ParallelProcesso6chedulingwvith Delay Constraints

DanielW. Engel$ JonFeldman

David R. Karge MatthiasRuhF

MIT Laboratoryfor ComputerScience
CambridgeMA 02139,USA

Abstract

We considerthe problemof schedulingunit-lengthjobs on
identical parallel machinessuchthat the makespanof the
resultingschedulds minimized. Precedenceonstraintsm-
posea partial order on the jobs, and both communication
andprecedencédelaysimposerelative timing constrainton
dependenjpbs. The combinationof thesetwo typesof tim-
ing constraintsaturally modelsthe instructionscheduling
problemthat occursduring software compilationfor state-
of-the-artVLIW (Very Long InstructionWord) processors
andmultiprocessoparallelmachines.

We presenthe first known polynomial-timealgorithm
for thecasewheretheprecedenceonstraingraphis aforest
of in-trees(or a forestof out-trees)thenumberof machines
mis fixed, andthe delays(which area function of boththe
job pair andthe machineson which they run) arebounded
by aconstanD.

Our algorithm relies on a new structural theorem
for schedulingjobs with arbitrary precedenceonstraints.
Given an instancewith mary independentlags,the theo-
rem shows how to corvert, in lineartime, a schedulesS for
only the largestdagsinto a completeschedulehatis either
optimalor hasthe samemakesparassS.

1 Introduction

In this paperwe considerthe problemof schedulingunit-
length jobs on m identical parallel machinesto minimize
the makespanin the presenceof precedenceconstaints,
precedencalelaysand communicatiordelays Precedence
constraintsmodel dependenciebetweenthe tasks; if job
j depend=n job i, thenjob j mustbe executedafter job
i. Precedencdelaysl; ; imposerelative timing constraints;
job j cannotbegin executionuntil atleast; ; time stepsafter
job i completes.Communicatiordelaysc; ; imposedelays
acrossmachinesjf jobsi and j run on differentmachines,

~ *E-Mail: dragon@cs. nit. edu
TE-Mail: j onf el d@heory. | cs. mit. edu
*E-Mail: kar ger @heory.l cs. nit. edu
SE-Mail: ruhl @heory.lcs. mit.edu

job j cannotbegin executionuntil atleastc; j time stepsafter
jobi completes.

Previousalgorithmsfor schedulingobson parallelma-
chinesconsidereithercommunicatiordelaysor precedence
delays,but not both. In this paperwe generalizebothtypes
of delaysto a single sepaation delay/; j a», Wherejob j
runningon machineb cannotbegin executionuntil at least
¢ j ab time unitsafterjob i completeson machinea. More-
over, we overcomethe restrictionof previous exact algo-
rithmswheredelayscouldonly beeither0 or 1.

We give a polynomialalgorithmfor the casewherethe
precedencgraphis a forest and the delaysare bounded
by a constantD. We alsogive a useful structuraltheorem
for instanceswhere the precedencegraphis a collection
of independentags;we shawv thatary schedulesS for the
largestdagscanbe corverted,in lineartime,into acomplete
schedulethat is either optimal or hasthe samemakespan
as S. Our interestin this problemis motivated by the
instruction schedulingproblem encounteredy compilers
for emenging systemarchitectures.

Instruction scheduling for parallel machine and VLIW
compilation. VLIW (Very Long Instruction Word) ar-
chitectureshave recently begun to appearin a variety of
commercialprocessorand embeddedsystemdesigns. In
thesearchitecturesthe processorcontainsmultiple func-
tional unitscapableof executingbasicoperationsn parallel
in oneclock cycle. The VLIW processolis controlledby
meta-instructionghat combinethe instructionsfor the in-
dividual functional units into one single instructionword,
hencethenameVLIW.

The VLIW architectures the basisfor Intel’s Itanium
chip (formerly code-namedMerced), which is scheduled
for commercialreleasein 2000. It usesa new instruction
set namedIA-64 [9], which was developedby Intel and
Hewlett-Packard,andis basedon EPIC (Explicitly Parallel
InstructionComputing)-Intel’sadaptatiorof VLIW. VLIW
architecturehave alsobeenusedin state-of-the-arDigital

TWhenwe saythatthe precedencegraphis a forest,we meanthatit is

eitheracollectionof in-trees,or a collectionof out-trees.

SignalProcessof(DSP)designssuchasthe popularTexas
InstrumentsSTMS320C6xserieq15].

The role of the compiler is much more crucial for
VLIW architecturesthan it is for traditional processors.
To exploit the inherenthardware parallelism,the compiler
must combine basic operationsinto meta-instructionsn
an efficient way. When doing so, it hasto obsere the
datadependenciebetweenthe operationsand the time it
takesto transferdatafrom one functional unit to another
Sincehardwarebasedacceleratiorschemesuchasbranch
predictionor speculatre execution becomeless powerful
on theseimplicitly parallelarchitecturesit is the compiler
thatreally determineshe quality of theresultingcode.This
quality is especiallyimportantin embeddedystemdesign,
wherethe codeis only compiledonce(makingevenlengthy
compilationtimesacceptable)but an optimal performance
is requiredof theresultingsystem.

