
ParallelProcessorSchedulingwith DelayConstraints

DanielW. Engels
�

JonFeldman† David R. Karger‡ MatthiasRuhl§

MIT Laboratoryfor ComputerScience
Cambridge,MA 02139,USA

Abstract
We considertheproblemof schedulingunit-lengthjobs on
identical parallel machinessuchthat the makespanof the
resultingscheduleis minimized.Precedenceconstraintsim-
posea partial order on the jobs, and both communication
andprecedencedelaysimposerelativetiming constraintson
dependentjobs.Thecombinationof thesetwo typesof tim-
ing constraintsnaturallymodelsthe instructionscheduling
problemthat occursduring softwarecompilationfor state-
of-the-artVLIW (Very Long InstructionWord) processors
andmultiprocessorparallelmachines.

We presentthe first known polynomial-timealgorithm
for thecasewheretheprecedenceconstraintgraphis aforest
of in-trees(or a forestof out-trees),thenumberof machines
m is fixed,andthedelays(which area functionof both the
job pair andthe machineson which they run) arebounded
by a constantD.

Our algorithm relies on a new structural theorem
for schedulingjobs with arbitrary precedenceconstraints.
Given an instancewith many independentdags,the theo-
rem shows how to convert, in linear time, a scheduleS for
only the largestdagsinto a completeschedulethat is either
optimalor hasthesamemakespanasS.

1 Introduction
In this paperwe considerthe problemof schedulingunit-
length jobs on m identical parallel machinesto minimize
the makespanin the presenceof precedenceconstraints,
precedencedelaysandcommunicationdelays. Precedence
constraintsmodel dependenciesbetweenthe tasks; if job
j dependson job i, then job j mustbe executedafter job
i. Precedencedelaysl i � j imposerelative timing constraints;
job j cannotbegin executionuntil at leastl i � j timestepsafter
job i completes.Communicationdelaysci � j imposedelays
acrossmachines;if jobs i and j run on differentmachines,

�
E-Mail: dragon@lcs.mit.edu

†E-Mail: jonfeld@theory.lcs.mit.edu
‡E-Mail: karger@theory.lcs.mit.edu
§E-Mail: ruhl@theory.lcs.mit.edu

job j cannotbeginexecutionuntil atleastci � j timestepsafter
job i completes.

Previousalgorithmsfor schedulingjobsonparallelma-
chinesconsidereithercommunicationdelaysor precedence
delays,but not both. In this paperwe generalizebothtypes
of delaysto a singleseparation delay

�
i � j � a � b, wherejob j

runningon machineb cannotbegin executionuntil at least�
i � j � a � b time unitsafter job i completeson machinea. More-

over, we overcomethe restrictionof previous exact algo-
rithmswheredelayscouldonly beeither0 or 1.

We give a polynomialalgorithmfor thecasewherethe
precedencegraphis a forest1 and the delaysare bounded
by a constantD. We alsogive a usefulstructuraltheorem
for instanceswhere the precedencegraph is a collection
of independentdags;we show that any scheduleS for the
largestdagscanbeconverted,in lineartime,into acomplete
schedulethat is either optimal or hasthe samemakespan
as S. Our interest in this problem is motivated by the
instruction schedulingproblem encounteredby compilers
for emergingsystemarchitectures.

Instruction scheduling for parallel machine and VLIW
compilation. VLIW (Very Long Instruction Word) ar-
chitectureshave recentlybegun to appearin a variety of
commercialprocessorand embeddedsystemdesigns. In
thesearchitectures,the processorcontainsmultiple func-
tionalunitscapableof executingbasicoperationsin parallel
in oneclock cycle. The VLIW processoris controlledby
meta-instructionsthat combinethe instructionsfor the in-
dividual functional units into one single instructionword,
hencethenameVLIW.

The VLIW architectureis the basisfor Intel’s Itanium
chip (formerly code-namedMerced), which is scheduled
for commercialreleasein 2000. It usesa new instruction
set namedIA-64 [9], which was developedby Intel and
Hewlett-Packard,andis basedon EPIC(Explicitly Parallel
InstructionComputing)– Intel’sadaptationof VLIW. VLIW
architectureshave alsobeenusedin state-of-the-artDigital

1Whenwe saythat theprecedencegraphis a forest,we meanthat it is
eitheracollectionof in-trees,or acollectionof out-trees.

1

Signal� Processor(DSP)designs,suchasthe popularTexas
InstrumentsTMS320C6xseries[15].

The role of the compiler is much more crucial for
VLIW architecturesthan it is for traditional processors.
To exploit the inherenthardwareparallelism,the compiler
must combine basic operationsinto meta-instructionsin
an efficient way. When doing so, it has to observe the
datadependenciesbetweenthe operationsand the time it
takes to transferdatafrom one functional unit to another.
Sincehardwarebasedaccelerationschemessuchasbranch
predictionor speculative executionbecomelesspowerful
on theseimplicitly parallelarchitectures,it is the compiler
thatreallydeterminesthequalityof theresultingcode.This
quality is especiallyimportantin embeddedsystemdesign,
wherethecodeis only compiledonce(makingevenlengthy
compilationtimesacceptable),but anoptimalperformance
is requiredof theresultingsystem.

Our schedulingproblemexactly fits this model. Each
meta-instructioncanbethoughtof asasliceof time,andthe
functionalunitscorrespondto machines.Pipeliningallows
all jobsto have unit executiontime. Precedenceconstraints
encodethedatadependencies,anddelaysencodethelaten-
cies: variablepipeline lengthsand limited bypassingcre-
atevariableprecedencedelays,anddatamovementbetween
functionalunitscreatescommunicationdelays.Sinceall the
functionalunitsarepart of the sameprocessor, precedence
delaysandcommunicationdelaysareon the sameorderof
magnitude,andshouldbeconsideredtogether. Furthermore,
fixing thenumberof machinesandimposingaboundonthe
delaysmakes sensein this context; thesequantitiesare a
functionof the physicalcharacteristicsof the chip, andare
usuallysmall2.

