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Abstract— There are two main algorithmic approaches to
sparse signal recovery: geometric and combinatorial. The
geometric approach utilizes geometric properties of the mea-
surement matrix ®. A notable example is the Restricted
Isometry Property, which states that the mapping® preserves
the Euclidean norm of sparse signals; it is known that random
dense matrices satisfy this constraint with high probability.
On the other hand, the combinatorial approach utilizes sparse
matrices, interpreted as adjacency matrices of sparse (possibly
random) graphs, and uses combinatorial techniques to recover
an approximation to the signal.

In this paper we present a unification of these two ap-
proaches. To this end, we extend the notion of Restricted Isom-
etry Property from the Euclidean /2 norm to the Manhattan
£1 norm. Then we show that this new/;-based property is
essentially equivalent to the combinatorial notion ofexpansion
of the sparse graph underlying the measurement matrix. At
the same time we show that the new property suffices to
guarantee correctness of both geometric and combinatorial
recovery algorithms.

As a result, we obtain new measurement matrix construc-
tions and algorithms for signal recovery which, compared to
previous algorithms, are superior in either the number of
measurements or computational efficiency of decoders.

I. INTRODUCTION

With the rise in high-speed data transmission and th

exponential increase in data storage, it is imperative iteat

develop effective data compression techniques, techgiqu
which accomodate both the volume and speed of data

streams. A new approach to compressinglimensional

vectors (or signals) begins with linear observations or-mea
surements. For a signal its compressed representation is

equal to®z, where® is a carefully chosem: x n matrix,

m < n, often chosen at random from some distribution. We
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call the vector®x the measurement vectar a sketchof .
Although the dimension oz is much smaller than that of
x, it retains many of the essential propertiesrof

There are several reasons why linear compression or
sketching is of interest. First, we can easily maintain adin
sketch®z under linear updates to the signalFor example,
after incrementing theé-th coordinater;, we simply update
the sketch a®(z+e;) = ®a+Pe;. Similarly, we also easily
obtain a sketch of a sum of two signals given the sketches
for individual signalsc andy, since®(x +y) = &z + Py.

Both properties are useful in several computational areas,
notably computing over data streams [AMS99], [Mut03],
[Ind07], network measurement [EVO03], query optimization
and answering in databases [AMS99].

Another scenario where linear compression is of key
importance iscompressed sensingCRT06], [Don06a], a
rapidly developing area in digital signal processing. lis th
setting, « is a physical signal one wishes to sense (e.g.,
an image obtained from a digital camera) and the linear-
ity of the observations stems from a physical observation
process. Rather than first observing a signal in its entirety
and then compressing it, it may be less costly to sense
the compressed version directly via a physical process.

A camera “senses” the vector by computing a dot prod-

uct with a number of pre-specified measurement vectors.

See [TLWF06], [DDT'08] for a prototype camera built

Using this framework. Other applications of linear skatghi
include database privacy [DMTO7].

Although the sketch is considerably smaller than the
original vector, we can still recover a large amount of
information aboutr. See the surveys [Mut03], [Ind07] on
streaming and sublinear algorithms for a broad overview
of the area. In this paper, we focus on retrievingparse
approximationz, of z. A vector is calledk-sparseif it
has at mosk non-zero elements in the canonical basis (or,
more generallyk non-zero coefficients in some basiy.
The goal of the sparse approximation is to find a veator
such that the/,, approximation error|jz — z.||, is at most
C > 0 times the smallest possiblg, approximation error
||z — 2’|, wherez' ranges over alk-sparse vectors. Note
that the error||z — z’||, is minimized whenz’ consists of
the k largest (in magnitude) coefficients of

There are many algorithms for recovering sparse approx-
imations (or their variants) of signals from their sketches
The early work on this topic includes tladggebraicapproach
of [Man92](cf. [GGI02a]). Most of the known algorithms,




