Strand Spaces Proving Protocols Corr

+

+

Jonathan Herzog 6 April 2001

Introduction

+

- Second part of talk given early last month
 - Introduced class of cryptographic protocols
 - Modeled at high level of abstraction
 - Imposed strong assumptions
 - Showed that flaws can exist independent of cryptography
 - Discussed one approach to analysis (model ch
- This talk: Strand Spaces
 - Pencil & paper proof technique
 - Joint work with Guttman, Thayer

Overview of talk

+

- Brief review of problem
 - Running example: Otway-Rees protocols
- Strand Space formalization
 - Standard assumptions
 - "Regular" participants, penetrator (adversary
 - Model protocol executions
 - Global view from local views
 - Definitions and machinery
 - Proofs of security conditions
 - Discovery of previously unpublished flaw

Protocols

+

- Sequence of messages between small number (2 cipals
 - No conditionals (except to abort)
- Abstract cryptographic primitives (encryption, sig
- Achieve authentication and/or key transmission

Otway-Rees Protocol

+

+

1. $A \longrightarrow B$: $M A B \{ |N_a M A B| \}_{K_{as}}$

- **2.** $B \longrightarrow S: M A B \{ |N_a M A B| \}_{K_{as}} \{ |N_b M A B| \}_{K_{hs}}$
- **3.** $S \longrightarrow B$: $\{|N_a K_{ab}|\}_{K_{as}} \{|N_b K_{ab}|\}_{K_{bs}}$
- **4.** $B \longrightarrow A$: $\{ |N_a K_{ab}| \}_{K_{as}}$
- M: Public, unique session ID
- N_a , N_b : "fresh" nonces
- K_{as} , K_{bs} : secret keys shared with distinguished set
- K_{ab} : fresh session key
- \bullet Designed to provide mutual authentication and K_{ab}

- Formalized later in terms of strands

Message Algebra

+

- \bullet Messages are elements of an "algebra" ${\mathcal A}$
- 2 disjoint sets of atomic messages:
 - Texts (\mathcal{T})
 - Keys (\mathcal{K})
- 2 operators:
 - $-\operatorname{enc}: \mathcal{K} \times \mathcal{A} \to \mathcal{A} \qquad (\operatorname{Range:} \mathcal{E})$
 - pair : $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$ (Range: \mathcal{C})
- Often distinguish $\mathcal{T}_{Names} \subseteq \mathcal{T}$, $\mathcal{T}_{Nonces} \subseteq \mathcal{T}$ - $\mathcal{T}_{Names} \cap \mathcal{T}_{Nonces} = \emptyset$

Message Algebra (continued)

• Message algebra is "free"

+

+

- Unique representation of terms
- Exactly one way to build elements from aton ations
- Formulas, rather than bit-strings
- \bullet \mathcal{K} , \mathcal{T} , \mathcal{E} , \mathcal{C} mutually disjoint

• For all M_1 , M_2 , M_3 , $M_4 \in \mathcal{A}$, k_1 , $k_2 \in \mathcal{K}$, $T \in \mathcal{T}$

- $-M_1M_2 \neq M_3M_4$, unless $M_1 = M_3$, $M_2 = M_4$
- $-\{M_1\}_{k_1} \neq \{M_2\}_{k_2}$ unless $M_1 = M_2$, $k_1 = k_2$

Message Algebra Structure

- There is structure in the message algebra to expl
- Define the *subterm* relation as the smallest relation that for all *a*, *g* and *h*:

$$- a \sqsubset a$$
,

+

- $a \sqsubset g \Rightarrow a \sqsubset \{ |g| \}_k$
- $a \sqsubset g \Rightarrow a \sqsubset g \, h \land a \sqsubset h \, g$

Strands

+

+

- Two types of actions: transmissions and recepti
 - Written +M and -M (sign omitted when irred
 - Assumed to have unsecured sender, recipient
 - Ignored in this framework
- *Trace*: sequence of actions
- Strand: trace + unique identifier
 - Particular execution of a trace
 - Two different strands may have the same trace
 - Represent two different executions
 - Actions on strands called nodes

 $\langle -A, +B, -C, +D \rangle$

Regular Participants

+

- Regular participants: All non-adversary agents
- Protocol defines all possible regular traces
- Regular participants represented by strands conta sible traces
- Internal actions, knowledge not modeled

Regular Participants (continued)

• Strand patterns for regular participants (Otway-R - Initiator (A)

$$\langle + MAC \{ |N_a MAC | \}_{K_{as}} - \{ |N_a K_{ac} | \}_{K_{as}} \rangle$$

- Responder: (B)

$$\langle - M D B \{ |g| \}_{k} + M D B \{ |g| \}_{k} \{ |N_{b} M D B| \}_{K_{bs}} - \{ |h| \}_{k} \{ |N_{b} K_{db}| \}_{K_{bs}} + \{ |h| \}_{k} \rangle$$