Our schedulingproblemexactly fits this model. Each
meta-instructiortanbethoughtof asa slice of time, andthe
functionalunits correspondo machines.Pipeliningallows
all jobsto have unit executiontime. Precedenceonstraints
encodethe datadependenciesnddelaysencodethe laten-
cies: variable pipeline lengthsand limited bypassingcre-
atevariableprecedencédelays,anddatamovementbetween
functionalunitscreatecommunicatiordelays.Sinceall the
functionalunits are part of the sameprocessarprecedence
delaysand communicatiordelaysare on the sameorder of
magnitudeandshouldbeconsideredogether Furthermore,
fixing thenumberof machinesandimposingaboundonthe
delaysmakes sensein this context; thesequantitiesare a
function of the physicalcharacteristicef the chip, andare
usuallysmalP.

Determininga minimum makespanschedulefor arbi-
traryinstructiondependencieis along-standingppenprob-
lem (seesection1.1). We thereforefocus on schedul-
ing forests, which often occur in practice, for example,
whenprocessingxpressiortreesor divide-and-conqueal-
gorithms.

Problem statement. We are given a setof n jobs and
m machineson which to executethe jobs, wherem is a
constant. Eachjob hasunit processingime. Thereexists
adirectedagyclic precedencgraphG = (V,E) onthejobs
V. With eachprecedence-constraingab pair (i, j) € E,
and pair of machines(a,b), thereis an associatechon-
negative delay’; j . boundedby a constantD. The output
is a scheduleassigninga job to eachprocessorand time
slot. A scheduleis legal iff it includesall jobs, and for
all precedence-constraingab pairs(i, j) € E, if job j runs
on machineb at time t, job i mustbe schedulecon some
machinea befoe timet — ¢ j ap (i.€., theremustbe?; j ap

ZAs anexample,Intel's Itaniumchip hassix functionalunits,and Texas
InstrumentsTMS320C6xhaseight.

time unitsbetweerthem).

We denotethe completiontime of job j asC;. We are
concernedvith minimizing the makespanCmax = max; C;.
Let Ci.x be the optimal value of Chax. Extending the
notationintroducedby Grahamet al. [8], we candenote
the problemsconsideredn this paperasPm | pregp; =
1§€i,j,a,b € {07 17 (RS D} | Cmax-

We canalsoallow multiple instancesof the samejob
to be scheduledon different machines;this is called job
duplication Allowing job duplicationcanmalke adifference
in the makespanof a schedulewhen computingthe same
value twice is more efficient than transferringthe value
acrossnachinegseesectiond.1).

Our contribution. We give a polynomial-timealgorithm
for the problemwherethe precedencgraphG is a forest:
Pm|tregpj = 1,4 jap € {0,1,...,D} | Cnax. Thealgo-
rithm works with or without job duplicationallowed on a
job-by-jobbasis.

Our resultis more generalthan previous known poly-
nomial algorithmsin both the precedencealelay and the
communicationdelay communitiesfor optimally schedul-
ing treeson a fixed numberof processors. Previous re-
sults assumecht mostunit time delays: Varvarigou, Roy-
chovdhury andKailath [17] solve Pm | tree p; = 1;¢j =
1| Cmax. Bernsteinand Gertner[1] solve 1 | treg pj =
1;li,; € {0,1} | Cmax Ouralgorithmsolvesboththeseprob-
lemsasspeciakasesAnotherimportantcontribution of this
paperis the Mergetheorem:

THEOREM 1.1. (THE MERGE THEOREM) Consideranin-

stanceof Pm | pregpj = 1,4 jab € {0,1,...,D} | Cmax

where the precedencegraph G containsat least 2m(D +

1) — 1 independentiags. Givena schedulewith malespan
T for only the jobs from the largest 2m(D + 1) — 1 dags,
onecanconstructin linear timea schedulefor all jobswith

malesparmax{ [2],T}.

Since this theoremholds for any dag, not just trees,
it shawvs thatary heuristicor approximationalgorithm for
schedulingonly the jobs from large dagscan be extended
into analgorithmfor schedulingll jobs. Thetheorenmight
alsobe appliedto single dagsafter they have beenbroken
into independenpieces. Furthermore sincea scheduleof
length [] is clearly optimal, the new algorithmwill have
the sameperformanceguaranteeas the original algorithm
with only alineartime additive costin runningtime.

1.1 Related Work

Polynomial algorithms: precedence delays. Precedence
delayshave beenusedto model single-processoiatencies
that arise due to pipelined architectures. Bernsteinand
Gertner [1] use a modification of the Coffman-Graham
algorithm([3] to solve 1 | prec p; = 1;li,; € {0,1} | Cmax-

Finta and Liu [5] give a polynomial time algorithm for
the moregenerall | prec pj;li,j € {0,1} | Cmax. Both of
thesealgorithmscrucially dependon assumingunit-delays
betweerjobs.

Polynomial algorithms: communication delays. In the
classicalmodelsof parallel computation,communication
delaysare ordersof magnitudelarger than precedencele-
lays, so algorithms for schedulingon parallel machines
have generallyignored precedencealelays. A surwy by
ChrétienneandPiccoleay?2] givesanoverview of thework
in thisarea.

All previouspolynomial-timealgorithmsfor abounded
numberof machineswvork only for the specialcaseof unit
communicationdelays. Varvarigou, Roychondhury and
Kailath [17] showv that Pm | treecij = 1;p; = 1 | Cmax
is solvablein time O(n®™) by corverting the treeinto one
without delays. This corversionrelies heavily on the fact
thatthatthe delaysare unit-length. The specialcasem = 2
wasshawvn to be solvablein O(n?) time by Picouleau{14],
andwaslaterimprovedto lineartime by Lenstra,Veldhorst
andVeltman[11], usingatypeof list scheduling.