however, can be roughly classified as eitcembinatorial  efficient sketch update is not possible. In addition, thébpro
or geometric lem of finding an explicit construction of efficient matrices
Combinatorial approach. In the combinatorial approach, satisfying the RIP property is open [Tao07]; the best known
the measurement matri® is sparse and often binary. explicit construction [DeVO07] yield$)(k?) measurements.
Typically, it is obtained from an adjacency matrix of a Connections. There has been some recent progress in
sparse bipartite random graph. The recovery algorithnobtaining the advantages of both approaches by decoupling
proceeds by iteratively identifying and eliminating “lafg  the algorithmic and combinatorial aspects of the problem.
coefficient$ of the vectorz. The identification uses non- Specifically, the papers [NV07], [DMO08], [NT08] show that
adaptive binary search techniques. Examples of combinat@ne can usgreedymethods for data compressed usitemnse
rial sketching and recovery algorithms include [G®Rb],  matrices satisfying the RIP property. Similarly [GLRO08],
[CCFCO02], [CMO04], [GKMS03], [DWB05], [SBB06b], using the results of [KTO7], show that sketches from
[SBBO06a], [CM06], [GSTV06], [GSTVO07], [Ind08], [XHO7] (somewhat) sparse matrices can be recovered using linear
and others. programming.
The typical advantages of the combinatorial approach The best results (up t@(-) constants) obtained prior to
include fast recovery (often sub-linear in the signal langt  this work are shown in Figure31We ignore some aspects
if & < n), as well as fast and incremental (under coordinateof the algorithms, such as explicitness or universalityhef t
updates) computation of the sketch vecter. In addition, it ~measurement matrices. Furthermore, we present only the
is possible to construct efficient (albeit suboptimal) meas  algorithms that work for arbitrary vectors, while many
ment matriceexplicitly, at least for simple type of signals. other results are known for the case where the vecitself
For example, it is known [Ind08], [XHO7] how to explicitly is exactlyk-sparse; e.g., see [TG05], [DWBO05], [SBBO6b],
construct matrices wittk2(°s106m)°" measurements, for [Don06a], [XHO7]. The columns describe:
signalsx that are exactlyk-sparse. The main disadvantage - citation,

of the approach is the suboptimal sketch length. - whether the recovery algorithms hold with high proba-
Geometric approach. This approach was first proposed bility for All signals or for_Each signal,

in the papers [CRTO06], [Don06a] and has been extensively - sketch length,

investigated since then (see [Gro06] for a bibliographg). | - time to compute®z given z,

this setting, the matrix® is dense, with at least a constant - time to update®z after incrementing one of the coor-

fraction of non-zero entries. Typically, each row of the dinates ofz,

matrix is independently selected from a sub-exponential - time* to recover an approximation af given ®z,

dimensional distribution, such as Gaussian or Bernoutle T - approximation guarantee, and

key property of the matrix@ which yields efficient recovery - whether the algorithm is robust to noisy measurements.

algorithms is theRestricted Isometry Propert{CRTO6], In the approximation error columi, < C/, means that

which requires that for any-sparse vectorr we have ine algorithm returns a vectar, such that||z — .|, <
@[]z = (1+£6)|[z]l2. If @ matrix ® satisfies this property, ¢ yin,, ||z—a|,, wherez’ ranges over alk-sparse vectors.
then the recovery process can be accomplished by finding jg [CDDO6], the authors show that an approximation guaran-
vectorz, using the following linear program: tee of the form ¥, < k%glu implies a“¢; < (1+0(C)){;”
guarantee, and that it is impossible to achieve £ C/¢5”
deterministically (or for all signals simultaneously) es$

The advantages of the geometric approach include '€ number of measurements(i¢n). The parameters’ >
small number of measurement® (¢ log(n/2k)) for Gaus- 12 c > 2. and ¢ > 0 denote absolute constants, possibly
sian matrices and)(k log®") n) for Fourier matrices) and different in each row. We assume thiat< /2.

resiliency to measurement errérhe main disadvantage is N addition, in Figure 2 we present very recent results

the running time of the recovery procedure, which involvesdiscovered during the course of our research. Some of the
running times of the algorithms depend on the “precision

solving a linear program withn variables andn + m ., e
constraints. The computation of the sketeh can be done Parameter’D, which is always bounded from the above by

efficiently for some matrices (e.g., Fourier); however, an

min |z.|; subject to®z, = ®ux. (P1)

3Some of the papers, notably [CM04], are focused on a somewhat
different formulation of the problem. However, it is known thene

lin the non-sketching world, such methods algorithms are oftenguarantees presented in the table hold for those algoritemsed. See
called “weak greedy algorithms”, and have been studied thgitly by Lecture 4 in [Ind07] for a more detailed discussion.

