A Crash Course on Coding

Theory
Madhu Sudan Complexity in Coding
Theory
Madhu Sudan, : 1
Fundamental problems of coding theory Hardness of decoding
Maximum likelihood decoding (MLD):
B Given: G C
_ Y €
B Decide: dc € C' Alc,y) <e
o C
_ C Thm: [Berlekamp, McEliece, van Tilborg '78]

_ C MLD s NP
MLD Nearest Codeword Problem

Madhu Sudan, : 2 Madhu Sudan, : 3



Proof

[Modern folklore] Reduction from Max CUT.
Max CUT:

Given: Graph H = (V, E) and integer k.
Decide: 45 C V st
# edges from S to S is at least k?

The reduction:
e Let generator G be incidence matrix of H.
([m,n,?]-code, where n = |V|, m = |E|).
eletr=1"ande=m—k.

Analysis:
e Code = characteristic vectors of cuts.
e Codeword closest to 1™ is the one with
largest # of edges crossing cut.
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Nearest Codeword Problem (NCP)

Given: Generator G, received vector y.
Goal: Find codeword ¢ € Cg nearest to y.

Defn: An a-approximation algorithm to NCP
is a polytime algorithm that, on input (G, y),
outputs ¢ € Cg that satisfies

A(d,y) < alA(cy), VYeel,

€

Theorem: V ¢ > 0. NCP i not 28’ ‘n
approximable, if P £ NP.

o Theorem combines:
[Arora,Babai,Stern,Sweedyk '93]
-+ [Dinur,Kindler,Safra '99].

e Our proof: Uses stronger assumptions
Follows [Stern’93].
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Approximability

e Ok - so can’t find nearest codeword.
e Can you even find a nearby codeword?

e Or even approximate the distance to nearest
codeword?

e Approximability:  General modern day
concern.
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Proof

e Starting point: “now Max Cut is hard 1o
approximate to within some a > 1.

e Consequence: NCP s hard to approximate
to within o > 1, if P # NP.

e Boosting the gap: Powering construction.
Given [n, k,?]-code C' s.t. A(1",C) =e.
Can construct [n?,k(n + 1),7?] code C?

st A1V, 02?) = ¢2

e Conclude: NCP s not a-approximable,
for any a < oo, if NP # P, and
is inapproximable to larger factors under
stronger assumptions.
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Powering

Codewords of C2? are n x m matrices,
constructed as follows.

For any collection of codewords ¢,cy,... ,cp
of C, C? contains the codewords ¢ drawn
below:

- Cl—»
- 2

- 3 ——»

-0 ———»
—_—
-0 —

- o
- o

- cn———>

Analysis: To pick codeword of largest weight,
pick codeword ¢ of large weight in C and the
let ¢; = ¢, if (¢); =0 and ¢; = 0 otherwise.
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Thoughts

e So something is hard! But what?

e If | throw a surprise code at you and ask
you to decode, it will be hard! In fact, can
even make the code linear, otherwise it will
be a lot of effort to throw!

e Not in the usual spirit of problems we talk
about.

e Still gives a useful application (inspiration?)
— the McEliece cryptosystem.
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Alternate routes

e [ABSS]+[DKS]: Co deeper into "PCPS"
to get the hardness result. (“Tailormade”
PCPs.)

e [Hastad]: Celebrated result on inapproximability

of Max 3SAT actually goes through the
NCP! Yields weaker result, but in many
senses cleaner.
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The McEliece Cryptosystem

Public-Key Cryptosystem, inspired by the
hardness of the NCP.

Key generation:

e Pick an [n, k,d],-AG code C,

with t-error-locating pair A, B.
e Pick random permutation 7 € {0, 1}"*"
e Pick random non-singular R € ]F’;Xk.

Private Key: (A, B, 1, R).

Public Key:
o Let G € FE*™ generate C.
e let G’ = RGr. (G’ generates C
with coordinates permuted by ).
e G is public key.
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McEliece Cryptosystem (contd.)

Encryption: (of message m € ]F’;)
e Pick n € Fy of weight < "T_k
e Let mG’ + n be its encryption.