Finta and Liu [6] give a quadratic algorithm for
P2 | SP1;pj = 1;¢ij = 1 | Cax, Where SP1 are series-
parallel-1 graphsasubclas®f series-parallajraphs.There
hasalsobeensomework on approximationalgorithmsfor
an arbitrary numberof machines. Mohring and Scléffter
[12] give agoodoverview of thisarea.

Severalauthors(e.g. [10, 13]) have consideredelated
problemswhere the numberof processords unbounded,
i.e. the schedulecan useas mary processorsas desired.
However, thatmodelis fundamentallydifferentfrom theone
we study since optimal schedulesusually make extensve
useof theunlimitedparallelism.

Hardnessresults. Evenwithoutary delaysthe problemis
NP-hardif theprecedenceelationis arbitraryandthe num-
ber of machineds part of theinput. This is the classicre-
sultof Ullman [16], shoving NP-hardnessf P | prec pj =
1| Cnax Lenstra,Veldhorstand Veltman[11] shov the
problemis still NP-hardwhen the precedenceyraphis a
treeandthereareunit communicatiordelays(P | tree ¢i; =
1;pj =1 | Cnax).

Engels[4] provesNP-hardnes$or the single-machine
casewhenthe precedenceonstraintform chains,andthe
delaysarerestrictedo beeitherzeroor a singleinputvalue,
i.e., heshowvs 1 | chain;p; = 1;li;; € {0,d} | Cnax to be
stronglyNP-hardwhered is aninputto the problem.

When the processingimes are not unit, the problem
is also NP-hard. Engels[4] shaws that schedulingchains
with job processindimesof eitheroneor two andconstant
precedencalelays,i.e., 1 | chain;p; € {1,2};l;j =D >
2| Cax is stronglyNP-hard.

Thusthe only naturalgap betweenour resultand NP-

hardproblemsis the generalizatiorto arbitrary precedence
structureson a fixed numberof machines,i.e., the prob-
lemPm| prec pj = 1,4 jap € {0,1,...,D} | Cmax. How-
ever, this gap comesas no surprise,since the famous3-
processorschedulingproblem ([7], problem[OPENS]) is
a specialcase. It turnsout that even an algorithmfor the
one-processoversionwhereall delaysare equalto three
(1| prec pj = 1,4 ; = 3 | Cmax) could be usedto solve in-
stance®f 3-processoschedulingP3 | preg p; =1 | Cmax)-
Thereductionis straightforvard.

1.2 Organization

The remainderof the paperis organizedas follows. In

section2 we give the proof of the Merge Theorem. In

section3 we usethe Merge Theoremasthe foundationfor

aschedulingalgorithmthatsolvesthesingleprocessocase,
wherethe precedencgraphis a collection of chains. We

presentthe full algorithm in section4. We concludein

section5 with a brief discussiorof our results.

2 Proof of the Merge Theorem

We begin by proving the Merge Theoremfor the case
wherewe have chainprecedenceonstraintsand only one
processofG is a collectionof k independenpaths,m = 1).
This proof establishesll of the techniquesusedfor the
generakaseandis lessobscuredy details.We thensketch
the naturalgeneralizatiorto dags,parallel processorsand
generakeparatiordelays.

2.1 Special Case: chain precedence constraints, one
pr ocessor

Our goal is as follows: Given a scheduleof the 2D + 1
largest chainsthat finishesat time T, we must construct
a completeschedulefor all k chainsthat finishesat time
max{n,T}. As a running example considerthe instance
shawn in figure 1. This exampleconsistsof 7 chainswith
a total of n = 21 jobs. The maximum precedencealelay
is D = 2. Figure 1a shows a feasible schedulefor the
2D + 1 = 5 largestchainswith makesparCy,,, = n. We will
constructhe new schedulen four steps.

Step 1: Truncating. Letn; bethenumberof jobsin thei-th

largestchain. We begin by removing the lastnyp 1 jobsin

eachof the schedulecthainsfrom the currentschedulgas
in figure 1b, where2D + 1 =5 andns = 2). We call these
deletedsub-chainghe tails. Note that we have removed
2D + 1 tails with exactly nop.y1 jobsin eachtail.

Step 2: Shifting operations. Next, we modify theschedule
with the tails removed by shifting jobs so that they are
executedas early as possible. Beginning at the first time
slot, we traversethe schedulethroughtime T. Wheneer
we encountera hole (time slot that doesnot have a job

Job chains

NNESE

o] [sle] o

NI

NP W N

ol feo o

1

HFHHHH
o [[& le |~
ESERSIIN
N
™)

NSNS NN

NN
IS
mplelolsle] e
SIS

NEEN
] oo lsln] -
AN

N
N
N

2]
1

N
=

1

-]

lelolole ols v w~obo]slwh o s | -

2
1]

Figurel: Probleminstance(on left) andconstructiorof anoptimal schedulgon right), for D = 2. Theinstanceis composedf two chainswith 5 jobs,
two chainswith threejobs, two chainswith two jobsandonechainwith onejob. All delaysbetweenconsecutie jobsin a chainare2. Constructinghe
schedulea) A scheduldor thelarge chains.b) Step1, deletingthetails of thelarge chains.c-g) Step2, shifting jobsearlierin the scheduleuntil at most
D chainsremainactie. h) Step3, Puttingthetails of the active chainsbackinto the schedulei) An optimal scheduleafterinsertingthe remainingjobs

usingtheround-robinof Step4.

scheduledn it) in the schedulewe try to fill that hole by
moving ajob earlierin the schedulgasin figure 1c-g).