Temlyakov [Tem02] “4In the decoding time column LP=I(R, m, T") denotes the time needed
2Historically, the geometric approach resulted also in thst fileter- to solve a linear program defined by an x n matrix ® which supports
ministic or uniform recovery algorithms, where a fixed matrig was matrix-vector multiplication in timel’. Heuristic arguments indicate that
guaranteed to work foall signalsz. In contrast, the early combinatorial LP(n,m,T) ~ /nT if the interior-point method is employed. In addition,
sketching algorithms only guaranteéd— 1/n probability of correctness the paper [NVO7] does not discuss the running time of the #lgor Our
for eachsignalz. However, the papers [GSTV06], [GSTV07] showed that bound is obtained by multiplying the number of algorithm itemas (i.e.,
combinatorial algorithms can achieve deterministic or unifguarantees k) by the number of entries in the matri (i.e., nk log® n). See [NT08]
as well. for an in-depth discussion of the running times of OMP-basederures.



Paper AIE Sketch length Encode time | Column sparsity/| Decode time Approx. error Noise
Update time
[CCFCO02], [CMO06] E klog®n nlog®n logn klog®n ly < Cly
E klogn nlogn logn nlogn by < Cla
[CMO04] E klog®n nlog®n logn klog®n l < Cly
E klogn nlogn logn nlogn 11 < Cly
[CRTO06] A klog(n/k) nklog(n/k) klog(n/k) LP 02 < 5l Y
A klog®n nlogn klog®n LP Uy < kl%él Y
[GSTVO06] A klog®n nlog®n logn klog®n 1 < Clognt, Y
[GSTVO7] A klog®n nlog®n logn k2 log®n Uy < kl%él
2 160C Clogn)'/?
[NVO7] A klog(n/k) nklog(n/k) klog(n/k) nkZlog®n | ly < —5m—0
N1/2
A klog®n nlogn klog®n nk? log®n lo < C(h;gli/@ﬁl
[GLRO8] A | k(logn)clogloglogn knt—a nl-a LP 0y < kl%el
(k “large”™)
This paper A klog(n/k) nlog(n/k) log(n/k) LP 41 < Cly Y

Fig. 1. Summary of the best prior results.

Paper | A/E | Sketch length| Encode time | Update time Decode time Approx. error | Noise
[DMO8] A klog(n/k) nklog(n/k) | klog(n/k) | nklog(n/k)logD | {2 < k16;2£1 Y
[NTO8] A klog(n/k) nklog(n/k) | klog(n/k) | nklog(n/k)logD | {2 < klc}zfl Y
A klog®n nlogn klog®n nlognlog D lo < kszﬁl Y
[IRO8] A klog(n/k) nlog(n/k) log(n/k) nlog(n/k) l < Cly Y
Fig. 2. Recent work.
|||z if the coordinates of: are integers. with [Cha08], we conclude that these two conditions are

incomparable—neither one is stronger than the other.
Theorem 1:Consider anym x n matrix @ that is the
In this paper we give a sequence of results which indicateidjacency matrix of ar(k,¢)-unbalanced expandef =
that the combinatorial and geometric approaches are, in @4, B, F), |A| = n, |B| = m, with left degreed, such that
rigorous sense, different manifestations of a common uni /e, d are smaller tham. Then the scaled matris /d'/?
derlying phenomenon. This enables us to achieve a unifyingatisfies thekIP,, ;. s property, forl < p <14 1/logn and
perspective on both approaches, as well as obtaining $evera= C¢ for some absolute constaft > 1.
new concrete algorithmic results. The fact that the unbalanced expanders yield matrices
We consider matrices which at@nary andsparse i.e.,  with RIP property is not an accident. In particular, we
they have only a small number of ones in each column, show in Section Il that any binary matri® in which each
and all the other entries are equal to zero. It has been showsblumn hasd one$ and which satisfies RIP- property
recently [Cha08] that such matrices cannot satisfy the RIRyith proper parameters, must be an adjacency matrix of a
property with parametersandd, unless the number of rows good unbalanced expander. That is, an RIBwatrix and
is Q(k?). Our first result is that, nevertheless, such matriceghe adjacency matrix of an unbalanced expander are essen-
satisfy a different form of the RIP property, that we call the tially equivalent. Therefore, RIP-provides an interesting
RIP-p property where thels norm is replaced by thé,  “analytic” formulation of expansion for unbalanced graphs
norm. Formally, the matrix@ satisfiesRIP, ;s property if  Also, without significantly improved explicit constructis
for any k-sparse vector: we have||®x||, = (1 £ d)|z|,.
In particular, we show that this property holds for p < %In fact, the latter assumption can be removed without loss oégsity.
1+ 0O(1)/logn if the matrix ® is an adjacency matrix of The reason is that, from the RIP-property alone, it follows that each
a high-qualityunbalanced expander grapfithus we have a column must have roughly the same number of ones. The slightamtzl
. in the number of ones does not affect our results much; howeveoes
large class of natural such measurement matrices. We al