Decryption:
e Given r, decode from ra~1 using (4, B).

Belief: Hard to decode,
without knowledge of 7, R.

Many ifs. Will return to this.
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Updates from the 90’s

Added new coordinates.

Which code? | Known | Fixed | Input
RS
e<g BCH | 7 ?
AG
RS
d<e<d | BCH 7 | [DMS]
AG
e>d 7 [BN]  [BMV]
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Decoding in the 80’s

Which code? Distance d vs. Errors e?

Which code? | Known | Input
RS
e< i BCH ?
AG
e>d 7 [BMV]
(©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Ten 13

Decoding vs. Preprocessing

e Positive results: For specific codes, 1
algorithm that decodes efficiently (up to
a limit on # errors).

e Negative results: There exists no algorithm
that decodes all linear codes.

e Can we invert the quantifiers? “There
exists a code, for which there is no efficient
algorithm"?

e [Bruck & Naor '90] addressed this problem.
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Decoding with preprocessing

Model:
e Allowed to preprocess the code.

Preprocessing is computationally unbounded.

e But should not allow table lookup
e So preprocessing produces polysize circuit
that decodes.

Challenge:
® Prev. NP-hardness had no “complexity”
in received word - everything in code.
e Now we can't do the same.
e How to transfer the complexity?
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Decoding with preprocessing (contd).

Analysis:
e Codewords identical on twin coordinates.
e |f r has different values, that amounts to
saying “don't care”.

Theorem: There exists a code C' st if it has
a polynomial sized circuit decoding it, then
NP = P/poly.

Warning: Does not preserve approximations.
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Decoding with preprocessing (contd).

Reduction from Max CUT.

The Code:

e Let (1 be code generated by incidence
matrix of clique on n vertices.

e Let C be two-fold repetition of C}.
(Every edge of clique has two coordinates
in the code - we call these “twins".)

Received word
e Vap H to r € {0,1}(»=1).
e For every pair of vertices 7,5 do
If (,7) is an edge of H, then
the twin pairs of r are equal to 1.
else they are unidentical.
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Decoding upto the minimum distance

e Positive results decode up to a certain
bound on number of errors; and at least
assume e < d.

e Negative results don't really mention
distance of code!

e “These are certainly linear, but are they
error-correcting codes?”

e Considered by [Dumer,Micciancio,S. "99]

Diameter Bounded Decoding (DBD):

Given: Generator G, vector r, integers e < d.
Promise: Code has distance at least d.
Decide: Is A(r,Cq) < e’
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Diameter Bounded Decoding

Theorem: DBD is NP-hard under randomized
reductions.

Comments:

e Proof adaptation of proof of [Ajtai] (and
its simplification due to [Micciancio]) of
NP-hardness of Shortest Lattice Vector
Problem.

e Proof only uses instances with A(r,C) <e
or A(r,C) > d and yields e = d/(2 — ¢€).
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Pasting

1. Strings = simple concatenation.

2. Codes = also concatenation .

C
C o B has matrix —
B

Codewords of C' o B are concatenations of
codewrds from C and B.

[nla ka dl]qo[nQa ka d2]q = [n1+n2a ka d1+d2]q
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Review Ajtai-Micciancio (AM) proof

1. Combinatorial Step: Construct
— C = [ny, k,d], code.
— Vector & € F* s.t.
vee C, A(Z,0) < %.

2. Starting Point:

Hard instance of Nearest Codeword
Problem [ABSS]

— (B,7,< 1%,> d).

(B = [ng, k,d']q code, ¥.)

3. Endpoint:
Paste to get hard instance of decoding.
— (CoB,Zot,< $+%,>d)
— (' o B has distance at least d.
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Combinatorial Step: Details

Not Possible.