We canalwaysfill a hole with a job thatis currently
scheduledlater, if, at the position of the hole, at least
D + 1 of the chainsareactive i.e., they have not yet been
scheduledip to the point at which they weretruncated.To
seewhy this is possible,notethatif D + 1 chainsare still
active, at leastone of thesechainshasnot beenexecuted
during the last D time stepsbeforethe hole. Therefore,if
we move the next job of that chaininto the currenthole, it
will be executedat leastD time units afterits predecessor
The precedencelelayis satisfiedafter this move sincethe
delayis atmostD.

After repeatedlynoving jobstofill holeswewill either
finish shifting all of the truncatedchainsor reachthe first
hole thatwe cannoffill without violating a delayconstraint
(asin figure 1g). Theresultingschedulas tight beforethat
hole (i.e. thereareno holesbeforeit), andthereareat most
D of thetruncatedchainsactive at that position (recall that
we canalways move a job if morethanD chainsare still
active). In the example(figure 1g), chainsl and?2 arestill
active atthefirst hole.

Step 3: Re-inserting some of the tails. We now reinsert
thetails of the (at mostD) chainsthatarestill active at the
first hole (asin figure 1h). We reinsertthesejobs at their
positionsgiven by the original schedule. Thesepositions
in the scheduleare still unoccupiedsincejobs were only
movedto time slotsearlierthanthefirst hole. Moreover, the
makesparof thetotal schedulds still atmostT.

Step 4: A Round-Robin for Scheduling Tails and Short
Chains. We are now left with the tails of at leastD + 1
chainseachcontainingexactly np. 1 jobs,whosetruncated
versionsfinished before the first hole (call thesetails the
blue chains)andk — (2D + 1) shortchains,eachcontaining
at most nyp41 jobs (call thesethe red chains). The red
chainsarethe onesthatwerenotamongthe 2D + 1 largest.
In theexample thesub-chaingonsistingof thelastnyp, 1 =
2 jobsin chains3, 4 and5 areblue,andchains6 and7 are
red.

Completingthe scheduleis doneby filling holeswith
the remainingjobsin a round-robinfashion,i.e., we cycle
throughthe chains(both the red and blue chains)in some
fixedorder insertingthe next job of eachone,until they are
all scheduled.

We haveto beabit carefulaboutthefirst D holeswefill
in this processsincethe blue chainscannotstarttoo close
to their predecessorfsom their original chain.

This problemcanbe solved by systematicallychoosing
the orderwe cycle throughthe chains. Sincethereare at
leastD + 1 blue chains,one of their predecessorkasnot
beenexecutedduring the last D steps,so we can safely
schedulghatchainfirst. Amongtheremainingbluechains,
one has not been executedin the last D — 1 steps,and
thereforeit canbe scheduledsecondandsoon. We fix this
orderof the blue chains(in the example,we let this order
be 3,4,5),andthenfollow it with any orderof theredchains
(6,7in theexample).

Since all blue chainshave the samelength, they all
finish onthe sameround. Furthermorethered chainsfinish
on or beforethis round, sincethey are no longerthanthe
blue chains. Therefore,every round consistsof at least
D + 1 differentchains,andwe canfill every hole until the
round-robinends.

Thus, we have scheduledall jobs, obeying the chain
precedenceconstraintsand the precedencealelays (as in
figure 1i). If this step 4 did not fill all the holes that
existed after step 3, thenwe know that our schedulestill
hasmakespanmat mostT. Otherwisethe new scheduléhas
no idle time, andhasmakespam. Also, the runningtime
of eachstepof this constructioncanbe madelinearin the
numberof jobs.

2.2 Dags, parallel processors, and general separation
delays

Thereis anaturalgeneralizatiorof theabove constructiorto
dags,parallelprocessorandgeneralseparatiordelays.We
sketchthe necessarghangesandleave the detailsfor the
full versionof the paper

Given a schedulewith makespanT for the largest
2m(D + 1) — 1 dags,we mustconstructa schedulefor all
thedagswith makesparmax{[=], T}. We follow thesame
four basicstepsasbefore.

Previously, for chains,the first stepof the construction
removedthelastnyp, 1 jobsfromthelargescheduleathains.
Now, in the generalcasewe remove the Nampy1)—1 jobs
from each dag that are scheduled last (ties are broken
arbitrarily). In step2 of the chainscase we shiftedjobsto
earlierin thescheduleaslong asatleastD + 1 of thechains
werestill active. To beableto shift jobsin thegenerakase,
we now needm(D + 1) dagsactive. Step3 is identical;we
reinsertthe jobsfrom the dagsthatarestill active atthefirst
holewe cannoffill.

Now at step4 in the generalcase,there are at least
m(D + 1) blue dags, each containing the same number
of jobs, and several smaller red dags (the ones which
werenot in the initial schedule). On step4 of the chains

case(the round-robinfill-in step), notice that we madeno
assumptionaboutthedelaysbetweerthejobsin theredand
blue chainsotherthanthatthey wereboundedby D. Sofor
dagswefirst topologicallysortthedagsin anarbitraryway,

makingthemchains. Thenwe performthe round-robinas
before. Thered chainsfinish first, the blue chainsall finish
onthe sameround,andwe have eitherfinishedbeforetime
T, or filled every hole. Therunningtime of eachstepis still

linearin thenumberof jobs.O

3 A Dynamic Program for Chains

We will now statea first simple versionof our algorithm
for the casewhere G is a collection of chains,and there
is only one processor(m = 1). In the next section,we
give a moregeneralversionthatworks for treeson parallel
processorsThealgorithmgivenhereis slightly lessefficient
than we can achieve; it runsin time O(n®P+1). We will
briefly sketch how to improve this to O(n?®+1) at the end
of the section.We give this slightly lessefficient algorithm
becauset establishesomeof the machineryusedfor the
thegenerakase.

