Strand Spaces Proving Protocols Corı

Jonathan Herzog
6 April 2001

Introduction

- Second part of talk given early last month
- Introduced class of cryptographic protocols
- Modeled at high level of abstraction
- Imposed strong assumptions
- Showed that flaws can exist independent of cryptography
- Discussed one approach to analysis (model ch
- This talk: Strand Spaces
- Pencil \& paper proof technique
- Joint work with Guttman, Thayer

Overview of talk

- Brief review of problem
- Running example: Otway-Rees protocols
- Strand Space formalization
- Standard assumptions
- "Regular" participants, penetrator (adversary
- Model protocol executions
- Global view from local views
- Definitions and machinery
- Proofs of security conditions
- Discovery of previously unpublished flaw

Protocols

- Sequence of messages between small number (2 cipals
- No conditionals (except to abort)
- Abstract cryptographic primitives (encryption, sig
- Achieve authentication and/or key transmission

Otway-Rees Protocol

$$
\begin{aligned}
& \text { 1. } A \longrightarrow B: M A B\left\{\left|N_{a} M A B\right|\right\}_{K_{a s}} \\
& \text { 2. } B \longrightarrow S: M A B\left\{\left|N_{a} M A B\right| K_{a s}\left\{\left|N_{b} M A B\right|\right\}_{K_{b s}}\right. \\
& \text { 3. } S \longrightarrow B:\left\{\left|N_{a} K_{a b}\right|\right\}_{K_{a s}}\left\{\left|N_{b} K_{a b}\right|\right\}_{K_{b s}} \\
& \text { 4. } B \longrightarrow A:\left\{\left|N_{a} K_{a b}\right|\right\}_{K_{a s}}
\end{aligned}
$$

- M : Public, unique session ID
- N_{a}, N_{b} : "fresh" nonces
- $K_{a s}, K_{b s}$: secret keys shared with distinguished se
- $K_{a b}$: fresh session key
- Designed to provide mutual authentication and $K_{a b}$
- Formalized later in terms of strands

Message Algebra

- Messages are elements of an "algebra" \mathcal{A}
- 2 disjoint sets of atomic messages:
- Texts (\mathcal{T})
- Keys (K)
- 2 operators:
- enc: $\mathcal{K} \times \mathcal{A} \rightarrow \mathcal{A} \quad$ (Range: $\mathcal{E})$
- pair: $\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A} \quad$ (Range: \mathcal{C})
- Often distinguish $\mathcal{T}_{\text {Names }} \subseteq \mathcal{T}, \mathcal{T}_{\text {Nonces }} \subseteq \mathcal{T}$
$-\mathcal{T}_{\text {Names }} \cap \mathcal{T}_{\text {Nonces }}=\emptyset$

Message Algebra (continued)

- Message algebra is "free"
- Unique representation of terms
- Exactly one way to build elements from aton ations
- Formulas, rather than bit-strings
- $\mathcal{K}, \mathcal{T}, \mathcal{E}, \mathcal{C}$ mutually disjoint
- For all $M_{1}, M_{2}, M_{3}, M_{4} \in \mathcal{A}, k_{1}, k_{2} \in \mathcal{K}, T \in \mathcal{T}$
$-M_{1} M_{2} \neq M_{3} M_{4}$, unless $M_{1}=M_{3}, M_{2}=M_{4}$
$-\left\{\left|M_{1}\right|\right\}_{k_{1}} \neq\left\{\left|M_{2}\right|\right\}_{k_{2}}$ unless $M_{1}=M_{2}, k_{1}=k_{2}$

Message Algebra Structure

- There is structure in the message algebra to expl
- Define the subterm relation as the smallest rela that for all a, g and h :

$$
\begin{aligned}
& -a \sqsubset a, \\
& -a \sqsubset g \Rightarrow a \sqsubset\{|g|\}_{k} \\
& -a \sqsubset g \Rightarrow a \sqsubset g h \wedge a \sqsubset h g
\end{aligned}
$$

Strands

- Two types of actions: transmissions and recepti
- Written $+M$ and $-M$ (sign omitted when irr
- Assumed to have unsecured sender, recipient
- Ignored in this framework
- Trace: sequence of actions
- Strand: trace + unique identifier
- Particular execution of a trace
- Two different strands may have the same tra
- Represent two different executions
- Actions on strands called nodes

$$
\langle-A,+B,-C,+D\rangle
$$

Regular Participants

- Regular participants: All non-adversary agents
- Protocol defines all possible regular traces
- Regular participants represented by strands conta sible traces
- Internal actions, knowledge not modeled

Regular Participants (continued)

