Red Cryptography (Formal Analysis of Cryptographic Protoc

Jonathan Herzog 9 March 2001

Introduction

- Rogoway described two "worlds" of cryptographi analysis
- Blue: computational view
- Red: formal methods view
- Blue world is probably well-known in CIS
- Red world may be less so
- In this talk: introduction to the formal methods
- Goals:
- No new material
- Give background on class of problems
- Stimulate interest

Overview of Talk

- Scope of problem: abstracted authentication and mission protocols
- Formal methods approaches (at least one)
- Model checkers
- Specialized logics
- Theorem provers
- Open problems

Protocols

- More limited definition than usually used
- Sequence of messages between small number (2 cipals
- No conditionals (except to abort)
- Abstract cryptographic primitives (encryption, sig
- Achieve authentication and/or key transmission

Needham-Schroeder Public Key Protoci

$$
\begin{aligned}
& \text { 1. } A \longrightarrow B:\left\{\left|N_{a} A\right|\right\}_{K_{B}} \\
& \text { 2. } B \longrightarrow A:\left\{\left|N_{a} N_{b}\right|\right\}_{K_{A}} \\
& \text { 3. } A \longrightarrow B:\left\{\left|N_{b}\right|\right\}_{K_{B}}
\end{aligned}
$$

- First published in 1978
- A, B assumed to know each other's public
- N_{a}, N_{b} are "fresh" nonces
- K_{A}, K_{B} : public keys
- Designed to provide mutual authentication and N_{a}, N_{b}

Message Algebra

- Messages are elements of an "algebra" \mathcal{A}
- 2 disjoint sets of atomic messages:
- Texts (\mathcal{T})
- Keys (K)
- 2 operators:
- enc: $\mathcal{K} \times \mathcal{A} \rightarrow \mathcal{A} \quad$ (Range: $\mathcal{E})$
- concat: $\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A} \quad$ (Range: \mathcal{C})

Message Algebra (cont.)

- Message algebra is "free"
- Unique representation of terms
- Exactly one way to build elements from aton ations
- $\mathcal{K}, \mathcal{T}, \mathcal{E}, \mathcal{C}$ mutually disjoint
- For all $M_{1}, M_{2}, M_{3}, M_{4} \in \mathcal{A}, k_{1}, k_{2} \in \mathcal{K}, T \in \mathcal{T}$ $-M_{1} M_{2} \neq M_{3} M_{4}$, unless $M_{1}=M_{3}, M_{2}=M_{4}$ $-\left\{\left|M_{1}\right|\right\}_{k_{1}} \neq\left\{\left|M_{2}\right|\right\}_{k_{2}}$ unless $M_{1}=M_{2}, k_{1}=k_{2}$
- Justification: looking for flaws that do not depenc erties of encryption scheme

Adversary

- Adversary has complete control over the network
- Can intercept, delete, delay, replay messages
- Unbounded time, but limited in available cryptog erations
- Separate, concatenate known messages
- Decrypt with known key
- Encrypt with known key
- Sign with known key
- Create fresh values, keys
- Use public values, keys
- May be regular participant, also
- Presumed to start knowing some set of keys

Needham-Schroeder Goals

- Initiator, Responder are roles instantiated hei and B
- For every Initiator, there should be a correspol sponder that agrees on the values in question
- For every Responder, there should be a corre Initiator that agrees on the values in question

Needham-Schroeder: Flawed!

- Due to Gavin Lowe (1995)
- Note that flaw exists independently of underlying

Formal Methods

- One view of problem:
- Communicating sequential processes
- Communicating through malicious (noisy) cha
- High level of abstraction
- Goals expressible as safety properties
- Standard formal methods problem
- Attacked using standard formal methods tools

Model Checking

- Describe system as state machine
- Security properties can be described as statem executions
- Algorithms, tools exist that exhaustively searc executions to verify properties.
- Regular participants simple to describe as state m
- Modeling the adversary more complex

Model Checking: Adversary

- State of adversary described by set of "known" t
- Presumed to start with some initial set
- If M is sent by regular participant, can move into st $I^{\prime}=I \cup\{M\}$
- If $\left(M_{1} M_{2}\right) \in I$, then can move into state where $\left\{M_{1}\right\}, I^{\prime}=I \cup\left\{M_{2}\right\}$
- If $\{|M|\}_{k}, k^{-1} \in I$, can move into state where $I^{\prime}=$
- If $M, k \in I$, then can move into state where $I^{\prime}=I$
- Can send any message in set of known terms to a participant

