈ L then the provers can follow the rules set
for the “honest” provers and thus ensure that the verifier
never rejects.

In what follows we show that if the probability that
the verifier accepts is greater than ε + c2−m, for some
constant c to be specified later, then x ∈ L. The analysis
uses Lemmas 3.3, 3.4, 3.5 and 3.6, which we state now,
but whose proofs we defer.

Suppose h maps Zt2 to Z2. Denote by LinTesttm(h)
the probability of the event

∀x, x′ ∈ Span(x1, . . . , xm) :

h(x) + h(x′) = h(x+ x′)

when x1, . . . , xm are chosen uniformly and indepen-
dently from Zt2.



Lemma 3.3 There exists a constant c1 such that the fol-
lowing is true. Suppose h: Zt2 → Z2 satisfies

LinTesttm(h) ≥ c12−m .

Then there exists a linear function h∗: Zt2 → Z2 such that
d(h, h∗) ≤ 0.1.

Suppose f maps Z l2 to Z2 and g maps Z l22 to Z2. Denote
by QuadTestlm(f, g) the probability of the event

∀x, x′ ∈ Span(x1, . . . , xm) ∀ y ∈ Span(y1, . . . , ym) :

f(x)f(x′) = g(y + x ◦ x′)− g(y)

when x1, . . . , xm are chosen uniformly and indepen-
dently from Z l2 and y1, . . . , ym are chosen uniformly and
independently from Z l22 .

Lemma 3.4 There exists a constant c2 such that the fol-
lowing is true. Suppose f : Z l2 → Z2 and g: Z l22 → Z2 are

0.1-close to linear functions f∗: Z l2 → Z2 and g∗: Z l
2

2 →
Z2, respectively, and further satisfy

QuadTestlm(f, g) ≥ c22−m .

Then E−1(f∗) ◦ E−1(f∗) = E−1(g∗).

Suppose f maps Z l2 to Z2 and h maps Zt2 to Z2

and π: Z l2 → Zt2 is a projection function. Denote by
ProjTestl,tm (f, h, π) the probability of the event

∀x ∈ Span(x1, . . . , xm) ∀ z ∈ Span(z1, . . . , zm) :

h(z) = f(x+ π−1(z))− f(x)

when x1, . . . , xm are chosen uniformly and indepen-
dently from Z l2 and z1, . . . , zm are chosen uniformly and
independently from Zt2.

Lemma 3.5 There exists a constant c3 such that the fol-
lowing is true. Suppose f : Z l2 → Z2 and h: Zt2 → Z2 are
0.1-close to linear functions f∗: Z l2 → Z2 and h∗: Zt2 →
Z2, respectively, and further satisfy

ProjTestl,tm (f, h, π) ≥ c32−m

for some projection function π: Z l2 → Zt2. Then
π(E−1(f∗)) = E−1(h∗).

Suppose g maps Z l22 to Z2 and α ∈ Z l22 . Denote by
CircTestlm(g, α) the probability of the event

∀ y ∈ Span(y1, . . . , ym) : g(α+ y)− g(y) = 0

when y1, . . . , ym are chosen uniformly and indepen-
dently from Z l22 .

Lemma 3.6 There exists a constant c4 such that the fol-
lowing is true. Suppose g: Z l22 → Z2 is 0.1-close to a linear

function g∗: Z l
2

2 → Z2 and further satisfies

CircTestlm(g, α) ≥ c42−m .

Then g∗(α) = 0.

To see that the Lemmas above suffice, let functions
f, g, f1, . . . , fp−1 be such that the probability that V
accepts on each of the tests (of Section 3.2) is at least
c/2m where c = max{c1, c2, c3, c4}. Then we know that
every test above must pass with probability at least
c/2m. Applying Lemma 3.3 to each function implies
that all the functions are 0.1 close to linear functions
(i.e., there exist strings a, a′, a1, . . . , ap−1 such that the
functions given are the Hadamard encodings of these
strings). Applying Lemma 3.4 we now infer that a′ is
actually equal to a ◦ a. Applying Lemma 3.5 to each of
the pairs of functions (f, fk) implies that πk(a) = ak.
Lastly Lemma 3.6 can be applied to show that a is of the
form Caug(a0) for some string a0 such that C(a0) = 1.
Thus if the probability that the verifier V accepts is
greater than ε + (c/2m), then the probability that V1

accepts is greater than ε, implying in turn that x ∈ L.