- Strand patterns for regular participants (Otway-R
- Initiator (A)

$$
\begin{aligned}
\langle & +M A C\left\{\left|N_{a} M A C\right|\right\}_{K_{a s}} \\
& \left.-\left\{\left|N_{a} K_{a c}\right|\right\}_{K_{a s}}\right\rangle
\end{aligned}
$$

- Responder: (B)

$$
\begin{aligned}
\langle & -M D B\{|g|\}_{k} \\
& +M D B\{|g|\}_{k}\left\{\left|N_{b} M D B\right|\right\}_{K_{b s}} \\
& -\{|h|\}_{k}\left\{\left|N_{b} K_{d b}\right|\right\}_{K_{b s}} \\
& \left.+\{|h|\}_{k}\right\rangle
\end{aligned}
$$

- Server: (S)
$\left\langle-M A B\left\{\left|N_{a} M A B\right|\right\}_{K_{b s}}\left\{\mid N_{b} M A B\right.\right.$
$\left.+\left\{\left|N_{a} K_{a b}\right|\right\}_{K_{a s}}\left\{\left|N_{b} K_{a b}\right|\right\}_{K_{b s}}\right\rangle$

Regular Participants (continued)

- Strands "refuse" to receive any messages other expected ones
- Implicit abort/fail operation in such cases
- Regular strands completely defined by values
- No variables
- These are different strands:

$$
\begin{aligned}
& \left\langle+M A B\left\{\left|N_{a} M A B\right|\right\}_{K_{a s}},-\left\{\left|N_{a} K_{a b}\right|\right\}_{F}\right. \\
& \left\langle+M A B\left\{\left|N_{a} M A B\right|\right\}_{K_{a s}},-\left\{\left|N_{a} K_{a b}^{\prime}\right|\right\}_{I}\right.
\end{aligned}
$$

Regular Participants (continued)

- Often convenient to define sets of strands with sin Init-Strands $\left[A, B, M, N_{a}, k_{a b}\right]=$

$$
\left\{s : s \text { has trace } \left\langleM A B\left\{\left|N_{a} M A B\right|\right\}_{K_{a s}},-\left\{\mid N_{a} 1\right.\right.\right.
$$

(Empty if parameters of wrong types)

- Build larger sets from these:

$$
\begin{aligned}
& \text { Init-Strands }\left[*, B, M, *, k_{a b}\right]= \\
& \quad \bigcup^{A \in \mathcal{T}_{\text {Names }},} \text { Init-Strands }\left[A, B, M, N_{a},\right. \\
& N_{a} \in \mathcal{T}_{\text {Nonces }}
\end{aligned}
$$

Penetrator (Adversary)

- Represented in terms of atomic (abstract) actions - More complex actions can be built from thes - Unbounded number of strands of the forms:
- [C]: $\langle-g,-h,+g h\rangle$
- [S]: $\langle-g h,+g,+h\rangle$
-
-
- [M]: $\langle+g\rangle$, if $g \in \mathcal{T}_{\mathcal{P}} \subseteq \mathcal{T}$
- [K]: $\langle+k\rangle$, if $k \in \mathcal{K}_{\mathcal{P}} \subseteq \mathcal{K}$
(Often assume limits on $\mathcal{T}_{\mathcal{P}}, \mathcal{K}_{\mathcal{P}}$)
- Communication channels double as penetrator wo
- Model penetrator control over network later

Bundles

- Consider graphs where
- Nodes are actions on regular, penetrator stra
- Two types of edges:
- We write $+g \rightarrow-g$ (transmission/receptio
- We write $g \Rightarrow h$ if (g, h) are consecutive strand
- A bundle is such a graph \mathcal{C} (finite) where
- If $-n$ is a node of \mathcal{C}, then there exists a un $+n$ of \mathcal{C} such that $+n \rightarrow-n$ is an edge of \mathcal{C}
- If n_{1} is a node of \mathcal{C}, and $n_{0} \Rightarrow n_{1}$, then n_{0} is C and $n_{0} \Rightarrow n_{1}$ is an edge of \mathcal{C}
$-\mathcal{C}$ is acyclic
- Models concepts of causality

Example Bundle

Example Bundle

(Where $N=\left\{\left|N_{b} M A B\right|\right\}_{K_{b s}}$)

Bundle Properties

- Bundles are partial orders
- Any non-empty set has minimal elements
- Important Definition 1:
- A value v originates on a node n if
- n is a positive node (transmission)
- $v \sqsubset n$,
- If $n^{\prime} \Rightarrow \ldots \Rightarrow n$, then $v \not \subset n$
- Origination points are where values spontan pear
- Minimal elements of $\{n \mid v \sqsubset n\}$ are originatior
- We model the freshness of a value by saying 1 a unique origination point in the bundle

Bundle Properties (continued)

- Important Definition 2:
- A set $H \subseteq \mathcal{A}$ is honest, with respect to a se trator strands, if
- For all bundles \mathcal{C}, minimal elements of

$$
\{n \in \operatorname{nodes}(\mathcal{C}) \mid \operatorname{term}(n) \in H\}
$$

are not on penetrator nodes.