TheMergeTheoremshowvs how to constructanoptimal
scheduleassumingve know how to optimally schedulghe
2m(D + 1) — 1 largestchainsin the precedencgraph. This
immediatelysuggestanalgorithm:

1. Dynamic Program. Usea dynamicprogramto opti-
mally schedulghe2m(D + 1) — 1 largestchainsin the
input, settingasidethe otherchainsfor themoment.

2. Merging. Apply the Merge Theoremto schedulethe
chainswe setasideduringthe dynamicprogram.

The dynamicprogramwe will usecanbethoughtof as
finding the shortestpaththrougha statespace wherestate
transitionscorrespondo the schedulingof jobson a single
time step.Every stateencodeswherewe are’ in the current
scheduleit recordghejobsavailableto beschedulednthe
upcomingtime step,aswell asarecenthistoryof thecurrent
schedulewhichwewill useto determinevhenjobsbecome
availablein thefuture. More precisely stateshave the form
(A,P), where

e A is a setwe call the active set This is the set
of currently active jobs, i.e. the jobs which can be
scheduledn the next time step.

e Pisavectorof lengthD, whoseentrieseithercontain
jobs or areempty Theseare the pastjobs the jobs
thathave beenscheduledvithin the lastD time steps.
Essentially P is a ‘window’ into thelastD time steps
of theschedule.

The following operationsdefine both the legal transi-
tionsbetweerstatesandthescheduling/statuspdatingdone
by a searchpassinghroughthis transition:

1. Scheduleajob j in A. Shift the window P onetime
stepforward, yielding Py, Whoselastentryis j. It is
alsopossibleto not scheduleary job (this is the only
possibilityif the active setis empty).In thatcase Py
will have anemptylastentry.

2. Use the informationin P to determinethe setB of
jobs which becomeavailable on this new time step
(the delaysfrom their parentshasjust elapsed).Since
the delaysare boundedby D, the informationin P is
sufficientto make this determination.

3. SetAnay equalto thenew setof active jobs, (A\ {j})U
B. Thenew stateis (Anay, Pnaw)-

Creatingan optimal schedulenow correspondso find-
ing ashortespathfrom the start state(A, P) (whereA con-
sistsof the rootsof the 2D + 1 largestchains,andP is an
emptyvector),to an end state(onewhereA is empty and
all jobsin P have no childrenthatarenotalsoin P).

The above dynamic programis enoughto schedule
chainson a single processoi(m = 1) in polynomialtime.
This is becauseve canboundthe size of the active setA.
The set A cancontainat mostone job per chain, sinceno
two jobsfrom thesamechaincanbeactive atthesametime.
Sincethesizeof A is thereforelimited by 2D + 1, thereare
only O(n?P+1) possiblevaluesfor A. SincethereareO(nP)
possiblevaluesfor P, the numberof statesis boundedby
O(n®P+1), This boundis polynomial,andthereforewe can
find the optimal schedulefor the largest2D + 1 chainsin
polynomialtime.

The secondstep(Merging) in our algorithmfor chains
is quite simple. Supposethe resulting schedulefor the
largest2D + 1 chainshaslength T. We then apply the
Merge Theoremto constructa scheduleof all jobsof length
max{n,T}. SinceT wasalower-boundon the optimal so-
lution for thewhole problem,the schedulemustbe optimal.

As asidenote,we canreducethe sizeof the statespace
for chainsandoneprocessoto O(n?°*1). Eachstatestores,
for eachchain,thelastjob executedandhow long agoit was
executed.This is enoughinformationto determineA andP
asabove.

4 TheAlgorithm for Trees

In this sectionwe give a polynomial time algorithm for
schedulingobswith treeprecedenceonstraintsseparation
delays,and possibleduplicationof jobs. We assumethat
the precedencgraphG formsa collectionof out-trees.By
reversingthe time-line, the algorithm can also be usedto
schedulea collectionof in-trees.

4.1 Noteson Job Duplication

Beforewe turn to the actualalgorithm,we will briefly dis-
cussjob duplication. Whenschedulingjobs undersepara-

tion delay constraints,it sometimegaysto executea job

multiple times on different processors.This is especially
trueif mary otherjobsdependnthisonejob, andit is time-

consumingo move datafrom oneprocessoto another

The simplestexampleis anout-treeconsistingof three
nodes:arootwith two children. Thedelaybetweertheroot
andits childrenis 0 if they run on the sameprocessqgrand
10 otherwise.Supposeave wantto schedulehis instanceon
two processors.Clearly, without duplication, the shortest
solution usesthreetime steps(scheduleall three jobs on
one processor). However, if we executethe root on both
processorswe can executeboth childrenin the next time
step,resultingin a scheduleof lengthtwo.

