Today

Explicit constructions of asymptotically good codes

- Review Wozencraft ensemble (simplified).
- Codes from other codes:
 - Parity, Puncturing, Restriction, Direct
 Product.
 - Concatenation.
- Forney codes.
- Interlude: What is explicit?
- Justesen codes.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Codes from other codes

Many interesting codes obtained from other codes by simple operations. Also useful in bounds.

Parity check Add one bit of parity of code. $(n, k, 2t - 1)_2 \rightarrow (n + 1, k, 2t)_2$ code.

Puncturing Delete one coordinate of code. $(n, k, d)_q \rightarrow (n - 1, k, d - 1)_q$ code.

Restricting Take subcode corresponding to first coordinate being "most common element" and then delete first coordinate. $(n,k,d)_q \rightarrow (n-1,k-1,d)_q$ code.

Wozencraft Ensemble: Special Case + Simplified

- Codes $C_{\alpha}: \{0,1\}^k \to \{0,1\}^{2k}$.
- Let \mathbb{F} be field of size 2^k . Then C_{α} : $\mathbb{F} \to \mathbb{F}^2$. One such code for every $\alpha \in \mathbb{F}$: $C_{\alpha}(x) = (x, \alpha x)$.
- Codes C_{α}, C_{β} don't share non-zero codewords $((x,y) \in C_{x^{-1}y})$.
- $\exists C_{\alpha}$ with distance $\approx H^{-1}(1/2) \cdot (2k)$.
- Most C_{α} 's have half that distance!
- Ensemble constructible in time $2^{O(k)}$.

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Codes from other codes (contd.)

Direct Product Messages are matrices. Encode rows with C_1 and then columns with C_2 . $(n_1,k_1,d_1)_q\otimes (n_2,k_2,d_2)_q\to (n_1n_2,k_1k_2,d_1d_2)_q$.

Sub- Σ **Subcodes** Take $\Sigma' \subseteq \Sigma$ and $C \subseteq \Sigma^n$ and let $C' = C \cap (\Sigma')^n$. $(n,k,d)_q \rightarrow (n,?,d)_{q'}$ code.

- Not generically useful.
- Gives very nice specific codes. (BCH from RS.)

Most operations weaken codes asymptotically. Only one exception.

Concatenation of codes

- Take code C_1 over large alphabet. Encode message with C_1 .
- Then "represent" elements of large alphabets as strings over small alphabet.
- ullet Might as well use small alphabet code C_2 to "represent" elements.
- Specifically:
 - Let $Q = q^k$. Let $C_1 = (N, K, D)_Q$ code. Let $C_2 = (n, k, d)_q$ code.
 - Message comes from $Q^K \cong q^{kK}$.
 - Encoding gives el'ts of Q^N (first stage) and q^{nN} (second stage).

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Asymptotically good codes

- Know how to get $(N, K, D)_Q$ codes. (Take Reed-Solomon codes.)
- How to get $(n, k, d)_q$ codes? Forney's idea: Brute force search!
- Why is this ok?
- Example parameters.
 - $-K,D = N/2,Q = N = 2^{\log N},q =$ $2, k = \log N$.
 - $-n = 2k = O(\log N), d = H^{-1}(1/2)n, q =$
- Brute force search (say for random linear code) takes time $2^{O(n^2)} = N^{O(\log N)}$.

dD coordinates.

- Distinct message differ in at least DCOORDINATES, and hence in at least

- $-(N, K, D) \circ (n, k, d) \rightarrow (nN, kK, dD)$ codes.
- Same as direct product? NO! Direct product needs first code to be over q. Concatenation only needs this over Q. Latter easier empirically.
- Idea due to [Forney].

Asympt. good code in quasi-polynomial time (Rate 1/4, Rel. Distance $1/2H^{-1/2}$.)

- Search Wozencraft ensemble: $N^{O(1)}$ time. Gives poly-time construction of asymptotically good codes.
- Two-level concatenation:
 - -K,D as before.
 - $-k = \log N, n = 2k, q = n, Q =$ $\log N^{\log N}$.
 - $-q_0 = 2, k_0 = \log n = \log \log N, n_0 =$ $2k_0$, etc.

Use RS codes at outer and middle level. Brute force search at inner level. Now quasi-polynomial in n and so polynomial in N.

• Bibliographic asides: Forney doesn't mention the codes themselves - only concatenation! The tradeoff (distance to rate) was studied later by Zyablov. So what did Forney do? Gave polytime E and D getting arbitrarily close to Shannon capacity for BSC_p (as also other, more important channels). Will do this part later. Solves biggest problem in Shannon theory; and the Hamming consequences become a footnote.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

 Are there other definitions of explicit, that appeal to our intuition?

Explicit constructions

- Are the Forney constructions explicit?
- Standard refrain from the pas: Constructive

 yes! Explicit No! After all we don't know
 the Forney codes. We have to search for them.
- Debate entirely too subjective.
- Complexity theory can make this objective.
 To "know" is to be able to compute efficiently.
- Forney codes are explicit if explicit is defined as polynomial time constructible.

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

10

Shades of Explicitness

Increasingly explicit notions. For simplicity assume linear code, and we wish to construct generator matrix.

- Constructible by finite time procedure!
- Constructible by polynomial time procedure.
- Constructible by logspace procedure: E.g. Forney one-level with brute force is not logspace constructible, but two-level and Wozencraft are logspace constructible.
- Locally polynomial time: Given i,j indices into generator matrix: Can compute G_{ij} in polytime in |i|,|j|. Don't have such explicitness yet.

• Locally logspace ...

Justesen's construction of explicit codes

 General question: How can you eliminate the "search" in the Forney-type construction.

• Justesen's insights:

- Need to find one out of $\{0,1\}^n$ codes (when we know most are good enough)
- ... to use it 2^n times!
- But who says we must always use the same code?
- Justesen concatenation:
 - Outer code: $(N, K, D)_Q$

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

13

- Inner sequence of codes: $\langle C_i \rangle_{i=1}^N$, with $C_i = (n,k,?)_q$ codes, with $Q = q^k$ and all but ϵN of the C_i 's having distance d.
- Concatenation: Encode ith symbol of outer encoding by C_i .
- Yields: $(Nn, Kk, (D \epsilon N)d)_q$ code!
- Gets about as explicit as we can handle!

Notes on linearity

- Both direct product, and concatenation, can be applied to get linear codes.
- Former case: Just linear algebra.
- Latter case: Make sure elements of \mathbb{F}_Q represented as vectors over \mathbb{F}_q satisfying additivity constraints.
- Details omitted.