Determininga minimum makespanschedulefor arbi-
trary instructiondependenciesis a long-standingopenprob-
lem (see section 1.1). We therefore focus on schedul-
ing forests, which often occur in practice, for example,
whenprocessingexpressiontreesor divide-and-conqueral-
gorithms.

Problem statement. We are given a set of n jobs and
m machineson which to executethe jobs, where m is a
constant.Eachjob hasunit processingtime. Thereexists
a directedacyclic precedencegraphG ��� V � E 	 on the jobs
V. With eachprecedence-constrainedjob pair � i � j 	�
 E,
and pair of machines � a � b	 , there is an associatednon-
negative delay

�
i � j � a � b boundedby a constantD. Theoutput

is a scheduleassigninga job to eachprocessorand time
slot. A scheduleis legal if f it includesall jobs, and for
all precedence-constrainedjob pairs � i � j 	�
 E, if job j runs
on machineb at time t, job i must be scheduledon some
machinea before time t
 � i � j � a � b (i.e., theremustbe

�
i � j � a � b

2As anexample,Intel’s Itaniumchiphassix functionalunits,andTexas
Instruments’TMS320C6xhaseight.

timeunitsbetweenthem).
We denotethecompletiontime of job j asCj . We are

concernedwith minimizing themakespan,Cmax � maxj Cj .
Let C �max be the optimal value of Cmax. Extending the
notationintroducedby Grahamet al. [8], we can denote
the problemsconsideredin this paperas Pm � prec; p j �
1;
�

i � j � a � b
�� 0 � 1 ��������� D ��� Cmax.
We canalsoallow multiple instancesof the samejob

to be scheduledon different machines;this is called job
duplication. Allowing job duplicationcanmakeadifference
in the makespanof a schedulewhen computingthe same
value twice is more efficient than transferringthe value
acrossmachines(seesection4.1).

Our contribution. We give a polynomial-timealgorithm
for the problemwherethe precedencegraphG is a forest:
Pm � tree; p j � 1;

�
i � j � a � b
�� 0 � 1 ��������� D ��� Cmax. The algo-

rithm works with or without job duplicationallowed on a
job-by-jobbasis.

Our result is moregeneralthanprevious known poly-
nomial algorithms in both the precedencedelay and the
communicationdelay communitiesfor optimally schedul-
ing treeson a fixed numberof processors. Previous re-
sultsassumedat most unit time delays: Varvarigou,Roy-
chowdhuryandKailath [17] solve Pm � tree; p j � 1;ci � j �
1 � Cmax. Bernsteinand Gertner[1] solve 1 � tree; p j �
1;l i � j
�� 0 � 1 ��� Cmax. Our algorithmsolvesboththeseprob-
lemsasspecialcases.Anotherimportantcontributionof this
paperis theMergetheorem:

THEOREM 1.1. (THE MERGE THEOREM) Consideranin-
stanceof Pm � prec; p j � 1;

�
i � j � a � b
�� 0 � 1 ��������� D ��� Cmax

where the precedencegraph G containsat least 2m� D �
1	�
 1 independentdags. Givena schedulewith makespan
T for only the jobs from the largest 2m� D � 1	
 1 dags,
onecanconstructin linear timea schedulefor all jobswith
makespanmax�"! n

m # � T � .
Since this theoremholds for any dag, not just trees,

it shows that any heuristicor approximationalgorithmfor
schedulingonly the jobs from large dagscanbe extended
into analgorithmfor schedulingall jobs.Thetheoremmight
alsobe appliedto singledagsafter they have beenbroken
into independentpieces. Furthermore,sincea scheduleof
length ! n

m # is clearly optimal, the new algorithmwill have
the sameperformanceguaranteeas the original algorithm
with only a lineartimeadditivecostin runningtime.

1.1 Related Work

Polynomial algorithms: precedence delays. Precedence
delayshave beenusedto modelsingle-processorlatencies
that arise due to pipelined architectures. Bernsteinand
Gertner [1] use a modification of the Coffman-Graham
algorithm[3] to solve 1 � prec; p j � 1;l i � j
$� 0 � 1 �%� Cmax.

2

Finta and Liu [5] give a polynomial time algorithm for
the moregeneral1 � prec; p j ; l i � j
�� 0 � 1 ��� Cmax. Both of
thesealgorithmscrucially dependon assumingunit-delays
betweenjobs.

Polynomial algorithms: communication delays. In the
classicalmodelsof parallel computation,communication
delaysareordersof magnitudelarger thanprecedencede-
lays, so algorithms for schedulingon parallel machines
have generally ignored precedencedelays. A survey by
ChrétienneandPiccoleau[2] givesanoverview of thework
in this area.

All previouspolynomial-timealgorithmsfor abounded
numberof machineswork only for the specialcaseof unit
communicationdelays. Varvarigou, Roychowdhury and
Kailath [17] show that Pm � tree;ci j � 1;p j � 1 � Cmax

is solvable in time O � n2m	 by converting the tree into one
without delays. This conversionreliesheavily on the fact
that that thedelaysareunit-length.Thespecialcasem � 2
wasshown to besolvablein O � n2 	 time by Picouleau[14],
andwaslater improvedto lineartime by Lenstra,Veldhorst
andVeltman[11], usinga typeof list scheduling.