While duplicationis clearly useful, it doesnot appear
in completelyarbitrarywaysin a schedule. In fact, there
always exists an optimal schedulein which no two copies
of a job are executedmore than D time stepsapart. To
seethis, considera job that is executedtwice, wherethe
secondexecutionis morethanD time stepsafter the first.
In that casewe canjust deletethe secondone, sinceall its
childrenwerealreadyavailableat the time the secondcopy
wasexecuted.

4.2 Overview of the Algorithm

We now turn to the schedulingalgorithm for trees. The
algorithmconsistsof the sametwo phasesasthe algorithm
for chainsgivenin theprevioussection:adynamicprogram
andameming step.The statesn our dynamicprogramwill

be similar to the onesin the previous section. They are
of the form (A,P), where A containsjobs available on alll
processorandP containsa ‘window’ into the pastD time
stepsof theschedule.

The transitionsgiven in the previous sectionare not
generalenoughto scheduletrees, since the number of
concurrentlyactive jobsin A may grow without bound,e.g,
if ajob hasmary childrenthat all becomeavailable at the
sametime. If the sizeof A is not boundedthe size of our
statespacewill not be polynomialin size. To overcome
this problem,we limit the maximumnumberof jobsin A
to be2m(D + 1) — 1. Whenever a transitionincreaseghe
numberof active jobs above that number we setasidethe
jobs from all but the largest2m(D + 1) — 1 treesrootedat
thesepotentially active jobs. In the Merging stepwe will
includethejobsfrom thesesetasidetreesinto the schedule.

To simplify thepresentationywe introducethe notion of
the statusof ajob. This statusis not explicitly storedin the
state,but is usefulwhenwe think abouthow the dynamic
programcreatesa scheduleWe sayajob is:

e active, if it canbe scheduledight away on all proces-
sors,sinceall delaysfrom its predecessdrave elapsed,

e waiting, if it has not beenscheduled,and thereis
a processoron which it cannotrun yet (becausdts

(Set aside on this transition)

1[a] p [1]4
213][/7 7 <2 3 >
. 5 . :F%,
Schedule: 5,-
A, ={5} A;=1{6,7,...,16}

Figure2: Exampleof aninputtreeanda statetransitionfrom (A2, P,) to (As, Ps). ThemaximumdelayD is 2 andall delays?; j o, areequalto 2. There
aretwo machinegm= 2). Theactive setA; consistf only job 5, asit is theonly oneavailable. Thetransitionschedulegob 5 on thefirst machine and
nothingon the secondmachine.Jobs6 through18 all becomeavailable,but only 2m(D + 1) — 1 = 11 canbein Ag, sojobs 17 and 18, the oneswith the
fewestnumberof jobsin their subtreearesetaside alongwith the jobsin their subtreesThenew active setAz is {6,7,...,16}.

predecessohas not been executedyet, or not long
enoughago),

e scheduled, if it hasalreadybeenscheduledon some
processqror

e setaside, if thedynamicprogramhasdecidedo ignore
it, andwill beschedulednly laterin the Merging step.

4.3 A new dynamic program

The statespacecontainsall pairs (A, P), whereA is the ac-
tive set, limited to 2m(D + 1) — 1 jobs,andP isanmx D
matrix recordingthelastD time stepsof the schedule This
meansthat we have O(n®MP+2M-1) statesin the dynamic
program,making finding a shortestpath possiblein poly-
nomialtime.

The state transitionsare more complex than in the
algorithm from the previous section. An example state
transitioncanbefoundin figure2. If we areatastate(A, P),
we cango to a new state{Anay, Phav), asfollows:

1. Choosejobs j1,j2,...,jm to be executedon the m
processors Settheir statusto scheduled Eachjob j;
canbeoneof thefollowing:

e nothing(nojob scheduled)
e ary jobin thesetA

e ary job in the matrix P thatis executableon pro-
cessoli atthecurrenttime step(job duplication)

e ary child of ajob in matrix P thatis executableon
processoi (but notall processorsat the current
time step(partially availablejob)

2. The new matrix Pngy is P shiftedforward by onerow,
with thenew lastrow (j1, j2,. .., jm). All jobsthatwere
in thefirst row of P (the onethatgot shifted out) that
arestill in P,gy (dueto job duplication)are removed
from Phew.

3. Usingtheinformationin P, determinehesetof jobsB
that on this stepbecomeavailable on all processors,
and have not beenexecutedbefore, and set Apgy t0

(A\{j1,J2,---,im}) UB.

4. If Aney hasmorethan2m(D + 1) — 1 elementsremove
all but the 2m(D + 1) — 1 ‘largest’ jobs from the set,
where‘largest’is measuredn termsof the size of the
sub-treerootedat the job. Theseremaovedjobs, along
with all the jobs containedin their sub-treesare set
aside They will bedealtwith in the Merging phase.

The start state of the dynamic programis (Ao, Po),
whereAg consistsof therootsof the2m(D + 1) — 1 largest
trees,and P is the empty matrix. The end stateshave the
form (A, P) whereA is empty andall jobsin P eitherhave
no children,or their childrenarealsoin P.

As wetraversethepathfrom a startstateto anendstate,
the statusof eachjob evolvesasin figure 3. It is not hard
to seethat at the end of the path, every job is classifiedas
eitherscheduledor setaside

4.4 Merging and Correctness

A pathof lengthT from a startstateto an endstatein the
state-spacéefinedabove givesa scheduleof length T for
part of the tree. We needto shav how the jobs setaside
by the path canbe memgedbackinto the schedule.In the

waitin

o

scheduled set aside

Figure3: Thelife of ajob.

remainderof this section,we will shav two lemmas. The
firstlemmawill establishthatwe canfind a pathin thestate
spacethat can be corvertedinto an optimal schedulevia
Merging. The secondemmawill shav how to performthis
Merging step.