= ] ) ' Wmplicate the notation somewhat. As a result, we decided ép kbis
exhibit an RIP-2 matrix that is not an RIP-1 matrix, so that,assumption throughout the paper.

A. Our results



of unbalanced expanders with parameters that match thgublinear time algorithms either hdd(k?) rows [CMO6]

probabilistic bounds (a longstanding open problem), we dar had O(%2(°g log")O(l)) rows [Ind08], [XHO7] but were

not expect significant improvements in the explicit constru restricted tok-sparse signals or their slight generalizations.

tions of RIP4 matrices. An additional (and somewhat unexpected) consequence is
Theorem 2:Consider anym x n binary matrix® such  that the algorithm of [Ind08] is simple, effectively mimick

that each column has exactly ones. If for some scaling ing the well-known “parallel bit-flip” algorithm for decodg

factor S > 0 the matrixS® satisfies theRIP, ;5 property, low-density parity-check codes.

then the matrix® is an adjacency matrix of afk, ¢)- Theorem 4:Let ¢ > 0 be a fixed constant, and =

unbalanced expander, for 1+ 1/logn. Considerz € R™ and a sparsity parametér
1 There is a measurement matnx, which we can construct

€= (1 - m>/(2 -V2). explicitly or randomly, and an algorithm HHp) that, given

1 measurements = ¥z of z, returns an approximation of

In the next step in Section Ill, we show that the RIP- : . . o
x with O(k/e) nonzero entries. The approximation satisfies

property of a binary matrix (or, equivalently, the expansio
property) alone suffices to guarantee that the linear progra
P, recovers a good sparse approximation. In particular, we

show the following _ wherez;, is the optimalk-term representation for. Let R
Theorem 3:Let @ be anm x n matrix of an unbalanced denote the size of the measurements for either an explicit
(2k, €)-expander. Leta(e) = (2¢)/(1 — 2¢). Consider any  or random construction. Then the HHS algorithm runs in
two vectorsze, z,, such tha®x = &z, and||z.|1 < [|z|i-  time poly(R).
Then Figure 3 summarizes the connections among all of our
Iz — 2|1 < 2/(1 = 2ale)) - ||z — x| results. We s.how the relationship betwgen the combinéatoria
and geometric approaches to sparse signal recovery

e — &l < kP o — wih.

wherex, is the optimalk-term representation fat.

We also provide a noise-resilient version of the theorem; se

Section 11l for details. Geometric Combinatorial
By combining Theorem 3 with the best known proba- RIP-2 < > RIP-1

bilistic constructions of expanders (Section Il) we obtain

scheme for sparse approximation recovery with parameters

as in Figure 1. The scheme achieves the best known bounds

for several parameters: the scheme is deterministic (one

matrix works for all vectorg:), the number of measurements .

is O(klog(n/k)), the update time i®)(log(n/k)) and the Linear Weadk

encoding time i) (nlog(n/k)). In particular, this provides programming greedy

the first known scheme which achieves the best known _ _ _ _

measurement and encoding time bousisultaneouslyln o géomgﬁfg‘é%r‘gggﬁ?;ﬁgtt‘;]rgfv\tlgenﬁ'iﬁtgggsbees“’g?(ﬁmggg

contrast, the Gaussian and Fourier matrices are known t@onnections established in prior work are shown with dadies. Our

achieve only one optimal bound at a time. The fast encodingyork connects both approaches, with the ultimate goal of iioig: the

time also speeds up the LP decoding, given that the lineaf®st o Poth worlds.

program is typically solved using the interior-point medho

which repeatedly performs matrix-vector multiplicatioihs

addition to theoretical guarantees, random sparse matrice |l. UNBALANCED EXPANDERS AND RIP MATRICES

offer an attractive empirical performance. We show in Sec-A Unbalanced expanders

tion IV that the empirical behavior of binary sparse masice * -

with LP decoding is consistent with the analytic performanc  In this section we show that RIpP-matrices forp ~ 1

of Gaussian random matrices. can be constructed using high-quality expanders. The forma
In the full version of this paper [BGI08], we show that definition of the latter is as follows.