Model Checking: Security Conditions

- Security conditions can be expressed as safety prc

- System should never reach state where N_{1}, N_{2} in set
- Init $\left[A, B, N_{1}, N_{2}\right] .3 \Rightarrow \operatorname{Respond}\left[B, A, N_{1}, N_{2}\right] .2$
- Respond $\left[B, A, N_{1}, N_{2}\right] .3 \Rightarrow \operatorname{Init}\left[A, B, N_{1}, N_{2}\right] .3$

Model Checking: Pros and Cons

- Pros
- Conceptually simple
- Exhaustive search of all possible adversary tac - Cons
- State space explosion
- Infinite number of adversary states
- Some attacks use multiple initiators, respc
- Impossible (in general) to catch all possible a

Needham-Schroeder Lowe Protocol

- Proven correct
1.If an attack exists on any system, an attack system with one initiator, one responder (pen per)

2. No attacks exist on that system (model checl - Statement (1) shown for restricted class of proto

- Open problem: similar result for larger class?

BAN Logic (1989)

- Named after Burrows, Abadi, Needham
- "Many sorted modal logic" of belief
- Turn protocol messages into logical statements
- Apply inference rules
- Arrive at desired goals

BAN Logic: Operators

$$
\begin{array}{rl}
P \models X & P \text { believes } X \\
P \triangleleft X & P \text { sees } X \\
P \underset{K}{K} Q & P, Q \text { can use shared key } K \text { to comm } \\
P \Rightarrow X & P \text { has jurisdiction over } X \\
P \leadsto X & P \text { once said } X \\
\sharp(X) & X \text { is fresh }
\end{array}
$$

BAN Logic: Deductions

$$
\begin{gathered}
P \models Q \Rightarrow X \quad P \models Q \models X \\
P \models X \\
\frac{P \models \sharp(X) \quad P \models Q \leadsto X}{P \models Q \models X} \\
\frac{P \models Q \stackrel{K}{\longleftrightarrow} P \quad P \triangleleft\{|X|\}_{K}}{P \models Q \leadsto X}
\end{gathered}
$$

Otway-Rees Protocol

- Otway-Rees protocol (1987) (Adapted in BAN pa

1. $A \longrightarrow B: M A B\left\{\left|N_{a} M A B\right|\right\}_{K_{a s}}$
2. $B \longrightarrow S: M A B\left\{\left|N_{a} M A B\right|\right\}_{K_{a s}} N_{b}\{|M A B|\}_{K_{b s}}$
3.S $\longrightarrow B: M\left\{\left|N_{a} K_{a b}\right|\right\}_{K_{a s}}\left\{\left|N_{b} K_{a b}\right|\right\}_{K_{b s}}$
3. $B \longrightarrow A: M\left\{\left|N_{a} K_{a b}\right|\right\}_{K_{a s}}$

- S : Distinguished session key server
- $K_{a s}, K_{b s}$: Long term shared, symmetric keys
- M : Public session identifier

BAN Logic: Idealization

- This:

$$
\begin{array}{ll}
A \rightarrow B: & M A B\left\{\left|N_{a} M A B\right|\right\}_{K a s} \\
B \rightarrow S: & M A B\left\{\left|N_{a} M A B\right|\right\}_{a s} N_{b}\{|M A B|\}_{K_{b s}} \\
S \rightarrow B: & M\left\{\left|N_{a} K_{a b}\right|\right\}_{K_{a s}}\left\{\left|N_{b} K_{a b}\right|\right\}_{K_{b s}} \\
B \rightarrow A: & M\left\{\left|N_{a} K_{a b}\right|\right\}_{K_{a s}}
\end{array}
$$

- Becomes:

$$
\begin{aligned}
A \rightarrow B: & \left\{\left|M A B N_{a}\right|\right\}_{K_{a s}} \\
B \rightarrow S: & \left\{\left|M A B N_{a}\right|\right\}_{\text {as }} N_{b}\{|M A B|\}_{K_{b s}} \\
S \rightarrow B: & \left\{\left|N_{a},(A \underset{a b}{\longleftrightarrow} B),(B \leadsto M A B)\right|\right\}_{K_{a s}} \\
& \left\{\left|N_{b},\left(A \stackrel{K_{a b}}{\longleftrightarrow} B\right),(A \leadsto M A B)\right|\right\}_{K_{b s}} \\
B \rightarrow A: & \left\{\left|N_{a},\left(A \stackrel{K_{a b}}{\longleftrightarrow} B\right),(B \leadsto M A B)\right|\right\}_{K_{a s}}
\end{aligned}
$$