- Important tool for proving security conditions
- Example of honest set will come later

Secrecy Conditions

- Intuitively, a value v is secret if no penetrator car v from the messages of regular participants
- A value v is secret, with respect to a set of assun if no bundle that satisfies \mathcal{A} contains a node of th
- One proof technique:
- Show that v is in an honest set H
- Fix an arbitrary bundle that satisfies \mathcal{A}.
- Through case analysis, show that H has no n ements on regular strands
- Because H is honest, no minimal elements on strands
- Hence, no nodes in bundle in H

Authentication Conditions

- Example: "If a bundle contains all of a given initia then it must also contain a given responder stran
- Formalized as inference: If a bundle contains a str α, then the bundle also contains a strand from a s β
- One proof technique:
- Suppose the bundle contains a strand $s \in \alpha$
- Find a honest set H_{s} so that s contains a noc
- Since the bundle has a node in H_{s}, it must ha imal element
- Minimal elements must be on regular strands
- Show that those strands must be in β

Ideals

- Honest sets only useful if they exist
- Let $\mathrm{k} \subseteq \mathcal{K}$. Then a k-ideal I is a set such that
$-g \in I \Rightarrow g h \in I, h g \in I$
$-g \in I, k \in \mathbf{k} \Rightarrow\{\mid g\}_{k} \in I$
- Let S be a set of messages.
- Then $I_{\mathrm{k}}[S]$ is the smallest k -ideal that contai
- Big theorem: If
$-S \subseteq \mathcal{T} \cup \mathcal{K}$,
$-S \cap\left(\mathcal{T}_{\mathcal{P}} \cup \mathcal{K}_{\mathcal{P}}\right)=\emptyset$,
$-\mathbf{k}=(\mathcal{K} \backslash S)^{-1}$, and
Then $I_{\mathrm{k}}[S]$ is honest

Ideals Intuition

- Typically,
$-S$ is a set of secrets
- Since $\mathbf{k}=(\mathcal{K} \backslash S)^{-1}, \mathbf{k}$ contains (inverse of) \mathbf{e} key
- $I_{\mathrm{k}}[S]$ contains every term in which a secret is encr. with non-secret keys
- Theorem: penetrator can only produce one of thes ing one first

Otway-Rees Secrecy

- Wish to show secrecy of $K_{a b}$:
- Suppose $K_{a b}$ is uniquely originating
- Suppose $K_{a s}, K_{b s} \notin \mathcal{K}_{\mathcal{P}}$
- Suppose the bundle \mathcal{C} contains a strand in Serv-Strands[$\left.A, B, M, N_{a}, N_{b}, K_{a b}\right]$
- Let $S=\left\{K_{a s}, K_{b s}, K_{a b}\right\}, \mathbf{k}=\mathcal{K} \backslash S$
- Then no node in \mathcal{C} is in $I_{\mathrm{k}}[S]$
- Proof:
- S, k meet criteria of big theorem
- Case analysis: no regular node are minimal el $I_{\mathrm{k}}[S]$
- Hence, no nodes in bundle in $I_{\mathrm{k}}[S]$

Corollary to Big Theorem

- Suppose

$$
-S \subseteq \mathcal{T} \cup \mathcal{K},(\mathcal{K} \backslash S)^{-1}=\mathbf{k}, \text { and } S \cap\left(\mathcal{T}_{\mathcal{P}} \cup \mathcal{K}_{\mathcal{P}}\right)
$$

- No regular node is a minimal element of $I_{\mathbf{k}}[S$ Then any message of the form $\{|g|\}_{k}$ for $k \in S$ originated on a regular node.

Otway-Rees Authentication

- Suppose \mathcal{C} contains a strand in Init-Strands $[A, B, 1$ - If:
$-A \neq B$,
- N_{a} is uniquely originating,
- All keys that originate on server strands uniq nate on server strands
- $K_{a s}, K_{b s} \notin \mathcal{K}_{\mathcal{P}}$,
- Then for some N_{b}, \mathcal{C} contains strands in

> Serv-Strands $\left[A, B, M, N_{a}, N_{b}, K_{a b}\right]$, and Resp-Strands $\left[A, B, M, N_{b}, *\right]$

