
Plaintext Awareness via Key Registration

Jonathan Herzog

CIS, TOC, CSAIL, MIT

Plaintext Awareness via Key Registration – p.1/38

Context of this work

• Originates from work on Dolev-Yao (DY) model
◦ Symbolic approach to cryptography
◦ From formal methods community

• In particular, previous work:
1. Extracted a computational interpretation of

Dolev-Yao assumptions, and
2. Showed these assumptions to be satisfied by

plaintext-aware (PA) encryption
• Led to interest in plaintext-aware (PA) encryption

Plaintext Awareness via Key Registration – p.2/38

Other results

• Thesis also contains direct extensions of DY work:
◦ Strictly stronger interpretation of DY model
◦ Proof that stronger interpretation satisfied by

chosen-ciphertext security
◦ Computationally sound extensions (Diffie-Hellman)

Plaintext Awareness via Key Registration – p.3/38

Overview

• This talk: self-contained work on plaintext awareness
• Strongest known security definition for public-key encryption
• However, current definition is problematic
• This work: removing problems in definition, keeping strength

[With Moses Liskov and Silvio Micali, CRYPTO 2003]

Plaintext Awareness via Key Registration – p.4/38

Plaintext awareness

• A public-key encryption scheme consists of
◦ G: key-generation algorithm
◦ E: encryption algorithm, and
◦ D: decryption algorithm

• An encryption scheme is PA if
1. It keeps the plaintext secret, and
2. Adversary “knows” plaintext to any ciphertext it creates

• But what do we actually mean?

Plaintext Awareness via Key Registration – p.5/38

Secrecy

• Weakest standard definition of secrecy is semantic security
[GM84]:

“No adversary can do better than random in when trying to
distinguish encryptions of m0 from encryptions of m1 (under

a randomly chosen key) even if it gets to pick m0 and m1

itself.”
• Show same formalization twice: graphically and in standard

(GMR) notation

Plaintext Awareness via Key Registration – p.6/38

Semantic security

A

∀APPT

Plaintext Awareness via Key Registration – p.7/38

Semantic security

A

T

k

∀APPT ∀ s. l. k

Plaintext Awareness via Key Registration – p.7/38

Semantic security

A

T

k

G
e, d

k ∀APPT ∀ s. l. k

(e, d)← G(1k);

Plaintext Awareness via Key Registration – p.7/38

Semantic security

A

T

k

G
e, d

k

m0, m1

e

∀APPT ∀ s. l. k

(e, d)← G(1k);

m0,m1 ← A(1k, e);

Plaintext Awareness via Key Registration – p.7/38

Semantic security

A

T

k

G
e, d

k

m0, m1

e

B
b

∀APPT ∀ s. l. k

(e, d)← G(1k);

m0,m1 ← A(1k, e);

b← CoinFlip(0, 1);

Plaintext Awareness via Key Registration – p.7/38

Semantic security

A

T

k

G
e, d

k

m0, m1

e

B
b

E
mb, e

c

∀APPT ∀ s. l. k

(e, d)← G(1k);

m0,m1 ← A(1k, e);

b← CoinFlip(0, 1);

c← E(mb, e);

Plaintext Awareness via Key Registration – p.7/38

Semantic security

A

T

k

G
e, d

k

m0, m1

e

B
b

E
mb, e

c

g
c

∀APPT ∀ s. l. k

(e, d)← G(1k);

m0,m1 ← A(1k, e);

b← CoinFlip(0, 1);

c← E(mb, e);

g ← A(c) :

(A keeps state)

Plaintext Awareness via Key Registration – p.7/38

Semantic security

A

T

k

G
e, d

k

m0, m1

e

B
b

E
mb, e

c

g
c

b = g?

∀APPT ∀ s. l. k

(e, d)← G(1k);

m0,m1 ← A(1k, e);

b← CoinFlip(0, 1);

c← E(mb, e);

g ← A(c) :

b = g

Plaintext Awareness via Key Registration – p.7/38

Semantic security

A

T

k

G
e, d

k

m0, m1

e

B
b

E
mb, e

c

g
c

b = g? Require: Pr [b = g] ∼= 1
2

∀APPT ∀ s. l. k

Pr[(e, d)← G(1k);

m0,m1 ← A(1k, e);

b← CoinFlip(0, 1);

c← E(mb, e);

g ← A(c) :

b = g] ≤ 1
2 + neg(k)

Plaintext Awareness via Key Registration – p.7/38

Strengthening semantic security

• Semantic security not strong enough for many applications
◦ Cannot be used in protocols
◦ Honest participants might provide to adversary

services not captured by definition
• Two ways to strengthen:

1. Chosen-ciphertext attack
2. Plaintext awareness

Plaintext Awareness via Key Registration – p.8/38

Security against the chosen-ciphertext attack

AT

G

B

E

∀APPT

Pr[(e, d)← G(1k);

m0,m1 ← A (1k, e);

b← CoinFlip(0, 1);

c← E(mb, e);

g ← A (c) :

b = g] ≤ 1
2 + neg(k)

Plaintext Awareness via Key Registration – p.9/38

Security against the chosen-ciphertext attack

AT

G

B

E

D

c′

m′

c′ 6= c

m′

∀APPT

Pr[(e, d)← G(1k);

m0,m1 ← AD(·,d)(1k, e);

b← CoinFlip(0, 1);

c← E(mb, e);

g ← AD(·6=c,d)(c) :

b = g] ≤ 1
2 + neg(k)

Plaintext Awareness via Key Registration – p.9/38

Plaintext awareness

• Another notion: plaintext awareness
• Intuition: adversary “knows” plaintext to any ciphertext it

creates
• Algorithm “knowledge” is what can be calculated
• Adversary A knows x if A + another algorithm (called

extractor) can compute x

• Plaintext awareness: there exists an extractor that can
produce the plaintext to adversary’s ciphertext

Plaintext Awareness via Key Registration – p.10/38

Plaintext awareness

∃Ext ∀APPT

Plaintext Awareness via Key Registration – p.11/38

Plaintext awareness

k

G

e
d ∃Ext ∀APPT

(e, d)← G(1k);

Plaintext Awareness via Key Registration – p.11/38

Plaintext awareness

k

G

e
d

A

c

∃Ext ∀APPT

(e, d)← G(1k);

c← A(1k, e);

Plaintext Awareness via Key Registration – p.11/38

Plaintext awareness

k

G

e
d

A

c

Ext

p

∃Ext ∀APPT

(e, d)← G(1k);

c← A(1k, e);

p← Ext(1k, e, c);

Plaintext Awareness via Key Registration – p.11/38

Plaintext awareness

k

G

e
d

A

c

Ext

p

D

c

p′

∃Ext ∀APPT

(e, d)← G(1k);

c← A(1k, e);

p← Ext(1k, e, c);

p′ ← D(c, d);

Plaintext Awareness via Key Registration – p.11/38

Plaintext awareness

k

G

e
d

A

c

Ext

p

D

c

p′=

∃Ext ∀APPT

Pr[(e, d)← G(1k);

c← A(1k, e);

p← Ext(1k, e, c);

p′ ← D(c, d);

p = p′] ≥ 1− neg(k)

Plaintext Awareness via Key Registration – p.11/38

Plaintext awareness

k

G

e
d

A

c

Ext

p

D

c

p′=

∃Ext ∀APPT

Pr[(e, d)← G(1k);

c← A(1k, e);

p← Ext(1k, e, c);

p′ ← D(c, d);

p = p′] ≥ 1− neg(k)

Do we want this?

Plaintext Awareness via Key Registration – p.11/38

Extractor requirements

• Note: extractor makes decryption oracle redundant
• Also violates semantic security
◦ Takes in ciphertext, produces plaintext

• Solution: limit extractor to adversary’s ciphertexts
• Make extractor use additional information from adversary
◦ Ensure same information not available from honest

participants

• Existing definition uses random oracle:
◦ Oracle O that provides random function

Plaintext Awareness via Key Registration – p.12/38

Plaintext awareness and the random oracle

k

G

e
d

A

c

Ext

p

D

c

p′=

∃Ext ∀APPT

Pr[(e, d)← G(1k);

c← A (1k, e);

p′ ← Ext(1k, e, c,);

p← D (c, d);

p = p′] ≥ 1− neg(k)

Plaintext Awareness via Key Registration – p.13/38

Plaintext awareness and the random oracle

• Encryption, decryption now use oracle

k

G

e
d

A

c

Ext

p

D

c

p′=

O

∃Ext ∀APPT

Pr[(e, d)← G(1k);

c← A (1k, e);

p′ ← Ext(1k, e, c,);

p← DO(·)(c, d);

p = p′] ≥ 1− neg(k)

Plaintext Awareness via Key Registration – p.13/38

Plaintext awareness and the random oracle

• Encryption, decryption now use oracle
• Adversary gets access to oracle

k

G

e
d

A

c

Ext

p

D

c

p′=

O

O

∃Ext ∀APPT

Pr[(e, d)← G(1k);

c← AO(·)(1k, e);

p′ ← Ext(1k, e, c,);

p← DO(·)(c, d);

p = p′] ≥ 1− neg(k)