Finta and Liu [6] give a quadratic algorithm for
P2 � SP1;p j � 1;ci j � 1 � Cmax, where SP1 are series-
parallel-1graphs,asubclassof series-parallelgraphs.There
hasalsobeensomework on approximationalgorithmsfor
an arbitrary numberof machines. Möhring and Scḧaffter
[12] givea goodoverview of this area.

Severalauthors(e.g. [10, 13]) have consideredrelated
problemswhere the numberof processorsis unbounded,
i.e. the schedulecan useas many processorsas desired.
However, thatmodelis fundamentallydifferentfrom theone
we study, sinceoptimal schedulesusually make extensive
useof theunlimitedparallelism.

Hardness results. Evenwithoutany delays,theproblemis
NP-hardif theprecedencerelationis arbitraryandthenum-
ber of machinesis part of the input. This is the classicre-
sult of Ullman [16], showing NP-hardnessof P � prec; p j �
1 � Cmax. Lenstra,Veldhorstand Veltman [11] show the
problem is still NP-hardwhen the precedencegraph is a
treeandthereareunit communicationdelays(P � tree;ci j �
1;p j � 1 � Cmax).

Engels[4] provesNP-hardnessfor the single-machine
casewhenthe precedenceconstraintsform chains,andthe
delaysarerestrictedto beeitherzeroor asingleinputvalue,
i.e., he shows 1 � chain; p j � 1;l i � j
�� 0 � d �$� Cmax to be
stronglyNP-hard,whered is aninput to theproblem.

When the processingtimes are not unit, the problem
is also NP-hard. Engels[4] shows that schedulingchains
with job processingtimesof eitheroneor two andconstant
precedencedelays, i.e., 1 � chain; p j
&� 1 � 2 � ; l i � j � D '
2 � Cmax, is stronglyNP-hard.

Thusthe only naturalgapbetweenour resultandNP-

hardproblemsis the generalizationto arbitraryprecedence
structureson a fixed numberof machines,i.e., the prob-
lem Pm � prec; p j � 1;

�
i � j � a � b
(� 0 � 1 ��������� D �)� Cmax. How-

ever, this gap comesas no surprise,since the famous3-
processorschedulingproblem([7], problem[OPEN8]) is
a specialcase. It turnsout that even an algorithm for the
one-processorversionwhereall delaysare equal to three
(1 � prec; p j � 1;

�
i � j � 3 � Cmax) couldbeusedto solve in-

stancesof 3-processorscheduling(P3 � prec; p j � 1 � Cmax).
Thereductionis straightforward.

1.2 Organization

The remainderof the paper is organizedas follows. In
section2 we give the proof of the Merge Theorem. In
section3 we usethe MergeTheoremasthe foundationfor
aschedulingalgorithmthatsolvesthesingleprocessorcase,
wherethe precedencegraphis a collectionof chains. We
presentthe full algorithm in section4. We concludein
section5 with a brief discussionof our results.

2 Proof of the Merge Theorem
We begin by proving the Merge Theorem for the case
wherewe have chainprecedenceconstraintsandonly one
processor(G is a collectionof k independentpaths,m � 1).
This proof establishesall of the techniquesusedfor the
generalcaseandis lessobscuredby details.We thensketch
the naturalgeneralizationto dags,parallel processorsand
generalseparationdelays.

2.1 Special Case: chain precedence constraints, one
processor

Our goal is as follows: Given a scheduleof the 2D � 1
largestchainsthat finishesat time T, we must construct
a completeschedulefor all k chainsthat finishesat time
max� n � T � . As a running exampleconsiderthe instance
shown in figure 1. This exampleconsistsof 7 chainswith
a total of n � 21 jobs. The maximumprecedencedelay
is D � 2. Figure 1a shows a feasible schedulefor the
2D � 1 � 5 largestchainswith makespanC �max � n. Wewill
constructthenew schedulein four steps.

Step 1: Truncating. Let ni bethenumberof jobsin thei-th
largestchain. We begin by removing the lastn2D * 1 jobs in
eachof the scheduledchainsfrom the currentschedule(as
in figure1b, where2D � 1 � 5 andn5 � 2). We call these
deletedsub-chainsthe tails. Note that we have removed
2D � 1 tailswith exactlyn2D * 1 jobsin eachtail.

Step 2: Shifting operations. Next, wemodify theschedule
with the tails removed by shifting jobs so that they are
executedas early as possible. Beginning at the first time
slot, we traversethe schedulethroughtime T. Whenever
we encountera hole (time slot that doesnot have a job

3

1

4
2

2
3
1
2

1

1
4
2
3
1
2
3
4
5
2

2
1

1

2
1

6
7
3

4

6

5

1
5
4
2

2
3
1
2
3
4

1

1

4
5

2
1

2

3

1

2

4

2
3
1

1

2
2

1
4

2
3
1
2

1

1
4
2
3

2

1
2

1

1
4
2
3
1

2

2

1

1

1
4
2
3

2

2

1

1
4
2
3
1
2

2

2
1

1

2
1

b ia c d e f hg

1 1 1 11

2 2 2 2 2

3 3 3

4 44

5 5

6 6

7

Job chains

Figure1: Probleminstance(on left) andconstructionof anoptimalschedule(on right), for D + 2. Theinstanceis composedof two chainswith 5 jobs,
two chainswith threejobs,two chainswith two jobsandonechainwith onejob. All delaysbetweenconsecutive jobsin a chainare2. Constructingthe
schedule:a) A schedulefor thelargechains.b) Step1, deletingthetails of thelargechains.c-g) Step2, shifting jobsearlierin thescheduleuntil at most
D chainsremainactive. h) Step3, Puttingthetails of theactive chainsbackinto theschedule.i) An optimalscheduleafter insertingtheremainingjobs
usingtheround-robinof Step4.

scheduledin it) in the schedule,we try to fill that hole by
moving a job earlierin theschedule(asin figure1c-g).