adjacency matrices of unbalanced expanders can be aug-Definition 5: A (k, ¢)-unbalanced expandés a bipartite

mented to facilitate sub-linear time combinatorial reegve simple graphG = (A, B, E) with left degreed such that

This fact has been implicit in the earlier work [GSTV07], for any X C A with |X| < &, the set of neighborsV(X)

[Ind08]; we verify that indeed the expansion property isof X has size N(X)| > (1 — ¢)d| X|.

the sufficient condition guaranteeing correctness of those In constructing such graphs, our goal is to makg, d,

algorithms. As a result, we obtain an explicit constructionande as small as possible, while makirkigas close tgB|

of matrices withO(k2(°¢10e™)”") rows that are amenable as possible.

to a sublinear decoding algorithm for all vectors (similar The following well-known proposition can be shown

to that in [GSTVO07]). Previous explicit constructions for using the probabilistic method.




Proposition 6: For any n/2 > k > 1, ¢ > 0,

there exists a(k,e)-unbalanced expander with left de-

greed = O(log(n/k)/e and right set sizeO(kd/e) =
O(klog(n/k)/€?).

Proposition 7: For anyn > k£ > 1 ande > 0, one can
explicitly construct a(k, ¢)-unbalanced expander with left
degreed = 20(ce(los(n)/))*  |eft set sizen and right set
sizem = kd/e°M.

Proof: The construction is given in [CRVWO02], The-
orem 7.3. Note that the theorem refers to notioroskless

conductors which is equivalent to unbalanced expanders,

Lemma 9:We have

S el < edlel,

(i,5)EE"

Proof: For eacht = 1...dn, we use an indicator
variabler; € {0, 1}, such that, = 1 iff e, € E”. Define a
vector z € R such thatz, = |z;,|. Observe that

Yo lml= )

(i,J)eE" et=(it,jt)EE

re|z,| =1z

To upper bound the latter quantity, observe that the vectors

modulo representing all relevant parameters (set sizes, déatisfy the following constraints:

gree, etc.) in the log-scale. After an additiod(nd)-time

postprocessing, we can ensure that the graph is simple; i.e.

it contains no duplicate edges. [ ]

B. Construction of RIP matrices
Definition 8: An m x n matrix ® is said to satisfy
RIP, ;. s if, for any k-sparse vectog, we have
[z]], < [ @[], < (1+0) [,
Observe that the definitions &P, , s andRIP; j, s ma-

trices are incomparable. In what follows below, we present

sparse binary matrices witt)(klog(n/k)) rows that are

RIP; 1 5; it has been shown recently [Cha08] that sparse bi-

nary matrices cannot be RIR s unless the number of rows

is Q(k?). In the other direction, consider an appropriately

scaled random Gaussian matix of R ~ klog(n) rows.
Such a matrix is known to be RIR. 5. To see that this matrix
is not RIP; 1, 5, consider the signat consisting of all zeros
except a single 1 and the signglconsisting of all zeros
exceptk terms with coefficient /k. Then||z|; = ||y||1 but
Gz ]y ~ VE|IGy]1.

Theorem 1 Consider anym x n matrix ¢ that is the
adjacency matrix of ank, e)-unbalanced expande@ =
(A, B, E) with left degreed, such thatl/e,d are smaller
thann. Then the scaled matri® /d'/? satisfies th&RIP,, ;. 5
property, forl < p < 14 1/logn and§ = Ce for some
absolute constant’ > 1.

Proof: Letz € R" be ak-sparse vector. Without loss of
generality, we assume that the coordinates @fre ordered
such thatlz1| > ... > |z,].

o The vectorz is non-negative.
The coordinates of are monotonically non-increasing.

o For eachprefix setP, = {1...di}, i < k, we

have||r p, |1 < edi - this follows from the expansion
properties of the graphy.

« 7p, = 0, since the graph is simple.

It is now immediate that for any, z satisfying the above
constraints, we have-z < ||z||1e. Since||z||; = d||z|1, the
lemma follows. ]
Lemma 9 immediately implies thg@z||, > d||z|, (1—
2¢). Since for anyz we have||®z||, < d|z|,, it follows
that ®/d satisfies theRIP; ;2. property.