BAN Logic: Starting Assumptions

$$
\begin{array}{lll}
A \models A \stackrel{K_{a s}}{\longleftrightarrow} S & B \models B \stackrel{K_{b s}}{\longleftrightarrow} S & S \models \\
A \models\left(S \Rightarrow A \stackrel{K_{a b}}{\longleftrightarrow} B\right) & B \models\left(S \Rightarrow A \stackrel{K_{a b}}{\longleftrightarrow} B\right) & S \models \\
A \models(S \Rightarrow(B \leadsto X)) & B \models(S \Rightarrow(A \leadsto X)) & S \models \\
A \models \sharp\left(N_{a}\right) & B \models \sharp\left(N_{b}\right) & \\
A \models \sharp\left(N_{b}\right) & &
\end{array}
$$

BAN Logic: Conclusions

$$
\begin{gathered}
A \models A \stackrel{K_{a b}}{\rightleftarrows} B \\
A \models B \models(M A B)
\end{gathered}
$$

$$
\begin{aligned}
& B \models A \underset{ }{\stackrel{K_{a b}}{\longleftrightarrow} B} \\
& B \models A \leadsto(M A .
\end{aligned}
$$

BAN Logic: Flawed!

- Assume C has $\left\{\mid M^{\prime} C B\right\}_{K_{b s}}$ from previous run

$$
\begin{array}{ll}
C(A) \longrightarrow B: & M A B\left\{\left|N_{c} M^{\prime} C B\right|\right\}_{K_{c s}} \\
B \longrightarrow C(S): & M A B\left\{\left|N_{c} M A B\right|\right\}_{c s} N_{b}\{\mid M \\
C \longrightarrow S: & M^{\prime} C B\left\{N_{c} M^{\prime} C B \mid\right\}_{K_{b s}} N_{b}\{\mid \\
S \longrightarrow C(B): & M^{\prime}\left\{\left|N_{c} K_{c b}\right|\right\}_{K_{a s}}\left\{\left|N_{b} K_{c b}\right|\right\}_{K_{b s}} \\
C(S) \longrightarrow B: & M\left\{\left|N_{c} K_{c b}\right|\right\}_{K_{c s}}\left\{\left|N_{b} K_{c b}\right|\right\}_{K_{b s}} \\
B \longrightarrow C(A): & M\left\{\left|N_{c} K_{c b}\right|\right\}_{K_{c s}}
\end{array}
$$

BAN Logic: Source of Flaws

- Idealization process translates informal to formal
- Cannot easily be done formally
- Informal idealization as fallible as human judg
(In specification) $\left\{\left|N_{b} K_{a b}\right|\right\}_{K_{b s}}$
(Idealized as) $\left\{\mid N_{b},\left(A \stackrel{K_{a b}}{\longleftrightarrow} B\right),(A \leadsto M A B\right.$
(Should be) $\left\{N_{b},\left(A \stackrel{K_{a b}}{\longleftrightarrow} B\right),\left(A \leadsto M^{\prime} A I\right.\right.$

BAN Logic: Pros and Cons

- Pros
- Relatively simple
- Catches most errors
- Usually decidable
- Can often be automated efficiently
- Seconds to generate proof
- Cons
- Idealization process a source of errors
- Semantics difficult
- No concept of confidentiality
- Assumes replay protection

Theorem Provers

- For this talk: Paulson (1998)
- Heavy use of theorem prover (Isabelle)
- Proof checker
- Requires every step of a proof to be spelle verified
- Can build up lemmas for use in bigger pro
- Proof automator
- Can automatically perform some proofs
- Can automate large parts of others
- Often requires some human guidance

Specifying the Protocol

- Create (disjoint) sets of abstract data types
- Agents, Nonces, Numbers
- Keys
- Encryptions (Crypt K X)
- Concatenations ($\left\langle X, X^{\prime}\right\rangle$)
- Create events
- Says A B X
- Notes A X

Specifying the Protocol (cont.)

