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Lecture 19
Lecturer: Madhu Sudan Scribe: Swastik Kopparty

1 Today

e Finish Groebner Basis (Recognition)

e Complexity of Ideal Membership

2 Groebner Bases

Recall that for an ideal J, we call g1, ..., g; a Groebner Basis for J if
o Vi g, €J
o I(LT(g1), LT(g2),- .., LT(g:)) = I(LT(J))

We further define two notions.

We say r is a weak remainder of f wr.t. g1,...,9¢ if f =r+> ¢9;¢; and ¥V monomials m of r and Vi,
LT(g;) does not divide m.

We say (q1,...,qm) is a strong quotient for f w.r.t. g1,...,¢g¢ if Vi,deg(g;q;) < degf.

Recall that when we run our algorithm DIVIDE, we get a weak remainder.

For two polynomials f, g, we define the Syzygy to be the linear combination of them which cancels
leading terms; i.e. " "

S(f,9) = LC(g) LM(f)f LC(f)LM(g)g

where M = LCM (LM (f), LM (g)).

We can now give the test for a GB:

e Given ¢i,...g; as input
e Check that Vi, j, DIVIDE(S(9:,95), 91, - - -, g¢) returns (0,strong quotient).

e Then {g;} form a GB iff it passes the check.

We now prove the validity of this test:

Proof Take fe€J=1(g1,...,9:). We need to show that LT(f) € I(LT(¢g1),-..,LT(g:))-

First write f = > mjg;, where i; € {1,...,t}. Amongst all such representations, pick the reduced
form; i.e. the sequence with the smallest length satisfying deg(mig;,) > deg(magi,) > ... and also, if
deg(mjgij) = deg(ijgiHl, then i; < i;11.

Claim: LT(f) = LT (m1gs,)-

Wlog, we can take f = mig1 + maga + .... Suppose deg(mig1) = deg(magz). In this case we want
to say that mogo = m1g1+ lower degree terms. We use the Syzygy property:

M
T LA (e

M
magz = wmgz

S(g1,92) =0+ Y _ gigs

where degree(g;q;) i degree(#{gl)gl).

So, mage = m1g1 + Y giqi- Thus reducedness is violated, and hence deg(mig1) > deg(maga), thus
LT(f) = LT(m1g1), as desired. H
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3 Complexity of Ideal Membership Problem
e Given fo,...fm € K[X1,...,X,] of degree d
e Decide if Jq1, ... qm s.t. fo = fidi.

We wish to bound the complexity (in operations over K) in terms of n,d, m.

Theorem 1 [Mayr, Meyer ’81] IM € EXPSPACE = SPACE(2PoW(dm) and further, IM is
EXPSPACE hard!

3.1 Hardness

The reduction is from the Commutative word equivalence problem (CWEP).
e Input:
e Y a finite alphabet, |X| = n.

Rules a1 = By, 0 = Ba, ..., = Bm, oy, B; € X*

a, 3 e X

e Goal:
e Determine if o = f.
e Using given rules and using commutativity of symbols in 3.

It is known that CWEP is EXPSPACE hard.

The reduction is obvious. Every word is a monomial. Rules are binomials f;(z) = mono(a;) —
mono(B;). Membership in CWEP is asking if fo(z) = mono(ag) — mono(By) € I? Thus IM is EX-
PSPACE hard.

3.2 Upper bound
This result rests on 2 facts:
e Inverting a m X n linear system can be done in SPACE (polylog(m + n)).
e A 1926 result of Hermann that says that there exist ¢; with deg(g;) < D = (md)*"

Note that finding ¢; (if they exist) can be posed as inverting a linear system.
We will prove Hermann’s result. We want to get an understanding of solutions to the following kind
of question, a linear equation over a ring:

e Determine if 3q1,q2,...,qm € K[X1,...,Xs] s.t. > figi = fo

Note that this question can be posed as a linear system over a field, a kind of question that we do
understand:

e Determine 3¢; o € K s.t. V3, atar=p Qi,afi,r = fo,3, where § ranges over all multi-indices over
n variables of degree < deg(fo)