– Server: (S)

$$\langle - MAB \{ | N_a MAB \} \}_{K_{bs}} \{ | N_b MAB \} \\ + \{ | N_a K_{ab} \}_{K_{as}} \{ | N_b K_{ab} \} \}_{K_{bs}} \rangle$$

Regular Participants (continued)

- Strands "refuse" to receive any messages other expected ones
 - Implicit abort/fail operation in such cases
- Regular strands completely defined by values
 - No variables

+

+

- These are different strands:

 $\langle +MAB \{ |N_a MAB| \}_{K_{as}}, -\{ |N_a K_{ab}| \}_{F_{as}} \rangle$

 $\langle +MAB \{ |N_a MAB| \}_{K_{as}}, -\{ |N_a K'_{ab}| \}_{I}$

Regular Participants (continued)

+

+

• Often convenient to define sets of strands with sin Init-Strands $[A, B, M, N_a, k_{ab}] =$ $\{s : s \text{ has trace } \langle M A B \{|N_a M A B|\}_{K_{as}}, -\{|N_a B|\}_{K_{as}}\}$ (Empty if parameters of wrong types)

• Build larger sets from these:

Penetrator (Adversary)

+

+

- Represented in terms of atomic (abstract) actions
- More complex actions can be built from these
- Unbounded number of strands of the forms:

- [C]:
$$\langle -g, -h, +gh \rangle$$

- [S]: $\langle -gh, +g, +h \rangle$

- [E]: $\langle -g, -k, +\{|g|\}_k \rangle$
- [D]: $\left\langle -\{|g|\}_k, -k^{-1}, +g \right\rangle$
- [M]: $\langle +g \rangle$, if $g \in \mathcal{T}_{\mathcal{P}} \subseteq \mathcal{T}$
- [K]: $\langle +k \rangle$, if $k \in \mathcal{K}_{\mathcal{P}} \subseteq \mathcal{K}$

(Often assume limits on $\mathcal{T}_{\mathcal{P}}, \mathcal{K}_{\mathcal{P}}$)

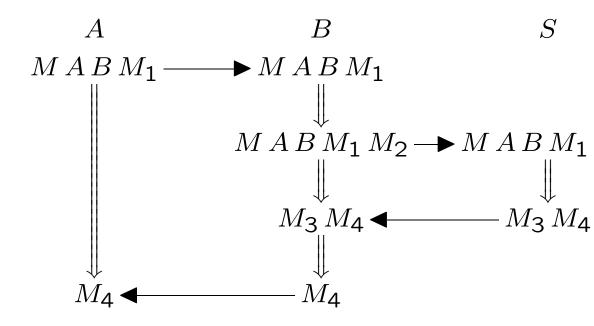
- Communication channels double as penetrator wo
- Model penetrator control over network later

Bundles

+

- Consider graphs where
 - Nodes are actions on regular, penetrator strat
 - Two types of edges:
 - We write $+g \rightarrow -g$ (transmission/reception
 - We write $g \Rightarrow h$ if (g, h) are consecutive s strand
- A bundle is such a graph C (finite) where
 - If -n is a node of C, then there exists a un +n of C such that $+n \rightarrow -n$ is an edge of C
 - If n_1 is a node of C, and $n_0 \Rightarrow n_1$, then n_0 is C and $n_0 \Rightarrow n_1$ is an edge of C
 - C is acyclic
- Models concepts of causality

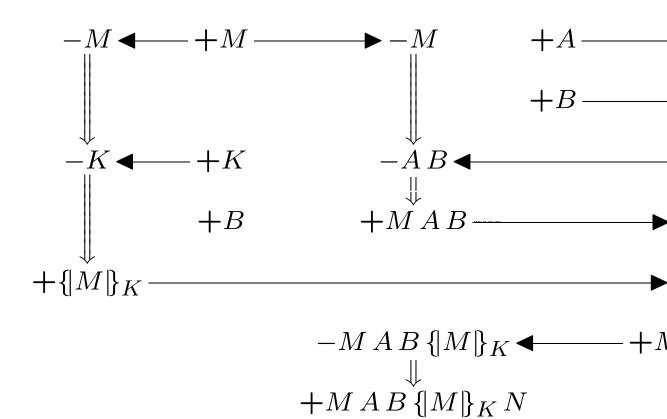
Example Bundle



Example Bundle

+

+



(Where $N = \{ |N_b M A B| \}_{K_{bs}}$)

Bundle Properties

+

- Bundles are partial orders
 - Any non-empty set has minimal elements
- Important Definition 1:
 - A value v originates on a node $n\ {\rm if}$
 - n is a positive node (transmission)
 - $v \sqsubset n$,
 - If $n' \Rightarrow \ldots \Rightarrow n$, then $v \not\sqsubset n$
 - Origination points are where values spontane pear
 - Minimal elements of $\{n | v \sqsubset n\}$ are origination
 - We model the freshness of a value by saying taken a unique origination point in the bundle

Bundle Properties (continued)

• Important Definition 2:

+

+

- A set $H \subseteq \mathcal{A}$ is *honest*, with respect to a se trator strands, if
 - \bullet For all bundles $\mathcal C$, minimal elements of

 $\{n \in nodes(\mathcal{C}) | term(n) \in H\}$

are not on penetrator nodes.

