Today

e Alternation

e ASPACE vs. TIME

e ATIME vs. SPACE

e Perspective on PSPACE

e Fortnow's Time/Space lower bound on
SAT.
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Alternation ... Formally

e Turing machine with two special states 3
and V, each with two outgoing transitions.

e J state accepts if one outgoing path
accepts.

e V state accepts if both paths accept.

e Computation tree determines resources:

— Time
— Space
— Alternation
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Alternation

e Yesterday: Spoke about MinDNF and
NP,

e Possibly a new complexity class?

e Why more powerful? Can alternate
between existential choices and universal
choices.
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Fundamental classes

Notation: ATISP]a,t, s].
e ATIME(t)
e ASPACE(s)

o XF  =ATISP[i, poly,poly] starting in
existential quantifier.

o I  =ATISP[i, poly, poly] starting in
universal quantifier.

e PH =U,xF =y,I1?.
Last assertion follows from:

xfcnl,, PifCcXi+1P
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Theorem 1: ATIME vs. SPACE

Lemma 1.1: ATIME(s) C SPACE(s).

Proof: Straightforward simulation, using one
extra tape to record stack of 3's and V's.

Lemma 1.2: SPACE(s) C ATIME(s?).

Proof: As in proof of Savitch's theorem. Let
TM A use space s on input x. Make Atime(s?)
machine M(c1,c2,t) to check if A goes from
configuration cl to c2 in t steps as follows:

M(cl,c2,t):

GUESS c3 = config at time t/2
FORALL check M(c1,c3,t/2)
check M(c3,c2,t/2).

Theorem: ATIME(poly) = PSPACE.
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Theorem 2: ASPACE vs. TIME (contd.)

Lemma 2.2: Time(2®) in ASPACE(O(s))

Proof: Suffices to build machine M that
checks if A, on input x, has contents sigma
on cell i of configuration after t steps.

M(it,sigma): GUESS r1,r2,r3 contents of
cells i-1,i,i+1 at time t-1.

Verify (r1,r2,r3,sigma) is consistent

FORALL M(i-1,t-1,r1);

M(i,t-1,r2);

M(i+1,t-1,r3);
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Theorem 2: ASPACE vs. TIME

Lemma 2.1: ASPACE(s) in TIME(20())

Proof: Make circuit corresponding to
ASPACE computation:

e Gates = (C,i): C = config, ¢ = time
€ [1,29].

e Wires = (C';i + 1) — (C,i) if C has
arrow pointing to C’. Gates at depth
2% with incoming arrows labelled REJ.
Gates labelled ACC/REJ if configuration is
accepting/rejecting. Gates label OR/AND
depending on their type 3/V etc.

e Gives circuit of size 2° - accepts iff
computation accepts.
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Computational philosophy

Comparing candidates for an election: Three
options:

e Candidates don’t get to campaign. We
make our own decisions based on our own
information.

e Candidates get to write a (bounded)
position paper/single page ad campaign.

e Candidates are invited to debate.

What is a better system?
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Computational philosophy (contd).

Computer scientist’'s take: How complex a
language can the system prove membership
in?

Say thesis is x € L? The masses need to
be convinced. How powerful can L be under
these scenarios.

Model: Masses/audience as polytime
computation.

e Zero input from candidates: L € P.
e Fixed input from candidates: L € NP.

e Full fledged debate between candidates:
L e PSPACE.
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Complexity of Games

e Typical 2-person game: can evaluate if
current position is already won or not; but
hard to guess what will happen if we can
find optimal strategies.

e For any such game (where win/loss depends
only on current configuration and not on

history), complexity of deciding who can
win is in PSPACE.

e For some games (such as GO/Generalized
Geog.), deciding who <can win s
PSPACE complete. (Again proven using
ATIME(poly) = PSPACE.)
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Debate systems

Use characterization PSPACE = ATIME(poly).
Candidates F (3) and U V:

E candidate claims z € L. U candidate
claims x ¢ L. Every time TM comes to 3
state, F tells us which way to go. V state U
tells us which way to go. Audience watches
the debate, and at the end makes its own
conclusion on whether € L or not, based
on TM's final state.
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A PSPACE complete problem

TQBF = {¢|3X1,VX2, s aQnX’na ¢(Xla X2,.-- 1, Xp
e x; vector of n-variables x; 1,... ,Z; p.
e ¢ - 2CNF formula on n? variables.

e ();: alternating quantifiers; Q); = 3 if ¢ odd,
and (); =V if i even.

Proposition: TQBF is PSPACE complete.
Proof: Uses ATIME(poly) = PSPACE.
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Power of Alternation

e Basic notion.
e Captures Time/Space differently.

e Next application shows how powerful it is.
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Proof of Fortnow’s theorem

e For simplicity we'll prove that if SAT €
Time(nlogn) and SAT € L then we reach
a contradiction.

e Won't give full proof: But rather give main
steps, leaving steps as exercises.
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Fortnow’s theorem

For today, will use LIN to mean the class of
computations in NEARLY-LINEAR TIME:

LIN = U/ TIME(n(logn)".

Belief: SAT ¢ L.
Belief: SAT ¢ LIN.
Can’t prove any of the above.

Fortnow’s theorem: Both can not be false!
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Main ideas

e Alternation simulates small space computations

in little time. (Savitch).

If NTIME(t) in co-NTIME(t log t), then

alternation is not powerful.

Formal contradiction derived from:

ATIME[a,t] Z ATIME[a-1,t/log t].
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Fortnow: Step 1

Fact 1: If L in NTIME(t), and x of length n,
then can construct SAT instance phi of size
t(n) log t(n) such that x in L iff phi in SAT.

Reference: a 70's paper of Cook.

Proof: Left as exercise.
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Fortnow: Step 3
Fact 3: If SAT in L, then NTIME[t (logt)?]

in SPACE(log t + a log log t).
Proof: Padding
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Fortnow: Step 2

Fix a(n) = sqrt(log n).

Fact 2: ATIME[a,t] is contained in NTIME[t
(log t)%*]

Proof: Induction on #alternations + Fact 1.
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Fortnow: Step 4
Fact 4: SPACE[s] in ATISP[b,2(s/) bs] in

ATIME[b,2(s/9)]
Proof: Exercise 3 of PS 1.
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Whither contradiction?

e If we set b = a-1 (approximated by a in our
calculations), then ...

e ATIME[a,t] is contained in ATIME[b,2(l°9t+“l°9l"‘
which is a contradiction.
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