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Introduction

zSecond part of talk given early last month

– Introduced class of cryptographic protocols

– Modeled at high level of abstraction

– Imposed strong assumptions

– Showed that flaws can exist independent of underlying
cryptography

– Discussed one approach to analysis (model checking)
zThis talk: Strand Spaces

– Pencil & paper proof technique

– Joint work with Guttman, Thayer
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Overview of talk

zBrief review of problem

– Running example: Otway-Rees protocols
zStrand Space formalization

– Standard assumptions

– “Regular” participants, penetrator (adversary)

– Model protocol executions
wGlobal view from local views

– Definitions and machinery

– Proofs of security conditions
wDiscovery of previously unpublished flaw
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Protocols

zSequence of messages between small number (2 or 3) prin-
cipals

– No conditionals (except to abort)
zAbstract cryptographic primitives (encryption, signatures)
zAchieve authentication and/or key transmission
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Otway-Rees Protocol

1.A −→ B: M AB {|NaM AB|}Kas
2.B −→ S: M AB {|NaM AB|}Kas {|NbM AB|}Kbs
3.S −→ B: {|NaKab|}Kas {|NbKab|}Kbs
4.B −→ A: {|NaKab|}Kas

zM : Public, unique session ID
zNa, Nb: “fresh” nonces
zKas, Kbs: secret keys shared with distinguished server S
zKab: fresh session key
zDesigned to provide mutual authentication and secrecy of
Kab

– Formalized later in terms of strands
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Message Algebra

zMessages are elements of an“algebra” A
z2 disjoint sets of atomic messages:

– Texts (T )

– Keys (K)
z2 operators:

– enc : K×A → A (Range: E)

– pair : A×A → A (Range: C)
zOften distinguish TNames ⊆ T , TNonces ⊆ T

– TNames ∩ TNonces = ∅
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Message Algebra (continued)

zMessage algebra is “free”

– Unique representation of terms

– Exactly one way to build elements from atomics, oper-
ations

– Formulas, rather than bit-strings
zK, T , E, C mutually disjoint
zFor all M1, M2, M3, M4 ∈ A, k1, k2 ∈ K, T ∈ T

– M1M2 6= M3M4, unless M1 = M3, M2 = M4

– {|M1|}k1
6= {|M2|}k2

unless M1 = M2, k1 = k2
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Message Algebra Structure

zThere is structure in the message algebra to exploit
zDefine the subterm relation as the smallest relation such

that for all a, g and h:

– a < a,

– a < g ⇒ a < {|g|}k
– a < g ⇒ a < g h ∧ a < h g
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Strands

zTwo types of actions: transmissions and receptions

– Written +M and −M (sign omitted when irrelevant)

– Assumed to have unsecured sender, recipient
wIgnored in this framework

zTrace: sequence of actions
zStrand: trace + unique identifier

– Particular execution of a trace

– Two different strands may have the same trace
wRepresent two different executions

– Actions on strands called nodes

〈−A,+B,−C,+D〉
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Regular Participants

zRegular participants: All non-adversary agents
zProtocol defines all possible regular traces
zRegular participants represented by strands containing pos-

sible traces
zInternal actions, knowledge not modeled
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Regular Participants (continued)

zStrand patterns for regular participants (Otway-Rees):

– Initiator (A)

〈 + M AC {|NaM AC|}Kas
− {|NaKac|}Kas〉

– Responder: (B)

〈 − M DB {|g|}k
+ M DB {|g|}k {|NbM DB|}Kbs
− {|h|}k {|NbKdb|}Kbs
+ {|h|}k〉

– Server: (S)

〈 − M AB {|NaM AB|}Kbs {|NbM AB|}Kbs
+ {|NaKab|}Kas {|NbKab|}Kbs〉
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Regular Participants (continued)

zStrands “refuse” to receive any messages other than the
expected ones

– Implicit abort/fail operation in such cases
zRegular strands completely defined by values

– No variables

– These are different strands:〈
+M AB {|NaM AB|}Kas,−{|NaKab|}Kas

〉
〈
+M AB {|NaM AB|}Kas,−{|NaK

′
ab|}Kas

〉

+ 12 +

MIT



+ +

Regular Participants (continued)

zOften convenient to define sets of strands with similar roles:

Init-Strands[A,B,M,Na, kab] ={
s : s has trace

〈
M AB {|NaM AB|}Kas,−{|NaKab|}Kas

〉}
(Empty if parameters of wrong types)

zBuild larger sets from these:

Init-Strands[∗, B,M, ∗, kab] =⋃
A ∈ TNames,
Na ∈ TNonces

Init-Strands[A,B,M,Na, kab]
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Penetrator (Adversary)

zRepresented in terms of atomic (abstract) actions

– More complex actions can be built from these
zUnbounded number of strands of the forms:

