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LDPC Codes

Defn: LDPC codes are codes with Low
Density Parity Check matrices.

History
o Introduced:  [Gallager'63]. Showed

existence of codes with efficient
decodability when error is prob.

e Rejuvenated:  [Tanner'84]. Explicit
constructions and a graph-theoretic study.

e Rediscovered: [Sipser+Spielman’95] Linear
time decodability with adversarial error.
(Also renamed Expander codes. )

Our presentation follows [SS'95].
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Topic: Linear time decoding

Algebraic codes give neat decoding
algorithms, decoding lots of errors, in
polynomial time. But suppose we want much
faster algorithms?

Say linear time? Answers:
1. Yes, with a smaller fraction of errors.
2. Yes, provided errors are not adversarial.

Codes and decoding based on graph theoretic
principles.
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Basic LDPC codes

Binary codes based on bipartite graphs: G =
(L,R,E).
e L = variable nodes. |L| = n.
L assoc. with coordinates of codewords.
e R = constraint nodes. |R| =m.
Each vertex of R imposes a linear
constraint on its neighbors.
e Codeword Cg= Boolean assignments to L
such that for every vertex in R
the parity of its neighbors is 0.

Prop: Code above is a linear code with
information length & > n — m.

Note: G sparse = PC matrix is of low-density.
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Distance

Depends on properties of G.

Prop 1: G is a random graph, then code is a
random linear code.

Prop 2: Also holds for random sparse graphs.

Defn: G is (¢, d)-bounded if every left vertex
has degree < ¢ and every right vertex has
degree < d. ((c,d)-regular if degrees equal.)

Defn: G is an («, d)-expander if for every set
S C L, s.t. |S| < dn, the neighborhood of S,
denoted I'(S), has cardinality > «|S]|.

Theorem: |t G is (¢,d)-bounded and an
(e, 8)-expander, then Cq has distance rate

at least 229 provided 2a > c.
C
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Proof (contd).

Case: [S| < dn.

From boundedness on S-side, get:
(1) JA] +2|B| < ¢|S].

From expansion, get:
(2) [A[+[B| = ofS].

Putting above together, get
|A] > (2a—¢)|S| > 0.
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Proof

Consider z with wt(z) < 222) . n.
Will show z & Cg.

o let §={i|x; =1}

o Let I'(S) = AU B, where

A = {j € R|j has one neighbor in S}.
B ={j € R|j has > 2 neighbors in S}.

|A| > 0 = some constraint not satisfied.
Case: on < |S| < 220p)

From boundedness on S-side, we get:
(1) |A| +2|B| < ¢|S| < 2adn.

From expansion, we get:
(2) |A| + |B| > adn.

Putting above together get |A| > 0.
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Decoding

Given: Assignment @ to variables.
Task: Find nearby codeword sat. all
constraints.

The algorithm:
e While 3 variable 7 with more satisfied
ngbrs than unsat. ones, flip a;.
e If none exists, output a.

Prop: Algorithm can be implemented in linear
time, provided ¢,d = O(1). (Always reduces
# unsat. constraints!)

Thm:  Corrects up to ((22=£)§)-fraction
errors, provided a/c > 3/4.

(If @ = (1 —p)e, then distance = (2 —2p8)6
and fraction of errors = (1 — 253)4.)
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Proof Steps

Let @ have en ones for € < %5. Will show
alg. terminates with all zero vector. At any
stage of algorithm:

o let SCLbevars settol, s=]|S|

e Let U C R be unsat. constraints, u = |U]|.

Key Lemma: 0 < s <don = u> (2a—c)s.

Corollary 1: s < én
Proof: Initially, u < cen. Further algorithm

always reduces u. So s < 5=—en < dn.
- a—c

Corollary 2: s > 0 implies 45 € S with more
than ¢/2 neighbors in U.
Proof: Averaging + a > 3¢/2.

Together yield the theorem.
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Expanders

Need: (¢, d)-bounded (e, d)-expander graphs,
with € > 1 for distance (2 > 3 for decoding).

Prop: Random graphs satisfy such properties
for positive 9.

Unfortunately:
e No explicit constructions known.
e No tests known.

Explicit constructions give:

Thm: For every a, there exists ¢,d < oo and
d >0, sit. (e,d)-bounded, (a,d)-expanding
graphs can be constructed in polynomial time.

How to use these?
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Proof of Key Lemma

e Let I'(S) = AU B, where
A = {j € R|j has one neighbor in S}.
B ={j € R|j has > 2 neighbors in S}.

Recall:
(1) |Al+2[B] < ¢|S].
(2) |Al +|B| > afS|.

Together yield:
Al > (20— 0)|S]

Lemma follows since AC U.
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Extended LDPC codes

Reexamine: ey property used in analysis:
Every constraint vertex needs to have
> 2 neighbors set to 1 to be satisfied.

Hence, the requirement 2a > c.

Suppose: Fvery constraint vertex needs
> A neighbours set to 1 to be satisfied.
Requirement weakens to Aa > c.

How to set up such constraint?
Error-correcting codes!

New interpretation of constraint vertex:
Assignment to neighbors must be from B,
for some [d, ?, A] error-correcting code B.
(Enumerate neighbors in canonical order.)

(©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Seven 12



Extended LDPC codes

Defn: For (¢,d)-regular graph G, and [d, [, A]
code B, the Extended LDPC code Cg p
has as codewords all assignments to the
variable vertices such that the nghrs of every
constraint vertex form codewords of B.

Specializes/Generalizes LDPC.

Prop: Information length of Cq g is n—m(d—
l).

Thm: If G is an («,d)-expander, then the
code has distance rate at least %6, provided
Aa > c.
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Proof (contd).

Case: [S| < dn.