The case ofp < 1+ 1/logn. See the full version of this
paper [BGI-08].
]

The above theorem shows that one can constructpRIP-
matrices forp ~ 1 from good unbalanced expanders. In
following, we show that this is not an accident: any binary
matrix ® in which satisfies RIR- property with proper
parameters, and with each column having exadtlgnes,
must be an adjacency matrix of a good unbalanced expander.
This reason behind this is that if some set of vertices does
not expand too well, then there are many collisions between
the edges going out of that set. If the signs of the coordéate
“following” those edges are different, the coordinates! wil
cancel each other out, and thus thenorm of a vector will
not be preserved.

The assumption that each column has exadtignes is
not crucial, since the RIR-property itself implies that the
number of ones in each column can differ by at most factor

The proof proceeds in two stages. In the first part, weof 1 + . All proofs in this paper are resilient to this slight

show that the theorem holds for the casepof 1. In the
second part, we extend the theorem to the case whése
slightly larger than.

The case ofp = 1. We order the edges; = (i, j;), t =
1...dn of G in a lexicographic manner. It is helpful to
imagine that the edges, e, ... of E are being added to
the (initially empty) graph. An edge; = (i;,j:) causes a
collision if there exists an earlier edge = (is, js), s < t,
such thatj; = j,. We defineE’ to be the set of edges which
do not cause collisions, and”’ = E — E’.

unbalance. However, we decided to keep this assumption for
the ease of notation.

Theorem 2 Consider anym x n binary matrix® such that
each column has exactly ones. If for some scaling factor
S > 0 the matrix S® satisfies theRIP, , s property, then
the matrix® is an adjacency matrix of afs, ¢)-unbalanced
expander, for

= (“ﬁ)/(?*\@)

Note that for small values of > 0, we have



1
(1- )/ VR~ 3/ - VD)
Proof: LetG = (A, B, E) be the graph with adjacency
matrix ®. Assume that there exist§ C A, |X| =k <k
such that|N(X)| < dk’(1 — €). We will construct twon-
dimensional vectorg, z such that||y||, = ||z|; = &', but
@z, /1®yll, <1-e(2—+2), which is a contradiction.

The vectory is simply the characteristic vector of the set

X. Clearly, we havd|y||, = k¥’ and ||®y||, = dk.

The vectorz is defined via a random process. Eat X,
definer; to be i.i.d. random variables uniformly distributed
over {—1,1}. We definez; = r; if i € X, andz;, = 0
otherwise. Note thatz|, = |y||, = %'

Let C € N(X) be the “collision set”, i.e., the set of all
j € N(X) such that the number; of the edges frony to
X is at least2. Let |C| = [. By the definition of the set
C we have) u; > 2l. Moreover, from the assumption it
follows that_; u; > 2edk’.

Let v Pz. We split v into ve and vee. Clearly,
[veelly, = K'd =32 u;. It suffices to show thafjvc ||, is
significantly smaller tharEj u; for somez.

Claim 10: The expected value oflvc||> is equal to

Zj Uj.

Proof: For eachj € C, the coordinate; is a sum of

u; independent random variables uniformly distributed over

{—1,1}. The claim follows by elementary analysis. ®
By Claim 10 we know that therexists z such that

Zj uj . .
lvell, < /32 u; < =/ This implies that||vc||, <
Vi|vell, < Z\;;j. Therefore
lolly < velly + llveelly
25U
< L= v dk )
= dK —(1-1/v2)) u,
j
< dK — (1 —1/V?2) - 2edk’

dk'[1 — (2 — V2)]

1.
In this section we show that ifl is an adjacency matrix

LP DECODING

small subset of its coordinates. An analogous result for RIP
2 matrices and with respect to tile norm has been used
before (e.g., in [KTO7]) to show guarantees for LP-based
recovery procedures.

Lemma 11:Consider anyy € R™ such that®y = 0, and
let S be any set of coordinates ofy. Then we have

lyslly < a(e)llylls-
Proof: Without loss of generality, we can assume that

S consists of the largest (in magnitude) coefficienty.oiVe
partition coordinates into sefs), S1, So, ... S, such that (i)
the coordinates in the se&t; are not larger (in magnitude)
than the coordinates in the s8t 1, [ > 1, and (i) all sets
but S; have sizek. Therefore,Sy = S. Let @' be a submatrix
of ® containing rows fromV (.5).

