6.841/18.405J: Advanced Complexity Theory September 5, 2001

Lecture 21
Lecturer: Madhu Sudan Seribe: Ashish Mishra

Today’s lecture:
e A DNP-Complete Problem

e Lattice Problems and Worst-Case vs. Average-Case complexity: connection to NP

1 Recap from last lecture

We present a high-level view of the notion of average-case complexity. Some progress has been made in the

last 10-15 years on analyzing these problems, including connecting problems of worst-case and average-case

complexity, and developing the first cryptosystem relying on worst-case, rather than average-case complexity.
In the last lecture we talked about DNP (Distributed NP).

Definition 1 DNP is the class of problems specified by (R, D) where R is a poly time computable binary
relation and D : {0,1}™ — {0,1}" is a poly time computable function.

Effectively, D specifies the distribution induced by applying the function to a uniformly chosen random
input, {D(2)},¢, {0,13»- In practice we won’t concern ourselves with the exact length of the random input
since random lengths can be mapped to each other to a good extent.

Definition 2 An algorithm A is §-good for (R,D) if A solves (1 — &) fraction of the instances of R drawn
according to D, never giving a wrong answer.

Definition 3 (R, D) € Avg-P iff there is a B(x,d) such that As(.) = B(.,0) is §-good for (R, D) and B(z,?)
runs in poly(|x|,1/0) time.

This definition is drawn from Impagliazzo’s survey.
The idea of reductions is straightforward: we pick a random z, and give instance D(z). The reduction
specifies a particular distribution. To relate different distributions, we introduce the notion of “domination”.

Definition 4 Distribution D1 a-dominates distribution Dy if Vz,

Prp,la] > T2l

Domination is a very one-sided relationship and it is easy to construct distributions Dq, D> as in Figure 1
where D; a-dominates Dy — but Dy doesn’t o’-dominate D; for any finite o'.
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Figure 1: Dominating distributions
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Theorem 5 If algorithm A is 6-good for (R, D;) and D1 a-dominates Do, then A is (ad)-good for (R, Ds).

The Impagliazzo-Levin Lemma states that every (R, D) problem reduces to some (R',U) where U is an
essentially uniform distribution.

Consider R' which is the composition R o D. To implement this, we need to have a uniformly randomly
chosen pre-image of z under D. Computing the inverse of D may be hard, so instead we specify z implicitly:
by giving an index w of z within the pre-images of z.

Universe of z’s Universe of z’s

mapping
(D)

Figure 2: Picking a Distribution

We are picking z € {0,1}",w € {0,1}*, where z has roughly 2* pre-images under D. z and w specify
z € {0,1}", and we would like the distribution of z to be nearly uniform. We can do this by hashing the
(n + k) length string (z,w) down to an n-length string. The hash is drawn uniformly from a family of
pairwise independent hash functions.

Formally R' is expressed as a tuple (u, k, b1, ha) where v € {0,1}" is the hash of (z,w), k € {0,1...n}
is the log of the number of pre-images of z, and hy : {0,1}" — {0,1}*, hy : {0,1}"t% — {0,1}" are hash
functions. R'((u,k,h1,h2), (2,y)) ifl:

e y is a witness to z under R, i.e. R(D(z),y).
o u=hy(D(2), h(2)).

Our distribution on U is to pick u, k uniformly from {0,1}" and {0, 1...n} respectively, and hq, hy uniformly

from the families of hash functions on that many bits. The tricky part is guessing the size of the pre-image

correctly. But with a random guess we have a n%rl chance of getting the right value, within a factor of 2.

2 Proof of the Impagliazzo-Levin Lemma

2.1 Reduction

Given z,

1

1. Uniformly pick k € {0,1,...n}. (so we have 5 chance of picking the right value)

2. Uniformly pick w €y {0, 1}*.

We don’t yet know z or a distribution for z, but we can stipulate that w = h;(2).
3. Uniformly pick hash functions A1, hs.
4. Output: (u = ha(z,w), k, h1, ha).

If we have accurately estimated the number of pre-images 2% above, then with high probability there will
exist unique z such that D(z) =z and hy(2) = w.
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2.2 Analysis
We can construct a corresponding distribution Dy on (u, k, hy, ha) as follows:
1. Uniformly pick z €y {0,1}™.
2. Set k = log, |[D~'(D(2))|.
We don’t know how to compute this, we are just defining a distribution for the purpose of analysis.
3. Uniformly pick hash functions hq, hs.
4. OQutput: (u = ha(D(2), h1(2)), k, h1, ha).
We make the following claims on Dj:
e The distribution U O(n)-dominates Ds.
e (R',D,) is at least as hard as (R, D).