Plaintext Awareness via Key Registration – p.13/38

Plaintext awareness and the random oracle

• Encryption, decryption now use oracle
• Adversary gets access to oracle
• Extractor given oracle queries made by adversary

k

G

e
d

A

c

Ext

p

D

c

p′=

O

O

Q

∃Ext ∀APPT

Pr[(e, d)← G(1k);

c← AO(·)(1k, e);

p′ ← Ext(1k, e, c, Q);

p← DO(·)(c, d);

p = p′] ≥ 1− neg(k)

Plaintext Awareness via Key Registration – p.13/38

Previous work

• This is original definition of PA [BR95]
◦ Current definition is slight refinement [BDPR98]
◦ Encryption scheme might be used in protocol
◦ Provides adversary with source of externally-generated

ciphertexts
◦ Adversary wants to create ciphertext with unknown

plaintext
◦ Source of such ciphertexts might help
◦ “Challenge” ciphertext must be new

• Known: PA CC-security [ibid]
◦ (CC-security still strongest possible without trusted third

party)
• However, PA considered suspect, not widely used
◦ Due to use of random oracle

Plaintext Awareness via Key Registration – p.14/38

Necessity of the Random Oracle

• Sometimes possible to replace oracle with algorithm
◦ Abstraction of MD5, SHA-1

• Not possible in general [CGH98,GT03]
• Not possible in this case
• Interface with oracle gives extractor a “window” into

adversary’s state
• Lost if oracle replaced with internal algorithm

Plaintext Awareness via Key Registration – p.15/38

Objections to the random oracle

Plaintext Awareness via Key Registration – p.16/38

Objections to the random oracle

1. Network overhead
• E, D now use oracle also
• Communication required for every operation

Plaintext Awareness via Key Registration – p.16/38

Objections to the random oracle

1. Network overhead
• E, D now use oracle also
• Communication required for every operation

2. Single global point of failure
• Security depends on secrecy of queries
◦ If the adversary gets queries, can run extractor to

produce plaintext
• Random oracle knows every message
◦ Pray it’s not corrupted!

Plaintext Awareness via Key Registration – p.16/38

Original Definition (concluded)

Original definition of PA
• Used extended model of public-key encryption
• Added unrealistic third party (oracle)
◦ Required communication with oracle for every

encryption/decryption
◦ Trusts oracle with every message

• Alternately, dubious replacement
◦ MD5 6= random oracle

Plaintext Awareness via Key Registration – p.17/38

Our Contribution

• Remove random oracle from PA
• Propose a more natural change to the model
◦ Add a third party already used in practice

• Use that party only once
◦ At key generation

• Trust that party with as little as possible
◦ “Fail-safes” to CC-security when party corrupted

• Also show an general-assumption implementation

Plaintext Awareness via Key Registration – p.18/38

Status

• Previous definition
• Our model
• Our definition
• Our implementation

Plaintext Awareness via Key Registration – p.19/38

Our model

• Two kinds of key-pairs:
◦ Receiver (er, dr)
◦ Sender (es, ds)
◦ “Sender” keys ≈ signature keys

• Encryption, decryption require both public keys
◦ Encryption requires sender’s private key
◦ Decryption requires receiver’s private key

• Public sending key registered with Registration Authority
(RA)

Plaintext Awareness via Key Registration – p.20/38

Registration Authority

• Plays same role as certification authority
• Validates, publishes new public keys.
• Sender key generation and registration represented by

protocol
User←→ RA

◦ User outputs public, private keys
◦ RA outputs (publishes) public key only

• Can think of RA issuing certificate for public key
• Implicitly assuming public-key infrastructure (PKI)
◦ Bind key to names, vice-versa
◦ Note: sender needs binding also

• For our purposes: RA validation ensures sender key has
extractor

Plaintext Awareness via Key Registration – p.21/38

Status

• Previous definition
• Our model
• Our definition
• Our implementation

Plaintext Awareness via Key Registration – p.22/38

A two-part definition

• A scheme is plaintext-aware via key registration if:
1. Honest RA⇒ plaintext awareness
◦ “There exists an extractor such that, if the adversary

creates a ciphertext relative to a registered key, then
the extractor can re-create the plaintext”

◦ As before, extractor needs additional information
◦ Our definition: history of adversary’s internal state

2. Chosen-ciphertext security
◦ Even if RA is corrupt
◦ (Best possible without trusted third party)

Plaintext Awareness via Key Registration – p.23/38

Chosen-ciphertext security

CC-security even if RA is corrupted:

∀ oracle-calling adversaries A

Pr[(dr, er)← G(1k);

m0,m1 ← AD(·,dr,·)(er, es);

b← {0, 1} ;

c← E(mb, er, ds);

g ← AD(·6=c,dr,·)(c) :

b = g] ≤ 1
2 + neg(k)

Plaintext Awareness via Key Registration – p.24/38

Chosen-ciphertext security

CC-security even if RA is corrupted:

∀ oracle-calling adversaries A

Pr[(dr, er)← G(1k);

(es, ds)
User
←− (User↔ A) ;

m0,m1 ← AD(·,dr,·)(er, es);

b← {0, 1} ;

c← E(mb, er, ds);

g ← AD(·6=c,dr,·)(c) :

b = g] ≤ 1
2 + neg(k)

Plaintext Awareness via Key Registration – p.24/38

Plaintext Awareness (1)

“There exists an extractor such that if the adversary creates a
ciphertext with a registered key, then the extractor can re-create
the plaintext.”
• Who registers the key? User or adversary?
• Above should hold on both cases

∀ adversaries A, ∃ efficient algorithm ExtX

Pr[(er, dr)← G(1k);

c← A(eX, er) :

p← ExtX(c, er, eX);

p′ ← D(c, dr, eX) :

p = p′] ≥ 1− neg(k)

Plaintext Awareness via Key Registration – p.25/38

Plaintext Awareness (1)

“There exists an extractor such that if the adversary creates a
ciphertext with a registered key, then the extractor can re-create
the plaintext.”
• Who registers the key? User or adversary?
• Above should hold on both cases

∀ adversaries A,∀ X ∈ {A,User} ∃ efficient algorithm ExtX

Pr[(er, dr)← G(1k);

(eX, dX)
X
←− (X↔ RA) ;

c← A(eX, er) :

p← ExtX(c, er, eX);

p′ ← D(c, dr, eX) :

p = p′] ≥ 1− neg(k)

Plaintext Awareness via Key Registration – p.25/38

Plaintext awareness (2)

• As in standard definition, extractor needs more than
ciphertext

• We use internal history of adversary
◦ Contains all inputs, randomness, state transitions
◦ (Explicitly excluding erasure)

∀ adversaries A,∀ X ∈ {A,User} ,

∃ efficient algorithm ExtX

Pr[(er, dr)← G(1k);

(eX, dX)← OUTX,RA (X) er, ·1
k, ·;

c← A(eX, er) :

ExtX(, c, er, eX) = D(c, dr, eX)] ≥ 1− neg(k)

Plaintext Awareness via Key Registration – p.26/38

Plaintext awareness (2)

• As in standard definition, extractor needs more than
ciphertext

• We use internal history of adversary
◦ Contains all inputs, randomness, state transitions
◦ (Explicitly excluding erasure)

∀ adversaries A,∀ X ∈ {A,User} ,

∃ efficient algorithm ExtX

Pr[(er, dr)← G(1k);

(eX, dX)← OUTX,RA (X) er, ·1
k, ·;

h
H

←− A;

c← A(eX, er) :

ExtX(h, c, er, eX) = D(c, dr, eX)] ≥ 1− neg(k)

Plaintext Awareness via Key Registration – p.26/38

Plaintext awareness (3)

• Might as well allow adversary access to decryption oracle
• Encryption oracle?
◦ Now necessary: encryption uses private keys
◦ However, not general enough

• As before, adversary might be in protocol
◦ Access to externally-generated ciphertexts

• Represent this as arbitrary ally oracle L

◦ Looks at history of adversary
◦ Performs some computation, produces plaintext
◦ Encrypted, ciphertext given to adversary

• Encryption oracle functionality as special case
• Adversary’s “challenge” ciphertext not from ally

Plaintext Awareness via Key Registration – p.27/38

Plaintext Awareness (4)

∀ adversaries A,∀ X ∈ {A,User} ,

∃ efficient algorithm ExtX, ∀ PPT allies L,

P r[(er, dr)← G(1k);

(eX, dX)← OUTX,RA (X) er, ·1
k, ·;

h
H

←− A;

c← A
L
′

dX
(·),D(·,dr,·)(eX, er) :

ExtX(h, c, er, eX) = D(c, dr, eX) given that c not from L

] ≥ 1− neg(k)

Plaintext Awareness via Key Registration – p.28/38

Status

• Previous definition
• Our model
• Our definition
• Our implementation

Plaintext Awareness via Key Registration – p.29/38

NM-NIZK: a useful tool

• Implementation will use non-malleable non-interactive
zero-knowledge proofs [S99]

• Assume a fixed language L ∈ NP

• Exists a long random string σ

• “Prover” knows x ∈ L, witness
• Produces a “proof” π of x relative to σ

• “Verifier” checks proof against σ

Plaintext Awareness via Key Registration – p.30/38

NM-NIZK: a useful tool (2)

Require four properties

1. (Completeness) If prover has x ∈ L and witness, then
verifier accepts π.