– [C]: 〈−g,−h,+gh〉
– [S]: 〈−gh,+g,+h〉
– [E]: 〈−g,−k,+{|g|}k〉
– [D]:

〈
−{|g|}k,−k−1,+g

〉
– [M]: 〈+g〉, if g ∈ TP ⊆ T
– [K]: 〈+k〉, if k ∈ KP ⊆ K

(Often assume limits on TP , KP)
zCommunication channels double as penetrator workspace
zModel penetrator control over network later
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Bundles

zConsider graphs where

– Nodes are actions on regular, penetrator strands,

– Two types of edges:
wWe write +g → −g (transmission/reception)
wWe write g ⇒ h if (g, h) are consecutive steps on a
strand

zA bundle is such a graph C (finite) where

– If −n is a node of C, then there exists a unique node
+n of C such that +n→ −n is an edge of C

– If n1 is a node of C, and n0 ⇒ n1, then n0 is a node of
C and n0 ⇒ n1 is an edge of C

– C is acyclic
zModels concepts of causality
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Example Bundle

A B S

M ABM1 IM ABM1

M ABM1M2

�www
IM ABM1M2

M3M4

�www
J M3M4

�www

M4

�

wwwwwwwwwwwwwwwwwwww
J M4

�www
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Example Bundle

−MJ +M I−M +A I−A

+B I−B
�w

−K
�
wwwwwwww
J +K −AB

�
wwwwwwww
J +AB

�w

+B +M AB

�w
I−M AB

+{|M |}K
�
wwwwwwww

I−{|M |}K
�w

−M AB {|M |}KJ +M AB {|M |}K
�w

+M AB {|M |}K N
�w

(Where N = {|NbM AB|}Kbs)
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Bundle Properties

zBundles are partial orders

– Any non-empty set has minimal elements

zImportant Definition 1:

– A value v originates on a node n if
wn is a positive node (transmission)
wv < n,
wIf n′ ⇒ . . .⇒ n, then v 6< n

– Origination points are where values spontaneously ap-
pear

– Minimal elements of {n|v < n} are origination points

– We model the freshness of a value by saying that it has
a unique origination point in the bundle
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Bundle Properties (continued)

zImportant Definition 2:

– A set H ⊆ A is honest, with respect to a set of pene-
trator strands, if
wFor all bundles C, minimal elements of

{n ∈ nodes(C)|term(n) ∈ H}
are not on penetrator nodes.

– Important tool for proving security conditions

– Example of honest set will come later
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Secrecy Conditions

zIntuitively, a value v is secret if no penetrator can calculate
v from the messages of regular participants
zA value v is secret, with respect to a set of assumptions A,

if no bundle that satisfies A contains a node of the form +v
zOne proof technique:

– Show that v is in an honest set H

– Fix an arbitrary bundle that satisfies A.

– Through case analysis, show that H has no minimal el-
ements on regular strands

– Because H is honest, no minimal elements on penetrator
strands

– Hence, no nodes in bundle in H
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Authentication Conditions

zExample: “If a bundle contains all of a given initiator strand,
then it must also contain a given responder strand”
zFormalized as inference: If a bundle contains a strand in set
α, then the bundle also contains a strand from a second set
β
zOne proof technique:

– Suppose the bundle contains a strand s ∈ α
– Find a honest set Hs so that s contains a node in Hs

– Since the bundle has a node in Hs, it must have a min-
imal element

– Minimal elements must be on regular strands

– Show that those strands must be in β

+ 21 +

MIT



+ +

Ideals

zHonest sets only useful if they exist
zLet k ⊆ K. Then a k-ideal I is a set such that

– g ∈ I ⇒ g h ∈ I, h g ∈ I
– g ∈ I, k ∈ k⇒ {|g|}k ∈ IzLet S be a set of messages.

– Then Ik[S] is the smallest k-ideal that contains S

zBig theorem: If

– S ⊆ T ∪ K,

– S ∩ (TP ∪ KP) = ∅,
– k = (K \ S)−1, and

Then Ik[S] is honest
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Ideals Intuition

zTypically,

– S is a set of secrets

– Since k = (K \ S)−1, k contains (inverse of) every other
key

zIk[S] contains every term in which a secret is encrypted only
with non-secret keys
zTheorem: penetrator can only produce one of these by hear-

ing one first
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Otway-Rees Secrecy

zWish to show secrecy of Kab:

– Suppose Kab is uniquely originating

– Suppose Kas, Kbs 6∈ KP
– Suppose the bundle C contains a strand in

Serv-Strands[A,B,M,Na, Nb,Kab]