- Important tool for proving security conditions
- Example of honest set will come later

Secrecy Conditions

+

- Intuitively, a value v is secret if no penetrator car v from the messages of regular participants
- A value v is *secret*, with respect to a set of assuming the bundle that satisfies A contains a node of the
- One proof technique:
 - Show that v is in an honest set H
 - Fix an arbitrary bundle that satisfies \mathcal{A} .
 - Through case analysis, show that H has no n ements on regular strands
 - Because H is honest, no minimal elements on strands
 - Hence, no nodes in bundle in H

Authentication Conditions

+

- Example: "If a bundle contains all of a given initiat then it must also contain a given responder strand
- Formalized as inference: If a bundle contains a str α , then the bundle also contains a strand from a s β
- One proof technique:
 - Suppose the bundle contains a strand $s \in \alpha$
 - Find a honest set H_s so that s contains a not
 - Since the bundle has a node in H_s , it must has imal element
 - Minimal elements must be on regular strands
 - Show that those strands must be in β

Ideals

+

+

- Honest sets only useful if they exist
- Let $\mathbf{k} \subseteq \mathcal{K}$. Then a k-ideal I is a set such that $-g \in I \Rightarrow gh \in I$, $hg \in I$
 - $-g \in I$, $k \in \mathbf{k} \Rightarrow \{ |g| \}_k \in I$
- Let S be a set of messages.
 - Then $I_{\mathbf{k}}[S]$ is the smallest k-ideal that contai

• Big theorem: If

- $-S \subseteq \mathcal{T} \cup \mathcal{K},$
- $-S \cap (\mathcal{T}_{\mathcal{P}} \cup \mathcal{K}_{\mathcal{P}}) = \emptyset$,
- $-\mathbf{k} = (\mathcal{K} \setminus S)^{-1}$, and

Then $I_{\mathbf{k}}[S]$ is honest

Ideals Intuition

• Typically,

+

- -S is a set of secrets
- Since $\mathbf{k} = (\mathcal{K} \setminus S)^{-1}$, k contains (inverse of) e key
- $I_k[S]$ contains every term in which a secret is encry with non-secret keys
- Theorem: penetrator can only produce one of thes ing one first

Otway-Rees Secrecy

• Wish to show secrecy of K_{ab} :

- Suppose K_{ab} is uniquely originating
- Suppose K_{as} , $K_{bs} \notin \mathcal{K}_{\mathcal{P}}$
- Suppose the bundle C contains a strand in Serv-Strands $[A, B, M, N_a, N_b, K_{ab}]$
- Let $S = \{K_{as}, K_{bs}, K_{ab}\}$, $\mathbf{k} = \mathcal{K} \setminus S$
- Then no node in C is in $I_k[S]$
- Proof:

+

- S, k meet criteria of big theorem
- Case analysis: no regular node are minimal el $I_{\mathbf{k}}[S]$
- Hence, no nodes in bundle in $I_{\mathbf{k}}[S]$

Corollary to Big Theorem

• Suppose

+

+

- $S \subseteq \mathcal{T} \cup \mathcal{K}$, $(\mathcal{K} \setminus S)^{-1} = \mathbf{k}$, and $S \cap (\mathcal{T}_{\mathcal{P}} \cup \mathcal{K}_{\mathcal{P}})$ - No regular node is a minimal element of $I_{\mathbf{k}}[S]$

Then any message of the form $\{|g|\}_k$ for $k \in S$ roriginated on a regular node.