2. (Soundness) If x 6∈ L, no (malicious) prover can make
verifier accept

3. (Zero-Knowledge) Proof π reveals nothing about witness

4. (Non-Malleability) A proof π for theorem x cannot be
changed into a proof π′ for a theorem x′

Plaintext Awareness via Key Registration – p.31/38

Sahai’s Encryption Scheme

Will build upon previous scheme [S99]
• Recipient key contains:
◦ Public portions of two (semantically-secure) key pairs
◦ Long random string σ

• Sender encrypts m by:
◦ Encrypting m in each key
◦ Proving (relative to σ) that ciphertexts contain same

plaintext
◦ “plaintext consistency”

• Receiver decrypts by
◦ Checking proof against σ, and
◦ If valid, decrypting either ciphertext

• Shown to be secure against chosen-ciphertext attack

Plaintext Awareness via Key Registration – p.32/38

ZK proofs of knowledge

We also need proof of knowledge [BG92]
• Slight variant to NIZK
• Typically interactive, but still zero-knowledge
• Proves both x ∈ L and prover knows witness
◦ Exists extractor that can produce witness
◦ Additional information: access to prover

Plaintext Awareness via Key Registration – p.33/38

The HLM Scheme

• Receiver key generated as in Sahai’s scheme
• Sender public key contains

1. Semantically-secure encryption key
2. Signature key

• Sender proves knowledge (in ZK) of decryption key to RA

• RA issues certificate binding together encryption, signature
keys

• To encrypt m, sender:
◦ Encrypt in all three keys
◦ Receiver’s two and his own

◦ Prove plaintext consistency
◦ Signs ciphertexts, proof

• Decryption as before, plus signature verification

Plaintext Awareness via Key Registration – p.34/38

Proofs of security

• Theorem: The HLM scheme is plaintext-aware via
key-registration

• Chosen-ciphertext security follows from Sahai’s proof
◦ Need slightly stronger non-malleability properties of the

NIZK proof system
• Plaintext awareness: adversary tries to create a new

ciphertext relative to key registered by X

• Two cases:
◦ X is honest: extractor simply outputs ⊥
◦ Any other result from D means adversary forged

signature

Plaintext Awareness via Key Registration – p.35/38

Proofs of security (2)

• X corrupted (key registered by adversary):
◦ Registration requires proof of knowledge for secret key
◦ Ciphertext contains proof of plaintext consistency
◦ Extractor
◦ Runs extractor from proof of knowledge system, gets

private key
◦ Decrypts component ciphertext

◦ Technicality: adversary may create “new” ciphertext by
changing signature on externally-generated ciphertext
◦ Modify definition of “new” ciphertext, or
◦ Use scheme with unique signatures (specific

assumptions)

Plaintext Awareness via Key Registration – p.36/38

Conclusion

• Proposed a new definition of plaintext-awareness
• Uses a more natural model of public-key cryptography
◦ Utilizes existing third parties
◦ Grants them least possible trust
◦ No new network overhead

• Implemented under general assumptions

Plaintext Awareness via Key Registration – p.37/38

Future work

• Efficiency
◦ General-purpose proof systems inefficient
◦ Replace with faster (specific) implementations

• Anonymity
◦ Blind sender key?

Plaintext Awareness via Key Registration – p.38/38

	Context of this work
	Other results
	Overview
	Plaintext awareness
	Secrecy
	Semantic security
	Strengthening semantic security
	Security against the chosen-ciphertext attack
	Plaintext awareness
	Plaintext awareness
	Extractor requirements
	Plaintext awareness and the random oracle
	Previous work
	Necessity of the Random Oracle
	Objections to the random oracle
	Original Definition (concluded)
	Our Contribution
	Status
	Our model
	Registration Authority
	Status
	A two-part definition
	Chosen-ciphertext security
	Plaintext Awareness (1)
	Plaintext awareness (2)
	Plaintext awareness (3)
	Plaintext Awareness (4)
	Status
	NM-NIZK: a useful tool
	NM-NIZK: a useful tool (2)
	Sahai's Encryption Scheme
	ZK proofs of knowledge
	The HLM Scheme
	Proofs of security
	Proofs of security (2)
	Conclusion
	Future work