In order to bound the degree, we introduce a common generalization, the j-variable linear system,
that will help us make the transition between the problems

e Given polynomials f; o € K[X1,...,X;],i€{0,1,...,m},ac A
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e Determine if 3¢; € K[X,..., X;] s.t. Va € A, Y, ¢ifia = fo,a

The strategy will be to eliminate 1 variable at a time. The crux of the Hermann result is that a j
variable linear system with M equations and n unknowns reduces to a j — 1 variable linear system in
poly(M,n,d) equations and poly(M,n,d) unknowns.

Lemma 2 Let f; € K[X1,...,X;]. Suppose 3q; € K[X1,...,X;] with X; degree < D satisfying fo =
Soity fiqi. Then the following system of equations over has a solution ¢} , € K[X1,..., X;_1]

Vy<D, Y fipdia=fon
3,003 o=

where f; 3 € K[X1,...,X,_1 is the coefficient of Xjﬁ in f;. Furthermore, any solution to this system of
equations yields a solution to the original equation with X; degree < D.

Proof Simply take qaa to be the coefficient of X7 in ¢;. W

Definition 3 Let R be a ring. We call an r x s matrix A with entries in R[z] good if
e r<s
e There exists an v x r minor A with det A monic and nonzero.

Lemma 4 Let R be a ring. Let A be a good matriz in R[z] with each entry having degree < D. Let b
be a vector with entries in R[z] with each entry having degree < D. Suppose Ax = b has a solution in
R[z]. Then Ax =b has a solution with each entry having degree < O(M D).

Proof Consider the minor A guaranteed to exist by the goodness of A. We can rearrange the columns
and have A = [A|B]. For a vector w with w” = (w1|ws), we have that Aw = Aw; + Bws. Thus, if we
pick wy arbitrarily, then if Aw = b, it must be that w; = A~1(b — Bws).

Note that A~! = %((Afi)). Thus if (z1,22) is a solution, then for any vector ¢, so is w = (1 +
Adj(A)Be, x5 — det(A)c). Now, by the goodness hypothesis, det(A) is monic, and since its degree <
O(MD), then by choosing c appropriately, make deg(ws) = O(M D). Then, deg(w;) < deg (Adj(A) b- ng))

det(A)
which = O(M D), as desired. B

With this lemma in hand, it is essentially clear what to do. Suppose we are given a system of M
equations Az = b with coefficients in R = K[X;,...,X,] and degree bounded by D. Suppose that we
also know that there is a solution to this system. Then by lemma 4, there is a solution with X, degree
< O(MD). Thus by lemma 2 we can reduce to O(M?D) equations in over K[X7, ..., X;_1] with degree
at most D. Continuing this way, we get a linear system over K which has a solution, from which we
can reconstruct a solution to the original problem with degree at most (M D)°(") (note that the degree
was squaring at each stage).

Actually, to apply lemma 4 we required some goodness from our linear system at each stage. This
can be achieve by doing the following at every stage: we throw away all row dependencies to make the
matrix of full row rank. Then applying a random linear transformation to the Xi,...X,, we get that
with high probability for any single polynomial and any fixed variable, the modified polynomial will be
monic in that variable. This holds in particular for the determinant of a nonsingular r X r minor of our
A, thus making it good.

To see the high probability result, let us be a bit more precise. Given a polynomial f(x) homogenous
of degree n, not identically 0. Pick a random orthogonal matrix P (uniform from S"~1, 872 ... S, )
and consider the polynomial g(x) = f(Pz). Then the resulting polynomial is homogenous of degree n
and is not monic if and only if ¢(1,0,...,0) = 0. However P - (1,0,...0) is a point uniformly chosen
from the surface of the sphere and by Schwarz Zippel, f(P - (1,0,...,0)) is nonzero almost everywhere.
Thus w.h.p. ¢ is monic.
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