- Model protocol runs as traces
- Finite sequences of events
- Valid traces defined inductively
- [] is a trace
- Multiple rules of the form:
"If x is a valid trace satisfying $P(x)$, then $e \sharp x$ trace"

Honest Participants: Otway-Rees

$$
A \rightarrow B: \quad M A B\left\{\left|N_{a} M A B\right|\right\}_{K_{a s}}
$$

- If $e v$ is a trace, N_{a} a fresh nonce, $A \neq B$ and $B \Rightarrow$ (Says A B $\left.\left\langle M A B\left\{\left|N_{a} A B\right|\right\}_{K_{a s}}\right\rangle\right) \sharp e v$ is also a valid trace

$$
B \rightarrow S: M A B\left\{\left|N_{a} M A B\right|\right\}_{K_{a s}} N_{b}\{|M A B|\}_{K_{b s}}
$$

- If $e v$ is a trace containing (Says $\mathrm{A}^{\prime} \mathrm{B}\langle M A B\rangle$ fresh, and $B \neq S$, then

$$
\text { Says B S }\left\langle M A B X N_{b}\{|M A B|\}_{K_{b s}}\right\rangle \sharp e
$$

is also a valid trace

Modeling the Adversary

- Need some additional operators
- analz H is the set of terms the adversary c from H :
$H \subseteq$ analz H

$$
\langle X, Y\rangle \in \text { analz } \mathrm{H} \Rightarrow \mathrm{X} \in \text { analz } \mathrm{H} \wedge \mathrm{Y} \in \text { ar }
$$ $\{|\mathrm{X}|\}_{K} \in$ analz $\mathrm{H} \wedge K^{-1} \in$ analz $\mathrm{H} \Rightarrow \mathrm{X} \in$

- synth H is the set of what the adversary can 1 H:

$$
\begin{aligned}
& \mathrm{X} \in \text { synth } \mathrm{H} \wedge \mathrm{Y} \in \text { synth } \mathrm{H} \Rightarrow\langle X, Y\rangle \in \mathrm{s}\} \\
& \left.X \in \text { synth } \mathrm{H} \wedge \mathrm{~K} \in \operatorname{synth} \mathrm{H} \Rightarrow\{|\mathrm{X}|\}_{\mathrm{K}} \in \mathrm{~s}\right\}
\end{aligned}
$$

Modeling the Adversary (cont).

- Let $e v$ be a valid trace. Let spies $e v$ contain
- All messages from all Says events in ev
- Adversary's initial state (advInit)
- Long term keys of agents in bad
- Any messages in Notes $A \times$ events in $e v, \boldsymbol{u}$ bad
- Then if $X \in \operatorname{synth}($ analz (spies $e v)$), then Says Spy BX甘ev
is also a valid trace.

Theorem Prover Use

- Give to theorem prover:
- Data types,
- Operations (definitions, laws)
- Trace extension rules for honest participants
- Trace extension rules for adversary
- 110 intermediate lemmas regarding operation
- Get from theorem prover
- Environment in which to prove security prope
- Assistance in doing so

Security Goals

- Secrecy of session keys: For every valid trace $e v$, Says S B $\left\langle\mathrm{MAB}\left\{\left|N_{a} \mathrm{~K}\right|\right\}_{K_{a s}}\left\{\left|N_{b} \mathrm{~K}\right|\right\}_{K_{b s}} \in\right.$ then $K \notin$ analz (spies ev)
- Authentication condition: For every valid trace ev

$$
\text { Says A B }\left\langle M \mathrm{~A} \mathrm{~B}\left\{\left|N_{a} \mathrm{~A} \mathrm{~B}\right|\right\}_{K_{a s}}\right\rangle \in e v
$$

and

$$
\text { Says B' A }\left\langle M\left\{\left|N_{a} K\right|\right\}_{K_{a s}}\right\rangle \in e v
$$

then
Says S B" $\left\langle M\left\{\left|N_{a} K\right|\right\}_{K_{a s}}\left\{\left|N_{b}^{\prime} K\right|\right\}_{K_{b s}}\right\rangle \in$

Theorem Provers: Pros and Cons

- Pros:
- Finds all errors
- High degree of certainty
- Cons:
- Difficult!
- Theorem provers hard to use
- Weeks to write/debug specification
- Hours to verify proofs
- Proofs very often give no intuition
- Better than pencil and paper?
- Next time: Strand Space method

Open Problems

- Non-free algebras
- Exclusive-or
- Exponentiation (Diffie-Hellman)
- Unifying with blue world
- Specifying/weakening assumptions on underly tives
- Incorporating probabilistic reasoning
- Minimal systems that contain attacks
- Denial of service