1. Combinatorial Step’: Construct

e C =[ny,l,d], code.
e Vector & € Fpt s.t.
for many €€ C, A(&#,¢8) < 4

1.99
e Further construct A € ]F’;X”1 s.t.
A(S) = F*.
- o o d
(where S ={ce Cst. A(GT) < 151))

2. Endpoint’: Output

(Co(BAC),Z 00, < 145 + 4. > d)
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Analysis

Good Case:

— dZ e ]F’; sit. A(¥, B?) <

— dy € Iqu st AF,CY) < % and
ACy =72

— Then A((C o (BAQ)) -4, % 0%) < 74+
rn

Bad Case: Second part of codewords of Co

BAC are still codewords of B and hence
not close to ¥.
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Lower bound for list decoding

e Recall new goal: Construct

— Code C of distance > d.
— Vector & with exponentially many

codewords of C at distance % from
it.

e le., want List-Decode(C, %, 145) to have
exponential output size.

e Possible?
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The linear transform A

e Recall goal:

— Have large set S C Fp.

— Want A:F} — FF st A(S) =T~

— Familiar problem in complexity.

— Most natural idea: Pick A € IF(’;Xk at
random and hope it works.

— Simple application of Chebycheff shows
it works w.h.p. if |S| > ¢%*.
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How to get C, 2?7

o Adleman-Ajtai Lattice:  Too number
theoretic.

e Random C and #: Distance of Z to C
should be same as distance between two
distinct vectors of C.

e Random C and carefully chosen Z: Unclear.

e Arbit 7 and C chosen carefully wrt 7:
Unclear.
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Picking C, 7

e Pick a code C that does better than
random code!

— Example Reed-Solomon Code.

— Gives [n, k,n—k]|, code, forany k <n <
q.

— Random code weaker. E.g. gives only
[n,n — n¢, 7-n, code.

e Pick vector Z at random.

° Expected number of vectors at distance at
most 5 /2n is exponentially large!

Done? Not yet.
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e Sampling lemma [A-M]: Pick random edge
and output its right vertex. Then
Prob [ degree of output < §D] <1-4

In our case: Pick random codeword and then

introduce % errors at random. QOutput this

corrupted word.
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An Inverted Markov Inequality

e Positive r.v. Expectation large. Want to
sample so that prob. of finding small value
is small.

e Markov's bounds r.v. from above!

e Graph-theoretic formulation: Bipartite
graph.

— Left vertices = codewords
— Right vertices = all vectors (space of %)
— Edge between ¢ and Z if they are within

d_
distance 199

e Expectation bound => Average right degree
large D.
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Summary

Given: instance (B, > d) of Nearest

Codeword Problem

» S 100’
Pick Reed Solomon code C of distance d and
n ~ dtoo.

Pick random vector Z at distance ﬁ from

0.
Output (C'o BAC, %o ¥, < 14+ 1%, > d).

Thm: DED s NP-hard.
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Minimum distance

e So far only focussed on the decoding
question.

e What about the Distance of the code?
e Complexity undetermined till late 90's.

e Finally resolved [Vardy '97] - NP-complete
indeed.

e Subsequently embellished with inapproximability
[DMS "99]. (Reduction from DED.)

MinDist

Given: Generator G@. Task: Find
distint codewords cy,ce € Cg that minimize
A(Cl, Cz).
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Open Questions

Still - more open than closed!
e Can we certify just the good codes?
e Can we decode just the good codes?
e Show hardness of decoding RS Code?

e Hardness of decoding up to half the
minimum distance?

e Hardness of decoding up to the minimum
distance for a fixed code.

e |s there a worst-case to average-case
connection here?

e Security of the McEliece Cryptosystem
(implies all of the above?)
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Reducing DBD to MinDist

e Take a hard instance of DBD, i.e., (C,r)
sit. A(r,C) <2d/3 or A(r,C) > d.

e Consider C'=C + .
Either A(C") <2d/3 or A(C") > d.

e NP-hard to distinguish.

Theorem: MinDist is hard to approximate to
within a factor of 3/2, unless NP = RP.

But can now take tensor products of the code
with itself and boost hardness result.

Theorem: MinDist is hard to approximate
to within any constant factor, unless NP =
RP. (Stronger results possible under stronger
assumptions.)
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Topics we did not cover

e Convolutional codes. (Also Tree codes, and
trellises.)

e Quantum error-correcting codes.
e Cyclic codes.

e Additive codes.

e Stuff that | don't know about.
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