– Let S = {Kas,Kbs,Kab}, k = K \ S
– Then no node in C is in Ik[S]
zProof:

– S, k meet criteria of big theorem

– Case analysis: no regular node are minimal elements of
Ik[S]

– Hence, no nodes in bundle in Ik[S]
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Corollary to Big Theorem

zSuppose

– S ⊆ T ∪K, (K \ S)−1 = k, and S ∩ (TP ∪ KP) = ∅, and

– No regular node is a minimal element of Ik[S]

Then any message of the form {|g|}k for k ∈ S must have
originated on a regular node.
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Otway-Rees Authentication

zSuppose C contains a strand in Init-Strands[A,B,M,Na,Kab].zIf:
– A 6= B,

– Na is uniquely originating,

– All keys that originate on server strands uniquely origi-
nate on server strands

– Kas, Kbs 6∈ KP,
zThen for some Nb, C contains strands in

Serv-Strands[A,B,M,Na, Nb,Kab], and

Resp-Strands[A,B,M,Nb, ∗]
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Otway-Rees Authentication: Proof

zProof: Messy
zLet S = {Kas}, k = K \ S.
zShow no regular nodes are minimal elements Ik[S]
zApply Corollary: Any term of the form {|g|}Kas originates on

regular node
zHence, {|NaKab|}Kas originates on regular node

– Case analysis: strand in
Serv-Strands[A,B,M,Na, Nb,Kab] (for some Nb)zApply previous result: No minimal elements of Ik′[S

′] where
S′ = {Kas,Kbs,Kab}, k′ = K \ S′
zHence {|M NbAB|}Kbs originates on regular strand

– Case analysis: Resp-Strands[A,B,M,Nb, ∗]

+ 27 +

MIT



+ +

Otway-Rees Authentication (continued)

zSimilar result for Responder: suppose

– C contains a strand in

Resp-Strands[A,B,M,Na,Kab]

– A 6= B,

– Nb is uniquely originating,

– All keys that originate on server strands uniquely origi-
nate on server strands

– Kas, Kbs 6∈ KP,
zThen C contains strands in Serv-Strands[A,B,M, ∗, Nb,Kab],

and Init-Strands[A,B,M, ∗, ∗]
zNote: Cannot show that initiator, responder agree on session

key
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Closing Remarks

zFurther developments:

– Protocol composition

– Automated protocol analysis
wAthena (Song)

– Simpler results
wAuthentication tests

zOpen questions

– Non-free algebras (Xor, Diffie–Hellman)

– Reconciliation with computational viewpoint
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What Good are Proofs?

zStrands: proof technique

– Uses (standard) strong assumptions

– Proves (at present) protocol-specific statements
zProof fails:

– Find cryptography-independent flaw
zProof works:

– What have you shown?

– Strong motivation for justifying assumptions

– Goal for further work on cryptographic primitives
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Formalization of Security Conditions

zIn practice, two types of security conditions to prove

– Secrecy of values (keys, nonces)

– Authentication
zState of the art:

– Competing models, formalizations, intuitions

– Most methods prove protocol-specific conditions, ex-
pressed in model

– Why?
wStill debate over right definitions
wProtocols seem to satisfy points on continuum of
conditions

zNo reason Strand Space reasoning would be invalidated by
universal definitions
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Origination Vs. Minimality

+g I−g

+h I−h
�w

+g h

�w
I−g h

−gJ +g

�w

−h
�w
J +h

�w

+g h

�w

+a I−a

+b I−b
�w

+a b

�w
I−a b

+a

�w
I−a

+b

�w
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Subterm relation

zNote that k < {|g|}k ⇒ k < g

– Intuition: a < b means that a can be “learned” from b

– To say that k 6< {|g|}k (unless k < g) prohibits dictionary
attacks

– Other definitions of subterm possible
wLead to similar results
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Ideals (continued)

zProof of big theorem– case analysis

zExample: [D] strand (
〈
−{|g|}k,−k−1,+g

〉
)

– If +g is a minimal element, then k−1 6∈ Ik[S]. Hence,
k−1 6∈ S

– Since (K \ S)−1 = k, k−1 ∈ k−1. Hence, k ∈ k

– But since g ∈ Ik[S], {|g|}k ∈ Ik[S]
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Ideals (continued)

zMore complex example: [E] strand (〈−g,−k,+{|g|}k〉)
– Suppose {|g|}k ∈ Ik[S], but g 6∈ Ik[S]

– Let I ′ = Ik[S] \ {{|g|}k}.
– I ′ still contains S
wS ⊆ T ∪ K

– I ′ still closed under join operator

– I ′ still closed under encryption with keys in k
wIf not, because g ∈ Ik[S] and k ∈ k

– Hence, I ′ a smaller k-ideal containing S, a contradiction
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