We can always fill a hole with a job that is currently
scheduledlater, if, at the position of the hole, at least
D � 1 of the chainsareactive, i.e., they have not yet been
scheduledup to thepoint at which they weretruncated.To
seewhy this is possible,note that if D � 1 chainsarestill
active, at leastone of thesechainshasnot beenexecuted
during the last D time stepsbeforethe hole. Therefore,if
we move the next job of that chaininto the currenthole, it
will be executedat leastD time units after its predecessor.
The precedencedelayis satisfiedafter this move sincethe
delayis at mostD.

After repeatedlymoving jobsto fill holes,wewill either
finish shifting all of the truncatedchainsor reachthe first
holethatwe cannotfill without violating a delayconstraint
(asin figure1g). Theresultingscheduleis tight beforethat
hole(i.e. thereareno holesbeforeit), andthereareat most
D of the truncatedchainsactive at thatposition(recall that
we canalwaysmove a job if more thanD chainsarestill
active). In the example(figure1g), chains1 and2 arestill
activeat thefirst hole.

Step 3: Re-inserting some of the tails. We now reinsert
the tails of the (at mostD) chainsthatarestill active at the
first hole (as in figure 1h). We reinsertthesejobs at their
positionsgiven by the original schedule. Thesepositions
in the scheduleare still unoccupied,sincejobs were only
movedto timeslotsearlierthanthefirst hole.Moreover, the
makespanof thetotal scheduleis still at mostT.

Step 4: A Round-Robin for Scheduling Tails and Short
Chains. We are now left with the tails of at leastD � 1
chains,eachcontainingexactlyn2D * 1 jobs,whosetruncated
versionsfinishedbefore the first hole (call thesetails the
blue chains)andk
,� 2D � 1	 shortchains,eachcontaining
at most n2D * 1 jobs (call thesethe red chains). The red
chainsaretheonesthatwerenot amongthe2D � 1 largest.
In theexample,thesub-chainsconsistingof thelastn2D * 1 �
2 jobs in chains3, 4 and5 areblue,andchains6 and7 are
red.

Completingthe scheduleis doneby filling holeswith
the remainingjobs in a round-robinfashion,i.e., we cycle
throughthe chains(both the red andblue chains)in some
fixedorder, insertingthenext job of eachone,until they are
all scheduled.

4

Wehaveto beabit carefulaboutthefirst D holeswefill
in this process,sincethe blue chainscannotstarttoo close
to their predecessorsfrom their original chain.

Thisproblemcanbesolvedby systematicallychoosing
the orderwe cycle throughthe chains. Sincethereare at
leastD � 1 blue chains,one of their predecessorshasnot
beenexecutedduring the last D steps,so we can safely
schedulethatchainfirst. Amongtheremainingbluechains,
one has not been executedin the last D
 1 steps,and
thereforeit canbescheduledsecond,andsoon. We fix this
orderof the blue chains(in the example,we let this order
be3,4,5),andthenfollow it with any orderof theredchains
(6,7 in theexample).

Since all blue chainshave the samelength, they all
finishon thesameround.Furthermore,theredchainsfinish
on or beforethis round, sincethey areno longer than the
blue chains. Therefore,every round consistsof at least
D � 1 differentchains,andwe canfill every hole until the
round-robinends.

Thus, we have scheduledall jobs, obeying the chain
precedenceconstraintsand the precedencedelays (as in
figure 1i). If this step 4 did not fill all the holes that
existed after step3, then we know that our schedulestill
hasmakespanat mostT. Otherwise,the new schedulehas
no idle time, andhasmakespann. Also, the runningtime
of eachstepof this constructioncanbe madelinear in the
numberof jobs.

2.2 Dags, parallel processors, and general separation
delays

Thereis anaturalgeneralizationof theaboveconstructionto
dags,parallelprocessorsandgeneralseparationdelays.We
sketchthe necessarychanges,andleave the detailsfor the
full versionof thepaper.

Given a schedulewith makespanT for the largest
2m� D � 1	-
 1 dags,we mustconstructa schedulefor all
thedagswith makespanmax� ! n

m # � T � . We follow thesame
four basicstepsasbefore.

Previously, for chains,thefirst stepof theconstruction
removedthelastn2D * 1 jobsfromthelargescheduledchains.
Now, in the generalcasewe remove the n2m. D * 1/10 1 jobs
from each dag that are scheduled last (ties are broken
arbitrarily). In step2 of thechainscase,we shiftedjobs to
earlierin thescheduleaslongasat leastD � 1 of thechains
werestill active. To beableto shift jobsin thegeneralcase,
we now needm� D � 1	 dagsactive. Step3 is identical;we
reinsertthejobsfrom thedagsthatarestill activeat thefirst
holewe cannotfill.

Now at step4 in the generalcase,there are at least
m� D � 1	 blue dags, each containing the samenumber
of jobs, and several smaller red dags (the ones which
werenot in the initial schedule).On step4 of the chains

case(the round-robinfill-in step),notice that we madeno
assumptionsaboutthedelaysbetweenthejobsin theredand
bluechainsotherthanthatthey wereboundedby D. Sofor
dags,wefirst topologicallysortthedagsin anarbitraryway,
makingthemchains. Thenwe performthe round-robinas
before.Theredchainsfinish first, thebluechainsall finish
on thesameround,andwe have eitherfinishedbeforetime
T, or filled everyhole.Therunningtimeof eachstepis still
linearin thenumberof jobs. 2
3 A Dynamic Program for Chains
We will now statea first simple versionof our algorithm
for the casewhereG is a collection of chains,and there
is only one processor(m � 1). In the next section,we
give a moregeneralversionthatworks for treeson parallel
processors.Thealgorithmgivenhereisslightly lessefficient
than we can achieve; it runs in time O � n3D * 1 	 . We will
briefly sketchhow to improve this to O � n2D * 1 	 at the end
of thesection.We give this slightly lessefficient algorithm
becauseit establishessomeof the machineryusedfor the
thegeneralcase.