We feel that one of the important aspects of the above
proof systems is that the number of free bits examined
is related to the number of different “tables” that the
verifier accesses rather than to the success probability
of the corresponding “tests.”

We now turn to the proofs of the lemmas. We start with
the proof of Lemma 3.6.

Proof of Lemma 3.6: Suppose g∗(α) 6= 0. Let I[y]
be the event that g(y+α)−g(y) = 0. Our starting point
is the self-corrector of [6, 10] which shows that in this
case the probability of I[y] when y is chosen uniformly
at random from Z l22 is at most 0.2. Observe that for
y1, . . . , ym randomly chosen from the space Z l22 , every
vector in their span (except for the all zeroes vector) is
a random element from Z l22 . Further observe that for
distinct non-zero strings b1 . . . bm ∈ Zm2 and b′1 . . . b

′
m ∈

Zm2 the vectors y =
∑m
i=1 biyi and y′ =

∑m
i=1 b

′
iyi are

independently and uniformly distributed over Z l22 . Thus
our analysis reduces to the following: we are tossing
N = 2m − 1 pairwise independent coins, each of which
comes up “heads” with probability p ≤ 0.2 and we wish
to upper bound the probability that all N of them show
“heads”. An upper bound of p/[(1− p)N ] is obtained by
a standard application of Chebychev’s inequality. Thus
the lemma is true for c4 = 1/2.

The proof of Lemma 3.5 is similar and is omitted
from this version. For the remaining lemmas we would
like to proceed as above. The hitch is that the events
that we would like to work with are not quite pair-
wise independent. However they satisfy a weaker form
of independence which will suffice. We first introduce
this notion and show how the second moment analy-



sis can still be applied here. Our notion seems to be
slightly weaker than some weak forms of independence
that have been used in the literature [21, 1] and in-
comparable to some of the others [18, 23]. The defi-
nition that follows is given only for the special case of
boolean random variables, but is easily generalized. We
let [N ] = {1, . . . , N}. Refer to bottom of Section 2 for
notation and conventions.

Definition 3.7 Let X1, . . . , Xn be identically dis-
tributed, boolean valued random variables on a prob-
ability space Ω, and suppose 0 ≤ δ ≤ 1. We say that
X1, . . . , Xn are δ-weak pairwise independent if for every
b1, b2 ∈ {0, 1}

| Pr
ω
R←Ω ; i,j

R←[N ]
[Xi(ω) = b1 and Xj(ω) = b2 ]

− µ(b1) · µ(b2) | ≤ δ ,

where µ(b) = Pr
ω
R←Ω

[X1(ω) = b] for all b ∈ {0, 1}.

Notice that if X1, . . . , Xn are pairwise independent then
they are 1/N -weak pairwise independent.

A bound similar to the second moment bound can be
obtained for the weak pairwise independent variables.

Lemma 3.8 Let X1, . . . , XN be δ-weak pairwise inde-
pendent random variables with Pr[X1 = 1] = p. Let

SN =
∑N
i=1Xi. Then

Pr [ |SN −Np| ≥ k ] ≤ δN2

k2

Proof: Pr[ · ] and E [ · ] stand for the probability and
expectation, respectively, under the space underlying
X1, . . . , XN . Let Ei,j [ · ] be shorthand for the expec-
tation under the experiment of picking i, j at ran-
dom from [N ]. The δ-weak pairwise independence of
X1, . . . , Xn implies that Ei,jE[XiXj ] ≤ δ + p2. Using
this we have

E
[

(SN −Np)2
]

= E
[∑N

i,j=1 (Xi − p)(Xj − p)
]

= N2 ·Ei,j E [ (Xi − p)(Xj − p) ]

= N2 ·
(
Eij E [XiXj ] + p2 − pEi,jE [Xi +Xj ]

)
≤ N2 ·

(
δ + p2 + p2 − 2p2

)
= δN2 .

Conclude by applying Chebychev’s inequality.

We are now in a position to complete the proof of
Lemma 3.3. Lemma 3.4 has a similar proof which is
omitted from this version.

