- Quantum Wire
- Quantum Information
- Quantum Measurements
- Quantum Gates
- Quantum Circuit
- Quantum Algorithm for Factoring.
$\langle x, y\rangle "$ (referred to as unitary operator). Interesting gates are:
- Hadamard Gate: $\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$
- Quantum NOT Gate: Maps $|a, b\rangle$ to $|a, b \oplus \neg a\rangle$.
- Quantum AND Gate: Maps $|a, b, c\rangle$ to $|a, b, c \oplus(a \wedge b)\rangle$.

Above gates suffice to approximate any other quantum gate to within arbitrary precision.

Quantum Circuit n quantum wires $+m$ gates + measurement at the end.

Quantum Wire Carries a vector in complex 2-dimensional space.
n-Quantum wires Carry a vector in complex 2^{n}-dimensional space.

Measurement Can read, say, the first i "qubits": Result: i classical bits $+n-i$ qubits, as follows: Let initial configuration: $\sum_{x} \alpha_{x}|x\rangle$. For $x^{\prime} \in\{0,1\}^{i}$, let $p_{x^{\prime}}=$ $\sum_{y \in\{0,1\}^{n-i}} \alpha_{x^{\prime} \circ y}^{2}$. Then see x^{\prime} with probability $p_{x^{\prime}}$ and $n-i$ qubits are in state $\sum_{y} \frac{\alpha_{x^{\prime} \circ y}}{\sqrt{p_{x^{\prime}}}} v_{x^{\prime} \circ y}$.

Gates c-qubit gate is a "linear map G : $\mathbb{C}^{2^{c}} \rightarrow \mathbb{C}^{2^{c}}$ such that $\langle G(x), G(y)\rangle=$

What can Q-Circuits Do?

3 Famous Algorithms:

- Simon's algorithm to detect collisions (promise + oracle problem).
- Shor's algorithm to factor integers
- Grover's algorithm to search for NP witnesses (oracle problem).

Given: $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$.
Yes Instance: Exists $s \in\{0,1\}^{n}$ such that $f(x)=f(y) \Leftrightarrow y=x+s$.
No Instance: f is $1-1$. Task: Decide which case.

Key insight: Simon's algorithm discover's periods in groups. Can apply to other groups. Technical issues arise if group is not "nice", but can be dealt with.

Idea: To find factors of N, suffices to find r such that $a^{r}=1(\bmod N)$. So need to consider the map $r \mapsto a^{r}(\bmod N)$ and find kernel of this map. Simon considers the map $x \mapsto f(x)$ and finds kernel of this map.
(Omitting normalizing constants)

$$
\begin{aligned}
\left|0^{2 n}\right\rangle & \rightarrow \sum_{x}\left|x 0^{n}\right\rangle \\
& \rightarrow \sum_{x}|x f(x)\rangle \\
& \rightarrow \sum_{x, y}(-1)^{\langle x, y\rangle}|y f(x)\rangle
\end{aligned}
$$

- Now measure all $2 n$ qubits.
- In NO instance: All $2 n$ bit strings equally likely.
- In YES instance: y-part has inner product 0 with s.
- Repeat experiment $O(n)$ time and get a full rank collection of y 's, s is the (unique) vector orthogonal to all.

Idealized algorithm

$$
\begin{aligned}
|00\rangle & \rightarrow \sum_{i}|i 0\rangle \\
& \rightarrow \sum_{i}\left|i a^{i}\right\rangle \\
& \rightarrow \sum_{i, j}(\omega)^{i j}\left|j a^{i}\right\rangle\left(\text { where } \omega^{N}=1\right)
\end{aligned}
$$

Now measuring j gives random multiples of N / r.

Can't do N-ary Fourier transform.
Shor's fix: Pick $Q=2^{k}, Q \gg N$. Then the Fourier transform can be implemented effectively.

But now j reported is not a random multiple of N / r, but rather an integer such that $[r j]$ is small modulo Q. Can use integer programming in $O(1)$ variables to find r.

Details omitted.

Saw lower bound techniques.
Power of randomness, and some algebra.
Main take-away messages: Computation captures many remarkable phenomena.
"Proof of existence of colors".
"Pseudo-randomness".
"Knowledge complexity of interaction".
Seemingly unrelated tasks can be fundamentally related. Relationship becomes evident when one focusses on computational implications. Shor's factoring; Connection between PCP and inapproximability. Trevisan's extractor; Lipton's hardness for permanent.

Future?

More derandomizations (Factorization of polynomials, Polynomial identity testing, RL).

Better understanding of circuit complexity. (Is second level of EXP hierarchy the best possible?).