Before statingthe lemmas,we needthreedefinitions.
First, we definethe setUq for a stateq, which containsall
thejobswhich mustappeasafterstateqin any legalschedule
(theseare the jobs which are available or waiting at that
state).This setis completelydeterminedy theinformation
containedn (A, P).

DEFINITION 4.1. (DEPENDENT JOBS) For a state q =
(A, P), letUq containall jobsin A, all descendantsf jobsin
A, andall descendantsfjobsin P thatare notyetavailable
onall processos, andthatare notin P themselved

Now we definethe deadlineof stateq to be the latest
possiblepoint on a pathwhereq canappearso thatall the
dependenjobs of q canstill fit into the schedulewithout
makingit longerthanCp, .

DEFINITION 4.2. (DEADLINE) Let g = (A,P) be a state
Thedeadlineof g is thevalue [C;W— MJ . O

m
In ary pathin statespacehatcorrespondso anoptimal
schedule gvery statemustappearbeforeits deadline. We
formalizethisin a definition.

DEFINITION 4.3. (ADMISSIBLE PATH) A pathin the state
spacefroma start stateto an endstateis called admissible
iff for all x from O to Cy,,,, the x-th stateon the path hasa

deadlineof at leastx. O

Wewill now shaw thatanadmissiblgpathalwaysexists,
thatit canbefoundin polynomialtime,andhow to corvert
it into anoptimalschedule.

LEMMA 4.1. (DYNAMIC PROGRAM CORRECTNESS)
There alwaysexistsan admissiblepaththat canbefoundin
polynomialtime

Proof: An admissiblepath, if it exists, can easily be
found by breadth-firsisearchthroughthe statespaceof the
dynamicprogramwe just constructedThedeadlineof each
statecan be determinedbeforehand At depthx of the
searchwe extendthe searchonly to stateswith a deadline
of atleastx+ 1.

Now we shaw thatsucha pathalwaysexists. We show
this by constructingan admissiblepath (qo, s, ..., 0cs,,,)
usinganoptimal scheduleS asa template.We assumehat

3Note thatwe have to know C,, to computethe deadline. But since
Chax < nD, we canfind thevalueusingbinary searctwith a multiplicative
increaseof O(logn) in runningtime.

Shasno unnecessarjob duplications(jobswhoseremoval
from the schedulevould maintainfeasibility).

We will proceedalong the schedule,and at the x-th
steptake the statetransitionfrom gx—1 = (A, P) to gy that
correspondgo executingthe jobsin the x-th time slice of
Sthatarein PUUg _,. Theremustbe sucha transition,
becauséor everyjobin PUUg, , thatis executedn Satthat
time slice, it is eitherin A, or its parentappearsn P at the
samepositionasit appearsn S(easilyshovn by induction).

It remainsto shav that the so constructedpath is
admissible. Note that when we are at stateqy alongthe
path, thenall jobs in Ug, have to appearafter time slot x
in the scheduleS. Becausewe are executing ‘down’ the
trees,andwe neveraddto asetUg, to obtainUg,, ,, we have
Ug € Ug, if x>y. So,if x>y, andajobin Uq,_, appears
in Sattime stepy (andsois notin Ug, by construction);t
will notbein Ug,. This meansthatnoneof the jobsin Ug,
canappeaiator beforethe x-th time stepin S, andtherefore
all appearafterit. But this implies [|Ug,|/m]| < Chax— X,
which shavs thatthe pathis admissible [

Now thatwe have a scheduldor partof thetree,we needto
mergethe jobswe setasidebackinto the schedule Hereis
wherewe usethe Merge Theorem.

LEMMA 4.2. (MERGING) Given an admissiblepath, an
optimalschedulecanbe constructedn time O(n?).

Proof: An admissiblepathcanbe directly corvertedinto a
schedules of the samelengththat containsall but the jobs
whichweresetaside We now shav how to incorporatethe
setasidejobsinto the schedulewhile makingit notlonger
thantheoptimalschedule.

We do this by traversingthe path from its end to its
beginning. Whenwe reacha stateqy at which jobswereset
aside,we includetheminto the scheduleasfollows. Since
treesweresetasideatthatstate theremustbe2m(D + 1) — 1
largertreesrootedat the jobsin gy's active set. Thejobsin
these'active’ treesarealreadyin the schedulesinceeither
they werescheduledby theadmissiblgpath,or they wereset
asidelater, in which casewe alreadymemgedtheminto the
scheduldrecallwe aretraversingit backwards).

This meanswe canapplythe Merge Theorento merge
the setasidetreesinto the schedule.Sincewe startedwith
anadmissiblgpath,we know thatthe numberof jobsnotyet
scheduledat gy doesnotexceedm- (C.«— X), theavailable
room in the schedule. Therefore,memging the set aside
treesdoesnot make the schedulelonger than the optimal
schedule We repeathis procedurdor all statesandobtain
anoptimalschedule.