From boundedness on S-side, get:
(1) |A[+ A[B] < ¢[S].

From expansion, get:
(2) [A[+[B| = ofS].

Putting above together, get
|A| > 82=¢|5| > 0.
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Proof of Distance

As earlier consider z with wt(z) < £2) . n.
Will show z & Cgq.

o let §={i|x; =1}

o Let I'(S) = AU B, where
A ={j € R|j has < A neighbors in S§}.
B ={j € R|j has > A neighbors in S}.

|A| > 0 = some constraint not satisfied.
Case: on < |S| < 222 )

From boundedness on S-side, we get:
(1) JA|+ A|B| < ¢|S| < Aadn.

From expansion, we get:
(2) |A| + |B| > adn.

Putting above together get |A| > 0.
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Decoding

Not the same algorithm!

Parallel decoding algorithm:

e Parameter €.

e Repeat

— If check vertex has less than €A distance
from codeword
Send flip message to €A ngbrs.
— Flip all bits that rec'd flip message.

e Until no flip messages sent.

Analysis omitted.
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Encoding?

The LDPC codes are extremely fast to decode,
but how easy are they to encode?

Definitely, polynomial time encodable.
But not necessarily linear time!

Need new idea.
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Error-reduction codes

Defn: For bipartite graph G = (L, R, E), the
Reducer Code, R¢, is defined as follows:
e [ = message bits, |L| = k.
e R = check bits, |R| =n — k.
e Codewords = n-bit assignments to LU R
s.t. the assignment to every check bit
equals the parity of its neighbors.

Prop 1: If G is (¢, 7)-bounded, then encoding
is linear time.

Prop 2: If G is (¢,?)-bounded, then distance
is at most ¢+ 1.

But in fact, if we fix check bits, then get
good code on message side! So will hope
check bits are mostly right, and hope to fix
message bits.
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Spielman codes

[Spielman’95]

Comes in two steps.

Phase |: Error-reducing codes.

Phase Il: Linear-time encodable and decodable

codes.
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Error-reduction

Defn: A is an (e, )-error-reduction alg. if
V s,t, (m,c) € Rg
(2,9) € {0,1}"
st. A(m,z) =s<yn
and A(e,y) =t < vn,
x' = A(z,y) satisfies A(m,x’) < et.

If ¢t =0, then must correct all errors!
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Error-reduction (contd.)

Algorithm
o Set o/ =
e While 3 message vertex ¢ with more
satisfied ngbrs than unsat. ones, flip z.
e If none exists, output z'.

Prop: Algorithm can be implemented in linear
time, provided ¢,d = O(1).

Thm: If G is a (¢, 2¢)-regular and a (%c,6)-
expander for some & > 0, then alg. above is

. _ 4
an (e, vg—error—reductlon alg. for e =% and
_ C
7= 3et2y
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Analysis (contd.)

Corollary 1: s < dk.

Proof:
e Initially, u < cs +t < 2(c+ 1)7k.
e Algorithm always reduces wu.
e So s’ <Lt L5

Corollary 2: s > % implies 35 € S with more
than ¢/2 neighbors in U.
Proof: Averaging + a = Tc/8.

Together yield the theorem.
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Analysis

Fix ', y,m,c and let:
o §' = {ilz} #mi} and s’ = |5|
o T ={jly; # ¢j} and t =|T|
o U = {j|jth chkbit unsat.} and u = |U|.
e A={j €T(9)|j has one ngbr in S}.
o B={j€I(S)|j has > 2 ngbrin S}.

Prop: A—T C U C AUT.

Key Lemma:
0<s <dk=u>2a—-c)s"—t

(Proved as in earlier cases.)
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Phase Il

Given: Sequence of error-reduction codes
Ry, Ry, Rg, ... ,Rp—si,....
Ry has k message bits + k/2 checkbits.

Will construct: Seq. of Error-Correcting
codes:

Co,Cy,Csy.oo ,Clesiy - - ..

Ci, has k message bits + 3k checkbits.

Given: k-bit message m,
Checkbits of Cy = ¢1 0 ¢ 0 ¢3, where
¢1 = checkbits of Rg(m).
co = checkbits of Cy/a(c1).
c3 = checkbits of ng(cl o CQ).

Verify: ¢q has k/2-bits, ¢1 o cg has 2k-bits.
€1 0 ¢g 0 ¢3 has 3k bits.
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Encoding & Decoding

Prop: If Ry, Ry, ... is linear time encodable,
then so is Cg,Cy,. ..

Decoding Algorithm

Given: z oy 01ys03

Step 1: Error-reduce Rgp on yq1 0 Yo, y3 and
get Yoy,

Step 2: Error-correct Cy /o 0n yj oy, and get
Y-

Step 3: Error-reduce Ry on x,y] and get .

Step 4: Return /.
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Proof

Proof: Suppose
A(zoyioyz0ys, mociocyocz) < v/4n = vk.

e Then the following hold:
A(z,m) <~k
A(yioyz,cro0c2) <k
A(ys,c3) <k

e Can decode Ry/p. Yields
Ay} oyh,cr0c2) < (v/2)k.

e Error in Cy /9 small. Can correct it.
Thus yf =c1.

e All checkbits of Ry correct!
Thus 2’ =m/!
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Decoding (Analysis)

Prop: If the error-reduction algorithm for
Rs, Ry, ... runs in linear time,
then the error-correction alg. also runs
in linear time.

Theorem: It for v > 0, the codes Ra, Ry, . ..
have an (%,’y)—error—reduction algorithm,

Then the decoding algorithm above corrects
~v/4-fraction errors.
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Summarizing

Theorem: There exists a family of linear-time
encodable and decodable error-correcting
codes.

Theorem: Such 2 family can be constructed
in poly time.
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