This completes the proof that given (R, D), there exists a problem (R',U) which is equally hard.
However, the above does not provide us with a single hard problem independent of R and D. To do this,
we create a universal relation:
o 9

Y

with Ry ((R, x),y) holding iff R(z,y) holds. We need not worry what distribution to apply to Ry — as long
as z is chosen with finite probability, any distribution suffices.
This means that every interesting problem (e.g. factoring, SAT) has a uniform distribution describing it.

3 Lattice problems

DNP gives us a theory of average-case problems. Effectively, it relates average-case problems to each other.
But it does not relate average-case to worst-case problems. What might be desirable is a connection analogous
to that between approximation problems and exact calculation problems. Currently we don’t know of any
such result relating worst-case and average-case hardness in NP.

In 1996, Ajtai showed the existence of a lattice problem R’ that we don’t know how to solve in RP; and
an instance (R, D) of Avg-P such that R’ is reducible to (R, D). Essentially this gives a reduction from a
“hard” problem in worst-case complexity to a related problem in average-case complexity. If R’ was known
to be NP-complete, this would be a dream theorem in our current context. As it is, it represents a major
breakthrough in classifying average-case complexity.

3.1 Definitions

Lattices consist of discrete points in R™, in some regular symmetric form. Figure 3 illustrates an example
with only 2 dimensions for pictorial effect.

It is important to distinguish this geometric notion of lattices from the algebraic entities involving partially
ordered sets, as used in other contexts. Mathematically

Definition 6 A lattice L is a discrete additive subset of R™.

Discrete: There is some d > 0 such that for any z € L, Ball(z,d) N L = {z}

Additive: For any x,y € L, it follows that x + y,z —y € L

If L is nonempty then it clearly must contain the origin, since from additivity £ — ¢ € L. There are two

ways to specify a lattice, known as the primal and the dual representations.
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Figure 3: 2-dimensional lattice

3.1.1 Primal Representation

This gives a basis for the lattice: by, ba,...by,, € R”, with the b;’s linearly independent (= m < n). Then

umwmgz{gy@|%ezw}

i=1

We often think about lattices on Q", Z™ rather than R"™.

3.1.2 Dual Representation

While the primal representation gives a constructive description of the lattice, this representation instead
specifies a set of constraints on it. Mathematically we are given b7, b5...b}, with m > n. Then

L(b;,..b%) = {v | (v,b}) € ZVj}

where (v, b) denotes the inner product of v and b.

If we have precisely n vectors, the dual basis vectors are simply given by the inverse of the matrix
composed of basis vectors. In other cases, it is not easy to see what the dual basis vectors intuitively
represent, but it is still algorithmically easy to go from one representation to another.

3.2 Problems relating to lattices
Easy Problems :

1. Computing intersection of two lattices (itself a lattice).

2. Computing bases of a lattice.
Hard Problems :

1. Short Vector Problem (SVP): Given a basis, does there exist a non-zero vector of length < d
in the lattice?

Ajtai showed this problem to be NP-complete under randomized reductions.
2. Given a basis by, ba...b,,,, can you find a short basis of length < d for the same lattice?
3. Given by, by...b,, and a target t € R™, what is the nearest vector to ¢t in L? (NP-hard)
All these hard problems are optimization problems, so we can consider approximation algorithms to solve

them. Lenstra, Lenstra and Lovasz gave a 2™-approximation algorithm to SVP on an n-dimensional lattice.
This was subsequently improved, but not significantly. We now have 2°(")-approximations, but not, 2v™.
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Though this approximation might seem too weak to be any use, it actually has significant applications.
LLL showed how to use it to factor integer polynomials in poly time. Other uses of lattice problems are in
cryptanalysis, integer programming, diophantine systems, and even in building cryptosystems [Ajtai-Dvork].
This shows that lattice problems are of immense interest.

3.3 Ajtai’s theorem

Ajtai’s theorem involves polynomial approximations to the short vector /short basis problem. Ajtai compared
the following two problems, and shows that an Avg-P solution to the average-case problem implies an RP
solution to the worst-case problem.

3.3.1 Worst-case problem

Given L(by,bs...b,,) C R, find an n°'-approximate small basis for L.
Currently, there is no knowledge about the hardness of this problem.

3.3.2 Average-case problem

Given L*(b},b3...b%,) C R, find an n®-approximate short vector in L*.

The distribution D is as follows:
e Fix g =n°s
e Fix m = O(nlogq)

n
e Randomly choose (b}...b%,) €r {0, %, %,...%,1}

L* clearly is an infinite lattice, since ¢Z™ C L*.
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