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Context of this work

• Originates from work on Dolev-Yao (DY) model
◦ Symbolic approach to cryptography
◦ From formal methods community

• In particular, previous work:
1. Extracted a computational interpretation of

Dolev-Yao assumptions, and
2. Showed these assumptions to be satisfied by

plaintext-aware (PA) encryption
• Led to interest in plaintext-aware (PA) encryption
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Other results

• Thesis also contains direct extensions of DY work:
◦ Strictly stronger interpretation of DY model
◦ Proof that stronger interpretation satisfied by

chosen-ciphertext security
◦ Computationally sound extensions (Diffie-Hellman)
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Overview

• This talk: self-contained work on plaintext awareness
• Strongest known security definition for public-key encryption
• However, current definition is problematic
• This work: removing problems in definition, keeping strength

[With Moses Liskov and Silvio Micali, CRYPTO 2003]
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Plaintext awareness

• A public-key encryption scheme consists of
◦ G: key-generation algorithm
◦ E: encryption algorithm, and
◦ D: decryption algorithm

• An encryption scheme is PA if
1. It keeps the plaintext secret, and
2. Adversary “knows” plaintext to any ciphertext it creates

• But what do we actually mean?
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Secrecy

• Weakest standard definition of secrecy is semantic security
[GM84]:

“No adversary can do better than random in when trying to
distinguish encryptions of m0 from encryptions of m1 (under

a randomly chosen key) even if it gets to pick m0 and m1

itself.”
• Show same formalization twice: graphically and in standard

(GMR) notation

Plaintext Awareness via Key Registration – p.6/38



Semantic security

A

∀APPT
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Semantic security
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g ← A(c) :
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Strengthening semantic security

• Semantic security not strong enough for many applications
◦ Cannot be used in protocols
◦ Honest participants might provide to adversary

services not captured by definition
• Two ways to strengthen:

1. Chosen-ciphertext attack
2. Plaintext awareness

Plaintext Awareness via Key Registration – p.8/38



Security against the chosen-ciphertext attack
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g ← A (c) :

b = g] ≤ 1
2 + neg(k)
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Security against the chosen-ciphertext attack
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Pr[ (e, d)← G(1k);

m0,m1 ← AD(·,d)(1k, e);

b← CoinFlip(0, 1);

c← E(mb, e);

g ← AD(·6=c,d)(c) :

b = g] ≤ 1
2 + neg(k)

Plaintext Awareness via Key Registration – p.9/38



Plaintext awareness

• Another notion: plaintext awareness
• Intuition: adversary “knows” plaintext to any ciphertext it

creates
• Algorithm “knowledge” is what can be calculated
• Adversary A knows x if A + another algorithm (called

extractor ) can compute x

• Plaintext awareness: there exists an extractor that can
produce the plaintext to adversary’s ciphertext
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Plaintext awareness

∃Ext ∀APPT
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Plaintext awareness
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Plaintext awareness
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Plaintext awareness
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Plaintext awareness
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Pr[ (e, d)← G(1k);

c← A(1k, e);

p← Ext(1k, e, c);

p′ ← D(c, d);

p = p′] ≥ 1− neg(k)

Do we want this?
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Extractor requirements

• Note: extractor makes decryption oracle redundant
• Also violates semantic security
◦ Takes in ciphertext, produces plaintext

• Solution: limit extractor to adversary’s ciphertexts
• Make extractor use additional information from adversary
◦ Ensure same information not available from honest

participants

• Existing definition uses random oracle:
◦ Oracle O that provides random function
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Plaintext awareness and the random oracle
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Plaintext awareness and the random oracle

• Encryption, decryption now use oracle
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Plaintext awareness and the random oracle

• Encryption, decryption now use oracle
• Adversary gets access to oracle
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Plaintext awareness and the random oracle

• Encryption, decryption now use oracle
• Adversary gets access to oracle
• Extractor given oracle queries made by adversary
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Previous work

• This is original definition of PA [BR95]
◦ Current definition is slight refinement [BDPR98]
◦ Encryption scheme might be used in protocol
◦ Provides adversary with source of externally-generated

ciphertexts
◦ Adversary wants to create ciphertext with unknown

plaintext
◦ Source of such ciphertexts might help
◦ “Challenge” ciphertext must be new

• Known: PA  CC-security [ibid]
◦ (CC-security still strongest possible without trusted third

party)
• However, PA considered suspect, not widely used
◦ Due to use of random oracle
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Necessity of the Random Oracle

• Sometimes possible to replace oracle with algorithm
◦ Abstraction of MD5, SHA-1

• Not possible in general [CGH98,GT03]
• Not possible in this case
• Interface with oracle gives extractor a “window” into

adversary’s state
• Lost if oracle replaced with internal algorithm
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Objections to the random oracle
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Objections to the random oracle

1. Network overhead
• E, D now use oracle also
• Communication required for every operation
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Objections to the random oracle