SinceapplyingtheMerge Theorentor every statecosts
lineartime, andtheremightbeupto n stateonthepath,the
total time for the meging operationis O(n?). O

5 Conclusion

In this paperwe have giventhefirst polynomial-timemulti-
processorschedulingalgorithm for tree-basedrecedence
constraintghatimposeprecedencandcommunicatiorde-
lays. As opposedto previous results, separationdelays
4 j.ap candependon jobsandmachinesandcanhave val-
uesotherthan0 and 1, aslong asthey are boundedby a
constantD. That makes our algorithm more generaland
applicableto theinstructionschedulingor VLIW architec-
tures. The potentially long runningtime of the algorithm
is acceptabléo embeddedystemdesignersincethe soft-
wareis compiledonly onceandan optimal performances
requiredof theresultingsystem.

Thealgorithmfor treesusesanuncorventionaldynamic
program,where partial pathsin statespacedo not corre-
spondto partialscheduleshut ratherhave to betransformed
into a solutionduringthe Merging phase.Therunningtime
of our algorithm dependsexponentially on the numberof
processorsn and maximumdelay D, making it impracti-
cal for large valuesof theseconstants.However, it is the
dynamicprogrammingpartof the algorithmthatincursthis
runtime;the memging steponly takesO(n?) time. This sug-
gestsusingan heuristicinsteadof the optimal dynamicpro-
gramto producea paththroughthe statespace.The Merge
Theorencanthenbeusedto incorporateaheremainingtrees
into the schedule Findinggoodheuristics from bothathe-
oreticaland an experimentalpoint of view, is a very inter
estingopenproblem. We planto continueour work in this
direction.

Anotherintriguing questionis whetherour techniques
canbeextendedo thecasewhereG is anarbitrarydag. The
MergeTheorenstill holdsfor thesanputs.But ourdynamic
programcritically usesthe factthatoncea branchoccurs,
the subtreesare completelyindependent.A more compli-
cateddynamicprogrammightgetaroundthis problemwith-
outalargeincreasen thesizeof the statespace As already
mentionedn theintroduction thisis verylik ely ahardprob-
lem, sincean algorithm for just the single-processocase
with D = 3 canbeusedo solvethefamousopen3-processor
schedulingproblem.

Acknowledgments

We wouldlik eto thankJohnDunaganRyanO’Donnelland
April Rasaldor their helpful commenton this paper

References

[1] David Bernsteinandlzidor Gertner Schedulingexpressions
on a pipelinedprocessomwith a maximaldelayof onecycle.
ACM Transaction®n ProgrammingLanguaesandSystems
11(1):57-66,Januaryl989.

[2] P. ChrétienneandC. Picouleau.Schedulingwith communi-
cationdelays:A suney. In P. Chretienne Jr. E. G. Coffman,

[4

—_—

5

—_—

[6

—_

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

J.K. Lenstra,andZ. Liu, editors,SdedulingTheoryandits
Applications pages$5-90.JohnWiley & SonsLtd, 1995.
E.G.Coffman,Jr. andR.L. Graham.Optimalsequencindor
two-processosystems Actalnformatica 1:200-2131972.
Daniel W. Engels. Schedulingfor Hardware-Softwae Par-
titioning in EmbeddedSystemDesign PhD thesis, Mas-
sachusettinstituteof Technology2000.

Lucian Finta and Zhen Liu. Single machine scheduling
subjectto precedencelelays. DAMATH: Discrete Applied
Mathematicsand Combinatorial Opeiations Reseath and
ComputerScience70,1996.

LucianFinta,ZhenLiu, loannisMilis, andEvripidis Bampis.
SchedulingdET-UCT series—parallejraphson two proces-
sors. Theoetical ComputerScience 162(2):323—-340Au-
gust1996.

Michael R. Garegy and David S. Johnson. Computes and
Intractability: A Guideto the Theoryof NP-Completeness
Freemanl1979.

R.L. Graham,E.L. Lawler, J.K. Lenstra,and A.H.G. Rin-
nogy Kan. Optimizationandapproximationin deterministic
sequencingnd scheduling: A Surwey. Annalsof Discrete
Mathematics5:287-3261979.

Intel Corporation. The IA-64 Architectue Softwae Devel-
oper’'s Manual January2000.

HermannJung,Lefteris Kirousis, and Paul Spirakis. Lower
boundsand efficient algorithmsfor multiprocessoschedul-
ing of dagswith communicatiordelays. In Proceedingsof
SRAA, page254-264,1989.
JanKarelLenstraMarinusVeldhorstandBartVeltman.The
compleity of schedulingtreeswith communicatiordelays.
Journal of Algorithms 20(1):157-173Januaryl996.

Rolf H. MdhringandMarkusW. Schaffter. A simpleapprox-
imationalgorithmfor schedulingorestswith unit processing
timesandzero-onecommunicatiordelays. TechnicalReport
506, TechnischdJniversi@t Berlin, Germary, 1995.
ChristosH. Papadimitriouand Mihalis Yannakakis. Opti-
mization, approximation,and compleity classeqextended
abstract).In Proceeding®f the TwentiethAnnualACM Sym-
posiumon Theoryof Computing pages229-234 May 1988.
C. Picouleau. Etudede problemesles sysemesdistrubés
PhD thesis, Univ. Pierre et MadameCurie, Paris, France,
1992.

Texas Instruments. TMS320C600CProgrammers Guide
March2000.

J.D. Uliman. NP-completeschedulingoroblems.Journal of
Computerand SystenBciencesl10(3):384—-393Junel975.
TheodoraA. Vanarigou, Vwani P. Roychonvdhury, Thomas
Kailath,andEugend_awler. Schedulingn andoutforestsin
the presenceof communicationdelays. IEEE Transactions
on Parallel and Distributed Systems7(10):1065-10740Qc-
tober1996.