Otway-Rees Authentication

- Suppose C contains a strand in Init-Strands[A, B, I
 If:
 - $-A \neq B$,

+

+

- N_a is uniquely originating,
- All keys that originate on server strands unique nate on server strands
- K_{as} , $K_{bs} \notin \mathcal{K}_{\mathcal{P}}$,
- \bullet Then for some $\mathit{N_b}$, $\mathcal C$ contains strands in

Serv-Strands $[A, B, M, N_a, N_b, K_{ab}]$, and

 $\mathsf{Resp-Strands}[A, B, M, N_b, *]$

Otway-Rees Authentication: Proof

• Proof: Messy

+

+

- Let $S = \{K_{as}\}$, $\mathbf{k} = \mathcal{K} \setminus S$.
- Show no regular nodes are minimal elements $I_{\mathbf{k}}[S]$
- Apply Corollary: Any term of the form $\{|g|\}_{K_{as}}$ original regular node
- Hence, $\{|N_a K_{ab}|\}_{K_{as}}$ originates on regular node
 - Case analysis: strand in Serv-Strands $[A, B, M, N_a, N_b, K_{ab}]$ (for some
- Apply previous result: No minimal elements of $I_{\mathbf{k}'}$ $S' = \{K_{as}, K_{bs}, K_{ab}\}$, $\mathbf{k}' = \mathcal{K} \setminus S'$
- Hence $\{|M N_b A B|\}_{K_{bs}}$ originates on regular strand

- Case analysis: Resp-Strands $[A, B, M, N_b, *]$

Otway-Rees Authentication (continued)

- Similar result for Responder: suppose
 - \mathcal{C} contains a strand in

 $\mathsf{Resp-Strands}[A, B, M, N_a, K_{ab}]$

 $-A \neq B$,

+

- N_b is uniquely originating,
- All keys that originate on server strands uniquate on server strands
- K_{as} , $K_{bs} \notin \mathcal{K}_{\mathcal{P}}$,
- Then C contains strands in Serv-Strands[A, B, M, strands]
 and Init-Strands[A, B, M, strands]
- Note: Cannot show that initiator, responder agree key

Closing Remarks

+

- Further developments:
 - Protocol composition
 - Automated protocol analysis
 - Athena (Song)
 - Simpler results
 - Authentication tests
- Open questions
 - Non-free algebras (Xor, Diffie-Hellman)
 - Reconciliation with computational viewpoint

What Good are Proofs?

- Strands: proof technique
 - Uses (standard) strong assumptions
 - Proves (at present) protocol-specific stateme
- Proof fails:

+

- Find cryptography-independent flaw
- Proof works:
 - What have you shown?
 - Strong motivation for justifying assumptions
 - Goal for further work on cryptographic primit

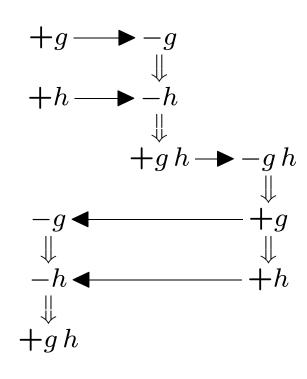
Formalization of Security Conditions

- In practice, two types of security conditions to pro-
 - Secrecy of values (keys, nonces)
 - Authentication
- State of the art:

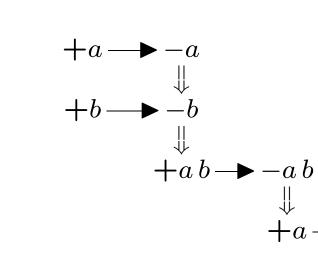
+

- Competing models, formalizations, intuitions
- Most methods prove protocol-specific condi pressed in model
- Why?
 - Still debate over right definitions
 - Protocols seem to satisfy points on conconditions
- No reason Strand Space reasoning would be inva universal definitions

Origination Vs. Minimality



+



Subterm relation

+

+

• Note that $k \sqsubset \{|g|\}_k \Rightarrow k \sqsubset g$

- Intuition: $a \sqsubset b$ means that a can be "learned
- To say that $k \not\sqsubset \{|g|\}_k$ (unless $k \sqsubset g$) prohibits attacks
- Other definitions of subterm possible
 - Lead to similar results

Ideals (continued)

+

- Proof of big theorem- case analysis
- Example: [D] strand $(\langle -\{|g|\}_k, -k^{-1}, +g \rangle)$
 - If +g is a minimal element, then $k^{-1} \not\in I_k[S \ k^{-1} \not\in S$
 - Since $(\mathcal{K} \setminus S)^{-1} = k$, $k^{-1} \in k^{-1}$. Hence, $k \in$
 - But since $g \in I_k[S]$, $\{|g|\}_k \in I_k[S]$

Ideals (continued)

+

- - Suppose $\{|g|\}_k \in I_k[S]$, but $g \not\in I_k[S]$
 - Let $I' = I_{\mathbf{k}}[S] \setminus \{\{|g|\}_k\}.$
 - -I' still contains S
 - $\bullet S \subseteq \mathcal{T} \cup \mathcal{K}$
 - -I' still closed under join operator
 - $\mathit{I'}$ still closed under encryption with keys in \mathbf{k}
 - If not, because $g \in I_k[S]$ and $k \in k$
 - Hence, I' a smaller k-ideal containing S, a cor