1. Network overhead
• E, D now use oracle also
• Communication required for every operation

2. Single global point of failure
• Security depends on secrecy of queries
◦ If the adversary gets queries, can run extractor to

produce plaintext
• Random oracle knows every message
◦ Pray it’s not corrupted!
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Original Definition (concluded)

Original definition of PA
• Used extended model of public-key encryption
• Added unrealistic third party (oracle)
◦ Required communication with oracle for every

encryption/decryption
◦ Trusts oracle with every message

• Alternately, dubious replacement
◦ MD5 6= random oracle
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Our Contribution

• Remove random oracle from PA
• Propose a more natural change to the model
◦ Add a third party already used in practice

• Use that party only once
◦ At key generation

• Trust that party with as little as possible
◦ “Fail-safes” to CC-security when party corrupted

• Also show an general-assumption implementation
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Status

• Previous definition
• Our model
• Our definition
• Our implementation
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Our model

• Two kinds of key-pairs:
◦ Receiver (er, dr)
◦ Sender (es, ds)
◦ “Sender” keys ≈ signature keys

• Encryption, decryption require both public keys
◦ Encryption requires sender’s private key
◦ Decryption requires receiver’s private key

• Public sending key registered with Registration Authority
(RA)
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Registration Authority

• Plays same role as certification authority
• Validates, publishes new public keys.
• Sender key generation and registration represented by

protocol
User←→ RA

◦ User outputs public, private keys
◦ RA outputs (publishes) public key only

• Can think of RA issuing certificate for public key
• Implicitly assuming public-key infrastructure (PKI)
◦ Bind key to names, vice-versa
◦ Note: sender needs binding also

• For our purposes: RA validation ensures sender key has
extractor
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Status

• Previous definition
• Our model
• Our definition
• Our implementation
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A two-part definition

• A scheme is plaintext-aware via key registration if:
1. Honest RA⇒ plaintext awareness
◦ “There exists an extractor such that, if the adversary

creates a ciphertext relative to a registered key, then
the extractor can re-create the plaintext”

◦ As before, extractor needs additional information
◦ Our definition: history of adversary’s internal state

2. Chosen-ciphertext security
◦ Even if RA is corrupt
◦ (Best possible without trusted third party)
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Chosen-ciphertext security

CC-security even if RA is corrupted:

∀ oracle-calling adversaries A

Pr[ (dr, er)← G(1k);

m0,m1 ← AD(·,dr,·)(er, es);

b← {0, 1} ;

c← E(mb, er, ds);

g ← AD(·6=c,dr,·)(c) :

b = g] ≤ 1
2 + neg(k)
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Chosen-ciphertext security

CC-security even if RA is corrupted:

∀ oracle-calling adversaries A

Pr[ (dr, er)← G(1k);

(es, ds)
User
←− (User↔ A) ;

m0,m1 ← AD(·,dr,·)(er, es);

b← {0, 1} ;

c← E(mb, er, ds);

g ← AD(·6=c,dr,·)(c) :

b = g] ≤ 1
2 + neg(k)
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Plaintext Awareness (1)

“There exists an extractor such that if the adversary creates a
ciphertext with a registered key, then the extractor can re-create
the plaintext.”
• Who registers the key? User or adversary?
• Above should hold on both cases

∀ adversaries A, ∃ efficient algorithm ExtX

Pr[ (er, dr)← G(1k);

c← A(eX, er) :

p← ExtX(c, er, eX);

p′ ← D(c, dr, eX) :

p = p′] ≥ 1− neg(k)
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Plaintext Awareness (1)

“There exists an extractor such that if the adversary creates a
ciphertext with a registered key, then the extractor can re-create
the plaintext.”
• Who registers the key? User or adversary?
• Above should hold on both cases

∀ adversaries A,∀ X ∈ {A,User} ∃ efficient algorithm ExtX

Pr[ (er, dr)← G(1k);

(eX, dX)
X
←− (X↔ RA) ;

c← A(eX, er) :

p← ExtX(c, er, eX);

p′ ← D(c, dr, eX) :

p = p′] ≥ 1− neg(k)
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Plaintext awareness (2)

• As in standard definition, extractor needs more than
ciphertext

• We use internal history of adversary
◦ Contains all inputs, randomness, state transitions
◦ (Explicitly excluding erasure)

∀ adversaries A,∀ X ∈ {A,User} ,

∃ efficient algorithm ExtX

Pr[ (er, dr)← G(1k);

(eX, dX)← OUTX,RA (X) er, ·1
k, ·;

c← A(eX, er) :

ExtX( , c, er, eX) = D(c, dr, eX) ] ≥ 1− neg(k)
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Plaintext awareness (2)

• As in standard definition, extractor needs more than
ciphertext

• We use internal history of adversary
◦ Contains all inputs, randomness, state transitions
◦ (Explicitly excluding erasure)