TheMergeTheoremshowshow to constructanoptimal
schedule,assumingweknow how to optimally schedulethe
2m� D � 1	3
 1 largestchainsin theprecedencegraph.This
immediatelysuggestsanalgorithm:

1. Dynamic Program. Usea dynamicprogramto opti-
mally schedulethe2m� D � 1	3
 1 largestchainsin the
input,settingasidetheotherchainsfor themoment.

2. Merging. Apply the Merge Theoremto schedulethe
chainswesetasideduringthedynamicprogram.

Thedynamicprogramwe will usecanbethoughtof as
finding the shortestpaththrougha statespace,wherestate
transitionscorrespondto theschedulingof jobson a single
timestep.Everystateencodes‘whereweare’ in thecurrent
schedule;it recordsthejobsavailableto bescheduledonthe
upcomingtimestep,aswell asarecenthistoryof thecurrent
schedule,whichwewill useto determinewhenjobsbecome
availablein thefuture. More precisely, stateshave theform4
A � P5 , where6 A is a set we call the active set. This is the set

of currently active jobs, i.e. the jobs which can be
scheduledin thenext timestep.6 P is a vectorof lengthD, whoseentrieseithercontain
jobs or are empty. Theseare the past jobs, the jobs
thathave beenscheduledwithin the lastD time steps.
Essentially, P is a ‘window’ into the last D time steps
of theschedule.

The following operationsdefineboth the legal transi-
tionsbetweenstatesandthescheduling/statusupdatingdone
by asearchpassingthroughthis transition:

5

1. Schedulea job j in A. Shift the window P one time
stepforward,yielding Pnew, whoselastentry is j. It is
alsopossibleto not scheduleany job (this is the only
possibilityif theactivesetis empty).In thatcase,Pnew

will haveanemptylastentry.

2. Use the information in P to determinethe set B of
jobs which becomeavailable on this new time step
(thedelaysfrom their parentshasjust elapsed).Since
the delaysareboundedby D, the information in P is
sufficient to makethis determination.

3. SetAnew equalto thenew setof active jobs, � A 78� j �9	;:
B. Thenew stateis

4
Anew � Pnew 5 .

Creatinganoptimalschedulenow correspondsto find-
ing a shortestpathfrom thestart state

4
A � P5 (whereA con-

sistsof the rootsof the 2D � 1 largestchains,andP is an
emptyvector), to an endstate(onewhereA is empty, and
all jobsin P haveno childrenthatarenot alsoin P).

The above dynamic program is enoughto schedule
chainson a single processor(m � 1) in polynomial time.
This is becausewe canboundthe sizeof the active setA.
The setA cancontainat mostone job per chain,sinceno
two jobsfrom thesamechaincanbeactiveat thesametime.
Sincethesizeof A is thereforelimited by 2D � 1, thereare
only O � n2D * 1 	 possiblevaluesfor A. SincethereareO � nD 	
possiblevaluesfor P, the numberof statesis boundedby
O � n3D * 1 	 . This boundis polynomial,andthereforewe can
find the optimal schedulefor the largest2D � 1 chainsin
polynomialtime.

Thesecondstep(Merging) in our algorithmfor chains
is quite simple. Supposethe resulting schedulefor the
largest 2D � 1 chainshas length T. We then apply the
MergeTheoremto constructa scheduleof all jobsof length
max� n � T � . SinceT wasa lower-boundon the optimalso-
lution for thewholeproblem,theschedulemustbeoptimal.

As asidenote,wecanreducethesizeof thestatespace
for chainsandoneprocessorto O � n2D * 1 	 . Eachstatestores,
for eachchain,thelastjob executedandhow longagoit was
executed.This is enoughinformationto determineA andP
asabove.

4 The Algorithm for Trees
In this sectionwe give a polynomial time algorithm for
schedulingjobswith treeprecedenceconstraints,separation
delays,and possibleduplicationof jobs. We assumethat
theprecedencegraphG formsa collectionof out-trees.By
reversingthe time-line, the algorithm can also be usedto
scheduleacollectionof in-trees.

4.1 Notes on Job Duplication

Beforewe turn to theactualalgorithm,we will briefly dis-
cussjob duplication. Whenschedulingjobs undersepara-

tion delay constraints,it sometimespaysto executea job
multiple times on different processors.This is especially
trueif many otherjobsdependonthisonejob,andit is time-
consumingto movedatafrom oneprocessorto another.

Thesimplestexampleis anout-treeconsistingof three
nodes:a rootwith two children.Thedelaybetweentheroot
andits childrenis 0 if they run on the sameprocessor, and
10otherwise.Supposewewantto schedulethis instanceon
two processors.Clearly, without duplication, the shortest
solution usesthree time steps(scheduleall three jobs on
one processor).However, if we executethe root on both
processors,we canexecuteboth children in the next time
step,resultingin ascheduleof lengthtwo.

While duplicationis clearly useful, it doesnot appear
in completelyarbitraryways in a schedule. In fact, there
alwaysexists an optimal schedulein which no two copies
of a job are executedmore than D time stepsapart. To
seethis, considera job that is executedtwice, where the
secondexecutionis more thanD time stepsafter the first.
In that casewe canjust deletethe secondone,sinceall its
childrenwerealreadyavailableat thetime thesecondcopy
wasexecuted.

