Today

- Arithmetic games on # accepting paths.
- Amplifying BP · ⊕ ·P.
- $bp \cdot \bigoplus \cdot P \subseteq P^{\#P}$.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

More arithmetic

- Can also construction circuits with any fixed number of accepting inputs.
- \bullet So given any polynomial p with positive coefficients, and circuit C with N accepting inputs, can construct C' with p(N)Furthermore size of accepting inputs. $C' = O(|p| \cdot |C|).$
- If p is a constant degree polynomial with constant coefficients, can apply this process $O(\log n)$ times.

Will use the last parts later, but first show how to amplify.

Arithmetic games

- ullet If non-deterministic machine M_1 on input w_1 has n_1 accepting paths, and M_2 on input w_2 has n_2 accepting paths, then can create machines + inputs that have n_1+n_2 , or $n_1 \times n_2$ accepting paths.
- W.l.o.g. consider circuits. Have circuits C_1 , C_2 $(C_i(\cdot) = M_i(w_i, \cdot))$ taking n-bit inputs and accepting n_1 and n_2 inputs respectively.
- Then, circuit C_3 given by $C_3(x,y) =$ $C_1(x) \wedge C_2(x)$ accepts $n_1 n_2$ inputs.
- And, C_4 given by $C_4(x,b) = (b \wedge C_1(x)) \vee$ $(\overline{b} \wedge C_2(x))$ has $n_1 + n_2$ accepting inputs.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Amplifying error

- For simplicity assume error is one-sided (this is essentially all we need to consider).
- Simple case: have a circuit C(x,y). We are interested in $BP_y\{\bigoplus_x \{C(x,y)\}\}$.
- Either for every y, $\bigoplus_x \{C(x,y)\} = 1$ Or for 1/poly(n) y's, $\bigoplus_x \{C(x,y)\} = 0$.
- New BP algorithm: Pick y_1, \ldots, y_m . Accept if $\wedge_{i=1}^m \left(\bigoplus_{x_i} \{C(x_i,y_i)\}\right)$. Eq'vly, if $\prod_{i=1} \left(\#_{x_i} \{C(x_i,y_i)\}\right)$ is odd.
- Good case: still accept w.p. 1. Bad case: accept w.p. $\leq (1-1/\text{poly}(n))^m$.

Amplifying error (contd.)

- Slightly harder case:
- For 1/poly(n) y's, $\bigoplus_x \{C(x,y)\} = 1$. Or for every y, $\bigoplus_x \{C(x,y)\} = 0$
- Idea: Complement parities, take product, complement result.
- New algorithm: Pick y_1, \ldots, y_m . Accept if $1 + \prod_i (1 + \#_{x_i} \{C(x_i, y_i)\})$ is odd.
- Can construct $C'(x_1, \ldots, y_1, \ldots)$ accepting $1 + \prod_i (1 + \#_{x_i} \{C(x_i, y_i)\})$ inputs.
- Good case: accept w.p. $(1 poly(n))^m$. Bad case: accept w.p. 0.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Amplification: final thoughts

- Strictly speaking, need to consider case where error is "almost one-sided" (e.g., accept w.p. 1-exp(-n) vs. 1-1/poly(n).) But almost nothing changes.
- On the other extreme, one can do much more complex operations on ⊕ ·P and stay within (and not just ∧).

Exercise: Show $P^{\bigoplus P} \subset \bigoplus P$.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Where are we?

- Showed yesterday $\Sigma_i^P \subseteq \mathrm{BP} \cdot \bigoplus \cdot \mathsf{P}.$
- By induction, $\Sigma_i^P \subseteq (\mathrm{BP} \cdot \bigoplus)^i \cdot \mathsf{P}$.
- Also showed yesterday $BP \cdot \bigoplus \cdot BP \cdot \bigoplus \cdot P \subseteq BP \cdot \bigoplus \cdot P$.
- Another induction, $(BP \cdot \bigoplus)^i \cdot P \subseteq BP \cdot \bigoplus \cdot P$.

Conclude: $PH \subseteq BP \cdot \bigoplus \cdot P$.

Next

Will show: $BP \cdot \bigoplus \cdot P \subseteq P^{\#P}$.

More clearly:

- Have circuit C(x,y).
- Want circuit C'(z) such that $\#_z(C'(z))$ allows us to compute $\mathrm{BP}_y \{ \bigoplus_x C(x,y) \}$.
- ullet Assume BP_y gives right answer w.p. $\frac{3}{4}$.
- Will construct C' such that for every y:
 - $\#_x C'(x, y) = 0 \mod 2^{m+2}$ if $\#_x C(x, y) = 0 \mod 2$.
- $\#_x C'(x,y) = -1 \mod 2^{m+2} \text{ if } \#_x C(x,y) = -1 \mod 2.$

• $\#_{x,y}C'(x,y) = ?$

 ${\color{blue}\boldsymbol{-}} \in [-2^m, -\frac{3}{4}2^m]$ if $\mathrm{BP}_y\left\{\bigoplus_x C(x,y)\right\}$ =

 $- \in [-\frac{1}{4}2^m, 0] \text{ if } BP_y \{ \bigoplus_x C(x, y) \} = 0.$

Done, modulo construction of C'.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Polynomial magic=?

How would we come up with the polynomial h?

- Requirements:
 - $-h(a) = b \pmod{2^{2^{c+1}}} \text{ for } b \in \{0, -1\}.$
 - Coefficients of h non-negative.
- First condition says $a^2|h(a)$ and (a + $(1)^2 |h(a)| + 1$. Natural choice (to make coeff. of a^1 disappear), $h_1(a) + 1 =$ $(a+1)^2(a-1)^2 = a^4 - 2a^2 + 1$. Now have $h_2(a)=a^4-2a^2$. Satisfies first condition, but violates second.
- To make coefficients positive, add a (large multiple of) polynomial with +ve

"Boosting" modular counts

- Suppose $a = b \pmod{2^{2^c}}$ for $b \in \{0, -1\}$.
- Then for $h(a) = 3a^4 + 4a^3$ have h(a) = $b \pmod{2^{2^{c+1}}}$.
- Let $h^{(i)}(a) = h(h^{(i-1)}(a))$, where $h^{(0)}(a) =$
- Let $t = O(\log m)$. Let C' be the circuit with $h^{(t)}(\#_x C(x,y))$ accepting inputs. (Can construct such C' in polynomial time.).
- C' is what we need.

QED. (Done with Toda's theorem.)

Simple choice = $a^2(a+1)^2$.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

coefficients that is 0 on a^2 and $(a+1)^2$.

• New candidate $h_2(a) = h_1(a) + 2 \cdot a^2(a + a)$ $(1)^2 = 3a^4 + 4a^3$.