Otway-Rees Authentication: Proof

- Proof: Messy
- Let $S=\left\{K_{a s}\right\}, \mathbf{k}=\mathcal{K} \backslash S$.
- Show no regular nodes are minimal elements $I_{\mathbf{k}}[S$
- Apply Corollary: Any term of the form $\{|g|\}_{K_{a s}}$ ori regular node
- Hence, $\left\{\left|N_{a} K_{a b}\right|\right\}_{K_{a s}}$ originates on regular node
- Case analysis: strand in Serv-Strands $\left[A, B, M, N_{a}, N_{b}, K_{a b}\right]$ (for some
- Apply previous result: No minimal elements of $I_{\mathbf{k}^{\prime}}$ $S^{\prime}=\left\{K_{a s}, K_{b s}, K_{a b}\right\}, \mathbf{k}^{\prime}=\mathcal{K} \backslash S^{\prime}$
- Hence $\left\{\left|M N_{b} A B\right|\right\}_{K_{b s}}$ originates on regular stran
- Case analysis: Resp-Strands $\left[A, B, M, N_{b}, *\right]$

Otway-Rees Authentication (continued)

- Similar result for Responder: suppose
$-\mathcal{C}$ contains a strand in

$$
\text { Resp-Strands }\left[A, B, M, N_{a}, K_{a b}\right]
$$

$-A \neq B$,

- N_{b} is uniquely originating,
- All keys that originate on server strands uniq nate on server strands
- $K_{a s}, K_{b s} \notin \mathcal{K}_{\mathcal{P}}$,
- Then \mathcal{C} contains strands in Serv-Strands $[A, B, M$, and Init-Strands $[A, B, M, *, *]$
- Note: Cannot show that initiator, responder agree key

Closing Remarks

- Further developments:
- Protocol composition
- Automated protocol analysis
- Athena (Song)
- Simpler results
- Authentication tests
- Open questions
- Non-free algebras (Xor, Diffie-Hellman)
- Reconciliation with computational viewpoint

What Good are Proofs?

- Strands: proof technique
- Uses (standard) strong assumptions
- Proves (at present) protocol-specific stateme
- Proof fails:
- Find cryptography-independent flaw
- Proof works:
- What have you shown?
- Strong motivation for justifying assumptions
- Goal for further work on cryptographic primit

Formalization of Security Conditions

- In practice, two types of security conditions to pr
- Secrecy of values (keys, nonces)
- Authentication
- State of the art:
- Competing models, formalizations, intuitions
- Most methods prove protocol-specific condi pressed in model
- Why?
- Still debate over right definitions
- Protocols seem to satisfy points on con conditions
- No reason Strand Space reasoning would be inva universal definitions

Origination Vs. Minimality

$+a b \rightarrow-a b$
\downarrow
$+a$
$+g h$

Subterm relation

- Note that $k \sqsubset\{|g|\}_{k} \Rightarrow k \sqsubset g$
- Intuition: $a \sqsubset b$ means that a can be "learneo
- To say that $k \not \subset\{|g|\}_{k}$ (unless $k \sqsubset g$) prohibits attacks
- Other definitions of subterm possible - Lead to similar results

Ideals (continued)

- Proof of big theorem- case analysis
- Example: [D]((%5Cleft%5Clangle-%5Cleft%7B%7Cg%7C_%7Bk%7D,-k%5E%7B-1%7D,+g%5Cright%5Crangle%5Cright.)) strand $\left(\left\langle-\{|g|\}_{k},-k^{-1},+g\right\rangle\right)$
- If $+g$ is a minimal element, then $k^{-1} \notin I_{\mathbf{k}}$ [S $k^{-1} \notin S$
- Since $(\mathcal{K} \backslash S)^{-1}=\mathbf{k}, k^{-1} \in \mathbf{k}^{-1}$. Hence, $k \in$
- But since $g \in I_{\mathbf{k}}[S],\{|g|\}_{k} \in I_{\mathbf{k}}[S]$

Ideals (continued)

- More complex example: [E]((%5Cleft%5Clangle-g,-k,+%7B%7Cg%7C%7D_%7Bk%7D%5Cright%5Crangle)) strand ($\langle-g,-k,+\{\mid$.
- Suppose $\{g \mid\}_{k} \in I_{k}[S]$, but $g \notin I_{\mathbf{k}}[S]$
- Let $I^{\prime}=I_{\mathrm{k}}[S] \backslash\left\{\{|g|\}_{k}\right\}$.
- I^{\prime} still contains S
- $S \subseteq \mathcal{T} \cup \mathcal{K}$
- I^{\prime} still closed under join operator
- I^{\prime} still closed under encryption with keys in \mathbf{k} - If not, because $g \in I_{\mathbf{k}}[S]$ and $k \in \mathbf{k}$
- Hence, I^{\prime} a smaller k-ideal containing S, a cor