4.2 Overview of the Algorithm

We now turn to the schedulingalgorithm for trees. The
algorithmconsistsof thesametwo phasesasthealgorithm
for chainsgivenin theprevioussection:adynamicprogram
anda mergingstep.Thestatesin our dynamicprogramwill
be similar to the onesin the previous section. They are
of the form

4
A � P5 , whereA containsjobs availableon all

processorsandP containsa ‘window’ into the pastD time
stepsof theschedule.

The transitionsgiven in the previous sectionare not
general enough to scheduletrees, since the number of
concurrentlyactive jobsin A maygrow without bound,e.g,
if a job hasmany childrenthat all becomeavailableat the
sametime. If the sizeof A is not bounded,the sizeof our
statespacewill not be polynomial in size. To overcome
this problem,we limit the maximumnumberof jobs in A
to be 2m� D � 1	<
 1. Whenever a transitionincreasesthe
numberof active jobs above that number, we setasidethe
jobs from all but the largest2m� D � 1	-
 1 treesrootedat
thesepotentiallyactive jobs. In the Merging stepwe will
includethejobsfrom thesesetasidetreesinto theschedule.

To simplify thepresentation,we introducethenotionof
thestatusof a job. This statusis not explicitly storedin the
state,but is usefulwhenwe think abouthow the dynamic
programcreatesa schedule.We saya job is:6 active, if it canbescheduledright away on all proces-

sors,sinceall delaysfrom its predecessorhaveelapsed,6 waiting, if it has not been scheduled,and there is
a processoron which it cannotrun yet (becauseits

6

...

... Schedule: 5,-
23

jobs
23

jobs
23

jobs

2A = {5} 3A = {6,7,...,16}

21 3 4 5

6 15 16 17 18

jobs jobs
18 13

1
2 3

4
= P

5

1 4
32
-

= P
2

3

(Set aside on this transition)

Figure2: Exampleof aninput treeandastatetransitionfrom = A2 > P2 ? to = A3 > P3 ? . ThemaximumdelayD is 2 andall delays@ i A j A a A b areequalto 2. There
aretwo machines(m + 2). Theactive setA2 consistsof only job 5, asit is theonly oneavailable.Thetransitionschedulesjob 5 on thefirst machine,and
nothingon thesecondmachine.Jobs6 through18 all becomeavailable,but only 2mB D C 1DFE 1 + 11 canbein A3, so jobs17 and18, theoneswith the
fewestnumberof jobsin their subtree,aresetaside,alongwith thejobsin their subtrees.Thenew active setA3 is G 6 > 7>IHIHIHJ> 16K .

predecessorhas not beenexecutedyet, or not long
enoughago),

6 scheduled, if it hasalreadybeenscheduledon some
processor, or

6 set aside, if thedynamicprogramhasdecidedto ignore
it, andwill bescheduledonly laterin theMergingstep.

4.3 A new dynamic program

Thestatespacecontainsall pairs
4
A � P5 , whereA is theac-

tive set, limited to 2m� D � 1	-
 1 jobs, andP is an m L D
matrix recordingthelastD time stepsof theschedule.This
meansthat we have O � n3mD* 2m0 1 	 statesin the dynamic
program,makingfinding a shortestpath possiblein poly-
nomialtime.

The state transitionsare more complex than in the
algorithm from the previous section. An example state
transitioncanbefoundin figure2. If weareatastate

4
A � P5 ,

wecango to a new state
4
Anew � Pnew 5 , asfollows:

1. Choosejobs j1 � j2 �������M� jm to be executedon the m
processors.Settheir statusto scheduled. Eachjob j i
canbeoneof thefollowing:

6 nothing(no job scheduled)6 any job in thesetA6 any job in thematrix P that is executableon pro-
cessori at thecurrenttimestep(job duplication)6 any child of ajob in matrixP thatis executableon
processori (but not all processors)at thecurrent
time step(partiallyavailablejob)

2. Thenew matrix Pnew is P shiftedforwardby onerow,
with thenew lastrow � j1 � j2 ��������� jm 	 . All jobsthatwere
in the first row of P (the onethat got shiftedout) that
arestill in Pnew (due to job duplication)are removed
from Pnew.

3. Usingtheinformationin P, determinethesetof jobsB
that on this stepbecomeavailable on all processors,
and have not beenexecutedbefore, and set Anew to� A 7N� j1 � j2 �������M� jm �9	O: B.

4. If Anew hasmorethan2m� D � 1	P
 1 elements,remove
all but the 2m� D � 1	Q
 1 ‘largest’ jobs from the set,
where‘largest’ is measuredin termsof thesizeof the
sub-treerootedat the job. Theseremovedjobs, along
with all the jobs containedin their sub-trees,are set
aside. They will bedealtwith in theMergingphase.

The start state of the dynamic program is
4
A0 � P0 5 ,

whereA0 consistsof the rootsof the2m� D � 1	�
 1 largest
trees,andP is the emptymatrix. The endstateshave the
form

4
A � P5 whereA is empty, andall jobs in P eitherhave

no children,or their childrenarealsoin P.
As wetraversethepathfrom astartstateto anendstate,

the statusof eachjob evolvesasin figure 3. It is not hard
to seethat at the endof the path,every job is classifiedas
eitherscheduledor setaside.

4.4 Merging and Correctness

A pathof lengthT from a startstateto an endstatein the
state-spacedefinedabove givesa scheduleof lengthT for
part of the tree. We needto show how the jobs set aside
by the pathcanbe mergedback into the schedule.In the

scheduled set aside

active

waiting

Figure3: Thelife of a job.