Proof of Lemma 3.3: Assume for contradiction that
h is not 0.1-close to any linear function. For x, x′ ∈ Zt2,
let I[x, x′] be the event that h(x) + h(x′) = h(x + x′).
The linearity test analysis of [10] implies that if x and
x′ are drawn randomly and independently from Zt2 then
I[x, x′] occurs with probability at most 7/9.

Let x1, . . . , xm be drawn randomly from Zt2 and let
X (b1 . . . bm) denote the vector

∑m
i=1 bixi. Then for dis-

tinct non-zero strings b and b′ the vectors X (b) and
X (b′) are uniformly and independently distributed over
Zt2, and hence the event I[X (b),X (b′)] occurs with prob-
ability at most 7/9.

Now consider the probability that the events I[X (b),
X (b′)] and I[X (c),X (c′)] turn out not to be independent
when b, b′, c, and c′ are picked to be random non-zero
vectors. The only cases when the events may be re-
lated are when one of the vectors in the set {b, b′, b+ b′}
turns out to be equal to one of the vectors in the set
{c, c′, c+ c′}. The probability that any two of these are
equal is at most 1/(2m − 1). Thus the probability that
any of these nine events occurs is at most 9/(2m − 1).
Thus the events represent a collection X1, . . . , XN of
δ-weak pairwise independent random variables with N
equal 2m − 1 choose 2, δ = 9/(2m − 1) and E[X1] ≤
7/9. Thus Lemma 3.8 can be applied to infer that
the probability that all the random variables are 1 is
at most 729/[4(2m − 1)]. Thus the lemma is true for
c1 = 729/2.

4 Chromatic Number

We present the proof of Theorem 1.5. It will be helpful,
although not necessary, if the reader is familiar with the
construction and proof of [17] which we extend.

Let Q = 2q. Let F = GF(2q) be the finite field of size
Q = 2q. Let V = F 3 and regard it as a 3 dimensional
vector space over F . A set W ⊆ V of vectors is three
wise independent if for any ~w1, ~w2, ~w3 ∈W it is the case
that the set of vectors {~w1, ~w2, ~w3} is independent. The
number of nodes in a graph G is denoted ‖G‖.

Lemma 4.1 There is a set W ⊆ V of three-wise inde-
pendent vectors of size |W | = R which can be constructed
in polynomial time.

Proof: Let α1, . . . , αn denote any fixed ordering of the
n = |F |−1 non-zero elements of F . The vectors are the



columns of the matrix
1 1 1 . . . . . . 1

α1 α2 α3 . . . . . . αR

α2
1 α2

2 α2
3 . . . . . . α2

R


For any 1 ≤ i < j < k ≤ R the determinant∣∣∣∣∣∣∣∣

1 1 1

αi αj αk

α2
i α2

j α2
k

∣∣∣∣∣∣∣∣
is the Vandermonde determinant and is non-zero. So
any three columns are linearly independent.

Let W be as given by the Lemma 4.1, and fix some
ordering W = {~w1, . . . , ~wR} of it. View the given
(R,Q) clique graph G as having vertex set F × [R]
where [R] = {1, . . . , R}. Picture the nodes as a |F | =
Q by R matrix, with the nodes in column i being
(α1, i), . . . , (αQ, i). Each column is an independent set.
We now specify a graph H∗. The vertex set of H∗

is V × [R]. Think of the nodes as arranged in a ma-
trix of |V | = Q3 rows and R columns. Call ~wi the
vector associated to column i = 1, . . . , R. For each
~v ∈ V and node (a, i) of G, the ~v-th shift of (a, i) is
the node in H∗ defined by π~v(a, i) = (~v + a~wi, i). Note
the shift preserves the column. The edge set of H∗ is
the set of all {π~v(a, i) , π~v(b, j) } such that ~v ∈ V and
{ (a, i), (b, j) } is an edge in G. Edge {(a1, i1), (a2, i2)}
in G is a pre-image of edge {(~z1, i1), (~z2, i2)} in H∗ if
there exists ~v ∈ V such that π~v(a1, i1) = (~z1, i1) and
π~v(a2, i2) = (~z2, i2).

Lemma 4.2 Every edge in H∗ has a unique pre-image
in G.

The proof is similar to that of Lemma 4.3 below hence
is omitted.

The pre-image of a subgraph T of H∗ is the subgraph
of G induced by the pre-images of the edges in T . (By
the above Lemma, it is indeed unique). A triangle is a
complete graph on three nodes.