∀ adversaries A,∀ X ∈ {A,User} ,

∃ efficient algorithm ExtX

Pr[ (er, dr)← G(1k);

(eX, dX)← OUTX,RA (X) er, ·1
k, ·;

h
H

←− A;

c← A(eX, er) :

ExtX(h, c, er, eX) = D(c, dr, eX) ] ≥ 1− neg(k)

Plaintext Awareness via Key Registration – p.26/38



Plaintext awareness (3)

• Might as well allow adversary access to decryption oracle
• Encryption oracle?
◦ Now necessary: encryption uses private keys
◦ However, not general enough

• As before, adversary might be in protocol
◦ Access to externally-generated ciphertexts

• Represent this as arbitrary ally oracle L

◦ Looks at history of adversary
◦ Performs some computation, produces plaintext
◦ Encrypted, ciphertext given to adversary

• Encryption oracle functionality as special case
• Adversary’s “challenge” ciphertext not from ally
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Plaintext Awareness (4)

∀ adversaries A,∀ X ∈ {A,User} ,

∃ efficient algorithm ExtX, ∀ PPT allies L,

P r[ (er, dr)← G(1k);

(eX, dX)← OUTX,RA (X) er, ·1
k, ·;

h
H

←− A;

c← A
L
′

dX
(·),D(·,dr,·)(eX, er) :

ExtX(h, c, er, eX) = D(c, dr, eX) given that c not from L

] ≥ 1− neg(k)
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Status

• Previous definition
• Our model
• Our definition
• Our implementation
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NM-NIZK: a useful tool

• Implementation will use non-malleable non-interactive
zero-knowledge proofs [S99]

• Assume a fixed language L ∈ NP

• Exists a long random string σ

• “Prover” knows x ∈ L, witness
• Produces a “proof” π of x relative to σ

• “Verifier” checks proof against σ
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NM-NIZK: a useful tool (2)

Require four properties

1. (Completeness) If prover has x ∈ L and witness, then
verifier accepts π.

2. (Soundness) If x 6∈ L, no (malicious) prover can make
verifier accept

3. (Zero-Knowledge) Proof π reveals nothing about witness

4. (Non-Malleability) A proof π for theorem x cannot be
changed into a proof π′ for a theorem x′
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Sahai’s Encryption Scheme

Will build upon previous scheme [S99]
• Recipient key contains:
◦ Public portions of two (semantically-secure) key pairs
◦ Long random string σ

• Sender encrypts m by:
◦ Encrypting m in each key
◦ Proving (relative to σ) that ciphertexts contain same

plaintext
◦ “plaintext consistency”

• Receiver decrypts by
◦ Checking proof against σ, and
◦ If valid, decrypting either ciphertext

• Shown to be secure against chosen-ciphertext attack
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ZK proofs of knowledge

We also need proof of knowledge [BG92]
• Slight variant to NIZK
• Typically interactive, but still zero-knowledge
• Proves both x ∈ L and prover knows witness
◦ Exists extractor that can produce witness
◦ Additional information: access to prover
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The HLM Scheme

• Receiver key generated as in Sahai’s scheme
• Sender public key contains

1. Semantically-secure encryption key
2. Signature key

• Sender proves knowledge (in ZK) of decryption key to RA

• RA issues certificate binding together encryption, signature
keys

• To encrypt m, sender:
◦ Encrypt in all three keys
◦ Receiver’s two and his own

◦ Prove plaintext consistency
◦ Signs ciphertexts, proof

• Decryption as before, plus signature verification
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Proofs of security

• Theorem: The HLM scheme is plaintext-aware via
key-registration

• Chosen-ciphertext security follows from Sahai’s proof
◦ Need slightly stronger non-malleability properties of the

NIZK proof system
• Plaintext awareness: adversary tries to create a new

ciphertext relative to key registered by X

• Two cases:
◦ X is honest: extractor simply outputs ⊥
◦ Any other result from D means adversary forged

signature
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Proofs of security (2)

• X corrupted (key registered by adversary):
◦ Registration requires proof of knowledge for secret key
◦ Ciphertext contains proof of plaintext consistency
◦ Extractor
◦ Runs extractor from proof of knowledge system, gets

private key
◦ Decrypts component ciphertext

◦ Technicality: adversary may create “new” ciphertext by
changing signature on externally-generated ciphertext
◦ Modify definition of “new” ciphertext, or
◦ Use scheme with unique signatures (specific

assumptions)
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Conclusion

• Proposed a new definition of plaintext-awareness
• Uses a more natural model of public-key cryptography
◦ Utilizes existing third parties
◦ Grants them least possible trust
◦ No new network overhead

• Implemented under general assumptions
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Future work

• Efficiency
◦ General-purpose proof systems inefficient
◦ Replace with faster (specific) implementations

• Anonymity
◦ Blind sender key?
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