7

remainderof this section,we will show two lemmas. The
first lemmawill establishthatwecanfind apathin thestate
spacethat can be convertedinto an optimal schedulevia
Merging. Thesecondlemmawill show how to performthis
Mergingstep.

Beforestatingthe lemmas,we needthreedefinitions.
First, we definethe setUq for a stateq, which containsall
thejobswhichmustappearafterstateq in any legalschedule
(theseare the jobs which are available or waiting at that
state).Thissetis completelydeterminedby theinformation
containedin

4
A � P5 .

DEFINITION 4.1. (DEPENDENT JOBS) For a state q �4
A � P5 , letUq containall jobsin A, all descendantsof jobsin

A, andall descendantsof jobsin P thatarenotyetavailable
onall processors,andthatarenot in P themselves.2

Now we definethe deadlineof stateq to be the latest
possiblepoint on a pathwhereq canappearso that all the
dependentjobs of q can still fit into the schedulewithout
makingit longerthanC �max:

DEFINITION 4.2. (DEADLINE) Let q � 4
A � P5 be a state.

Thedeadlineof q is thevalue R C �max
TSUq Sm U �V2
In any pathin statespacethatcorrespondsto anoptimal

schedule,every statemustappearbeforeits deadline. We
formalizethis in a definition.

DEFINITION 4.3. (ADMISSIBLE PATH) A path in thestate
spacefroma start stateto an endstateis calledadmissible
iff for all x from 0 to C �max, the x-th stateon the pathhasa
deadlineof at leastx. 2

Wewill now show thatanadmissiblepathalwaysexists,
thatit canbefoundin polynomialtime,andhow to convert
it into anoptimalschedule.

LEMMA 4.1. (DYNAMIC PROGRAM CORRECTNESS)
Therealwaysexistsan admissiblepaththat canbefoundin
polynomialtime.

Proof: An admissiblepath, if it exists, can easily be
foundby breadth-firstsearchthroughthestatespaceof the
dynamicprogramwe justconstructed.Thedeadlineof each
statecan be determinedbeforehand3. At depth x of the
search,we extendthe searchonly to stateswith a deadline
of at leastx � 1.

Now we show thatsucha pathalwaysexists. We show
this by constructingan admissiblepath � q0 � q1 ���W�X�W� qC

�
max
	

usinganoptimalscheduleSasa template.We assumethat

3Note that we have to know C
�
max to computethe deadline.But since

C
�
max Y nD, wecanfind thevalueusingbinarysearchwith amultiplicative

increaseof O B lognD in runningtime.

Shasno unnecessaryjob duplications(jobswhoseremoval
from theschedulewouldmaintainfeasibility).

We will proceedalong the schedule,and at the x-th
steptake the statetransitionfrom qx 0 1 � 4

A � P5 to qx that
correspondsto executingthe jobs in the x-th time slice of
S that are in P : Uqx Z 1. Theremust be sucha transition,
becausefor everyjob in P : Uqx Z 1 thatis executedin Sat that
time slice, it is eitherin A, or its parentappearsin P at the
samepositionasit appearsin S(easilyshown by induction).

It remains to show that the so constructedpath is
admissible. Note that when we are at stateqx along the
path, then all jobs in Uqx have to appearafter time slot x
in the scheduleS. Becausewe are executing ‘down’ the
trees,andweneveraddto asetUqx to obtainUqx[1, wehave
Uqx \ Uqy if x] y. So, if x] y, anda job in Uqy Z 1 appears
in S at time stepy (andso is not in Uqy by construction),it
will not be in Uqx. This meansthatnoneof the jobs in Uqx

canappearat or beforethex-th timestepin S, andtherefore
all appearafter it. But this implies ^��Uqx � _ m̀�a C �max
 x,
which shows thatthepathis admissible.2
Now thatwehaveaschedulefor partof thetree,weneedto
mergethejobswe setasidebackinto theschedule.Hereis
wherewe usetheMergeTheorem.

LEMMA 4.2. (MERGING) Given an admissiblepath, an
optimalschedulecanbeconstructedin timeO � n2 	 .
Proof: An admissiblepathcanbedirectly convertedinto a
scheduleS of the samelengththat containsall but the jobs
which weresetaside. We now show how to incorporatethe
setasidejobs into theschedule,while makingit not longer
thantheoptimalschedule.

We do this by traversingthe path from its end to its
beginning.Whenwe reacha stateqx at which jobswereset
aside,we includetheminto the scheduleasfollows. Since
treesweresetasideatthatstate,theremustbe2m� D � 1	b
 1
largertreesrootedat the jobsin qx’s active set. Thejobs in
these‘active’ treesarealreadyin theschedule,sinceeither
they werescheduledby theadmissiblepath,or they wereset
asidelater, in which casewe alreadymergedtheminto the
schedule(recallwe aretraversingit backwards).

This meanswe canapplytheMergeTheoremto merge
the setasidetreesinto the schedule.Sincewe startedwith
anadmissiblepath,weknow thatthenumberof jobsnotyet
scheduledatqx doesnotexceedm cd� C �max
 x	 , theavailable
room in the schedule. Therefore,merging the set aside
treesdoesnot make the schedulelonger than the optimal
schedule.We repeatthis procedurefor all statesandobtain
anoptimalschedule.