Lemma 4.3 The pre-image of a triangle in H∗ is a tri-
angle in G.

Proof: Let T be a triangle in H∗ whose nodes are
(~z1, i1), (~z2, i2), (~z3, i3). By Lemma 4.2 each edge in T
has a unique pre-image in G. So there exist ~v1, ~v2, ~v3 ∈
V and edges {(a1,2, i1), (b1,2, i2)}, {(a2,3, i2), (b2,3, i3)},

{(a3,1, i3), (b3,1, i1)} in G such that

~v1 + a1,2 ~wi1 = ~v3 + b3,1 ~wi1 = ~z1

~v2 + a2,3 ~wi2 = ~v1 + b1,2 ~wi2 = ~z2

~v3 + a3,1 ~wi3 = ~v2 + b2,3 ~wi3 = ~z3

Equating the sum of the quantities in the first column
with the sum of the quantities in the second column we
get

(~v1 + ~v2 + ~v3) + a1,2 ~wi1 + a2,3 ~wi2 + a3,1 ~wi3 =

(~v3 + ~v1 + ~v2) + b3,1 ~wi1 + b1,2 ~wi2 + b2,3 ~wi3 .

Simplifying we get

(a1,2−b3,1)~wi1 +(a2,3−b1,2)~wi2 +(a3,1−b2,3)~wi3 = ~0 .

The three wise independence of W implies that a1,2 =
b3,1 and a2,3 = b1,2 and a3,1 = b2,3. This means
the edges {(a1,2, i1), (b1,2, i2)}, {(a2,3, i2), (b2,3, i3)},
{(a3,1, i3), (b3,1, i1)} in G form a triangle.

Let ω(H∗) denote the size of a minimum clique cover of
H∗. Given Lemmas 4.2 and 4.3, an argument analogous
to that in [17] implies that

(1) ω(G) = R implies ω(H∗) = |V | = Q3

(2) ω(G) ≤ R/g implies ω(H∗) ≥ |V |g = Q3g.

Let H be the complement of H∗. It is well known that
χ(H) = ω(H∗). Now note ‖H‖ = ‖H∗‖ = |V × R| =
Q3R. This completes the proof of Theorem 1.5.

The assumption Q > R isn’t really necessary; in general
replace Q3 by the cube of max(1 +Q, 1 +R).

5 Max 3SAT

For the proof of Theorem 1.3 we exploit the notion of a
master prover and a bunch of other slave provers used
by the canonical verifier (cf. Section 3). We also per-
form various optimizations following in the framework
of [7]. In the latter category, we “weight” differently
the basic tests; we modify their “placements;” we factor
into the analysis a better analysis of the linearity tests,
due to [10] which, although known before [7], seems to
have been forgotten by them; we even reduce —to 13,
from the 15 in [7]— the number of 3SAT clauses needed
to write the quadratic test. A very skimpy description
follows.

We first use the [19, 14] proof system to get a canoni-
cal two-prover proof system as discussed in Section 3.1.
We then convert this into a Max 3SAT by expressing the
task of the extended verifier by a 3cnf-formula: A lin-
earity test requires 4 clauses, a quadraticity test 13, an



output test 2 and an input test requires 4 clauses. We
perform the above tests with probability 1, 16/27, 4/9
and 4/9 respectively. Thus the total number of clauses
coming from this test is 388/27. The analysis is divided
into the following cases. Here the function g is as in the
protocol of Section 3.2.

Case 1. The function g is not 0.1 close to linear. In this
case the linearity test fails with probability 2/9. Thus
the fraction of clauses failing is at least 3/194.

Case 2. The function g is x-close to being linear, where
x ≤ 0.1. In this case, the linearity test fails with prob-
ability 3x− 6x2 and the at least one of the remaining
tests fail with probability min{2/9− 3x, 2/9− 2x, 2/9−
2x}. Thus the test fails with probability at least 2/9,
implying that the fraction of clauses failing is at least
3/194.

More interesting than the techniques, however, might be
the realization that underlies them. Namely that, once
again, minimizing the number of bits queried in a PCP
is not the best way to go. Underlying our result is again
a new measure of proof checking efficiency —different,
however, from the free bit measure used above— but we
don’t have space to discuss it.
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