SinceapplyingtheMergeTheoremfor everystatecosts
lineartime,andtheremightbeupto n statesonthepath,the
total time for themergingoperationis O � n2 	 . 2

8

5 Conclusion
In this paperwe havegiventhefirst polynomial-timemulti-
processorschedulingalgorithm for tree-basedprecedence
constraintsthat imposeprecedenceandcommunicationde-
lays. As opposedto previous results, separationdelays�

i � j � a � b candependon jobsandmachines,andcanhave val-
uesother than 0 and1, as long as they are boundedby a
constantD. That makes our algorithm more generaland
applicableto theinstructionschedulingfor VLIW architec-
tures. The potentially long running time of the algorithm
is acceptableto embeddedsystemdesignerssincethe soft-
wareis compiledonly onceandan optimalperformanceis
requiredof theresultingsystem.

Thealgorithmfor treesusesanunconventionaldynamic
program,wherepartial pathsin statespacedo not corre-
spondto partialschedules,but ratherhaveto betransformed
into a solutionduringtheMergingphase.Therunningtime
of our algorithm dependsexponentiallyon the numberof
processorsm and maximumdelay D, making it impracti-
cal for large valuesof theseconstants.However, it is the
dynamicprogrammingpartof thealgorithmthatincursthis
runtime;themerging steponly takesO � n2 	 time. This sug-
gestsusinganheuristicinsteadof theoptimaldynamicpro-
gramto producea paththroughthestatespace.TheMerge
Theoremcanthenbeusedto incorporatetheremainingtrees
into theschedule.Findinggoodheuristics,from botha the-
oreticalandan experimentalpoint of view, is a very inter-
estingopenproblem.We plan to continueour work in this
direction.

Another intriguing questionis whetherour techniques
canbeextendedto thecasewhereG is anarbitrarydag.The
MergeTheoremstill holdsfor theseinputs.But ourdynamic
programcritically usesthe fact that oncea branchoccurs,
the subtreesarecompletelyindependent.A morecompli-
cateddynamicprogrammightgetaroundthisproblemwith-
outa largeincreasein thesizeof thestatespace.As already
mentionedin theintroduction,thisis verylikely ahardprob-
lem, sincean algorithm for just the single-processorcase
with D � 3canbeusedto solvethefamousopen3-processor
schedulingproblem.

Acknowledgments
Wewould liketo thankJohnDunagan,RyanO’Donnelland
April Rasalafor their helpful commentson this paper.

References

[1] David BernsteinandIzidor Gertner. Schedulingexpressions
on a pipelinedprocessorwith a maximaldelayof onecycle.
ACM TransactionsonProgrammingLanguagesandSystems,
11(1):57–66,January1989.

[2] P. ChŕetienneandC. Picouleau.Schedulingwith communi-
cationdelays:A survey. In P. Chŕetienne,Jr. E. G. Coffman,

J.K. Lenstra,andZ. Liu, editors,SchedulingTheoryandits
Applications, pages65–90.JohnWiley & SonsLtd, 1995.

[3] E.G.Coffman,Jr. andR.L. Graham.Optimalsequencingfor
two-processorsystems.ActaInformatica, 1:200–213,1972.

[4] Daniel W. Engels. Schedulingfor Hardware-Software Par-
titioning in EmbeddedSystemDesign. PhD thesis,Mas-
sachusettsInstituteof Technology, 2000.

[5] Lucian Finta and Zhen Liu. Single machinescheduling
subjectto precedencedelays. DAMATH: Discrete Applied
Mathematicsand CombinatorialOperations Research and
ComputerScience, 70,1996.

[6] LucianFinta,ZhenLiu, IoannisMilis, andEvripidisBampis.
SchedulingUET–UCTseries–parallelgraphson two proces-
sors. Theoretical ComputerScience, 162(2):323–340,Au-
gust1996.

[7] Michael R. Garey and David S. Johnson. Computers and
Intractability: A Guideto the Theoryof NP-Completeness.
Freeman,1979.

[8] R.L. Graham,E.L. Lawler, J.K. Lenstra,and A.H.G. Rin-
nooy Kan. Optimizationandapproximationin deterministic
sequencingandscheduling:A Survey. Annalsof Discrete
Mathematics, 5:287–326,1979.

[9] Intel Corporation. The IA-64 Architecture Software Devel-
oper’s Manual, January2000.

[10] HermannJung,LefterisKirousis,andPaul Spirakis. Lower
boundsandefficient algorithmsfor multiprocessorschedul-
ing of dagswith communicationdelays. In Proceedingsof
SPAA, pages254–264,1989.

[11] JanKarelLenstra,MarinusVeldhorst,andBartVeltman.The
complexity of schedulingtreeswith communicationdelays.
Journalof Algorithms, 20(1):157–173,January1996.

[12] Rolf H. MöhringandMarkusW. Scḧaffter. A simpleapprox-
imationalgorithmfor schedulingforestswith unit processing
timesandzero-onecommunicationdelays.TechnicalReport
506,TechnischeUniversiẗat Berlin, Germany, 1995.

[13] ChristosH. Papadimitriouand Mihalis Yannakakis. Opti-
mization,approximation,andcomplexity classes(extended
abstract).In Proceedingsof theTwentiethAnnualACM Sym-
posiumonTheoryof Computing, pages229–234,May 1988.

[14] C. Picouleau. Etudede problèmesles syst̀emesdistrub́es.
PhD thesis,Univ. Pierre et MadameCurie, Paris, France,
1992.

[15] Texas Instruments. TMS320C6000Programmer’s Guide,
March2000.

[16] J.D. Ullman. NP-completeschedulingproblems.Journalof
ComputerandSystemSciences, 10(3):384–393,June1975.

[17] TheodoraA. Varvarigou,Vwani P. Roychowdhury, Thomas
Kailath,andEugeneLawler. Schedulingin andout forestsin
the presenceof communicationdelays. IEEE Transactions
on Parallel and DistributedSystems, 7(10):1065–1074,Oc-
tober1996.

9