From the equivalence of expansion and RIP-1 property
we know that||®'ys||1 = ||Pyslli > d(1 — 2¢)||ys|1. At
the same time, we know thd®’y||; = 0. Therefore

0 = [®ylh
> | @yslh = > i
I>1 (i,j)€EE1€S;,jEN(S)
> d(1-26)|ysl — > IE(S;: N(S))] oin |yl
1>1 -t
1
2 d(1=2¢)llys] — S IES : N(S))| - llys,_ Il

>1

From the expansion properties 6f it follows that, for
1 >1, we have|N(SUS;)| > d(1 —€)|SUS. It follows
that at mostde2k edges can cross frorfi; to N(S), and
therefore

1
0 > d(1—2¢)lys|: — %Z [E(Sy: N(S)| - [lys, . 11
>1
> d(1-20)|lysly — de2 " llys,_, ll1/k
1>1
> d(1 —2¢)|lysll1 — 2delly|l1

It follows that d(1 — 2€)|lys|i < 2delly||:, and thus
lyslli < (2€)/(1 = 2¢) [yl n

B. LP recovery

The following theorem provides recovery guarantees for
the programP;, by settingu = 2 andv = z,.

of an expander graph, then the LP decoding procedure cah€orem 3 Consider any two vectors, v, such that for

be used for recovering sparse approximations.

y = v —u we have®y = 0, and ||v||; < |jul;. Let S be

Let & be anm x n adjacency matrix of an unbalanced the set ofk largest (in magnitude) coefficients of then

(2k, e)-expandelG with left degreed. Let a(e) = (2¢)/(1—
2¢). We also definedg(X : V) = EN(X xY) to be the set
of edges between the seks andY'.

A. L1 Uncertainty Principle

In this section we show that any vector from the kernel of

a an adjacency matrise of an expander graph is “smooth”;

i.e., the/; norm of the vector cannot be concentrated on a

o —ully <2/(1 = 2a(€)) - [lu — us|

Proof: We have

fullh > vl = (u+y)sll +[[(w+y)selh
> Nluslli = llysllt + lysellr — [[use |l
= lulli = 2|luselli + Iyl = 2[lys |l
> lully = 2[juse|[1 + (1 = 2a(e)) [yl



Probability of exact recovery, signed signals

0 0.2 0.4 0.6 0.8 1
5

Probability of exact recovery, positive signals

0.91

0.8r

0.7r

0.6

0.41

0.3r

0.2r

0.1r

0

o] 0.2 0.4 0.6 0.8 1
[

Fig. 4. Probability of correct signal recovery of a randérsparse signal

z € {—1,0,1}" (left) andz € {0,1}"™ (right) as a function ofc = pm
andm = dn, for n = 200. The probabilities were estimated by partitioning
the domain into40 x 40 data points and performing 50 independent trials
for each data point, using random sparse matrices with 8. The thick
curve demarcates a phase transition in the ability of LP dagotb find
the sparsest solution @z, = Gz for G a Gaussian random matrix (see
[DTO6]). The empirical behavior for binary sparse matricecassistent

with the analytic behavior for Gaussian random matrices.

where we used Lemma 11 in the last line. It follows that

2[use |l > (1 = 2a(e))|lyllx

Theorem 12:Consider any two vectors, v, such that for
y =v —u we have||®y|; =4 >0, and|v||; < |lul;. Let
S be the set oft largest (in magnitude) coefficients af

Then

v —uslly < 2/(1 - 2a(e)) - [lus- 2

1+

0.1

Proof: Analogous to the proof of Theorem 3.

IV. EXPERIMENTAL RESULTS

d(1 —2¢)(1 —2a)

of those constant factors, we show in Figure 4 the empirical
probability of correct recovery of a randoisparse signal

of dimensionn = 200 as a function ofk = pm and

m = on. As one can verify, the empiricaD(-) constants
involved are quite low. The thick curve shows the analytic
computation of the phase transition between the survival of
typical I-faces of the cross-polytope (left) and the polytope
(right) under projection byG' a Gaussian random matrix.
This line is equivalent to a phase transition in the ability o
LP decoding to find the sparsest solutionde, = Gz, and,

in effect, is representative of the performance of Gaussian
matrices in this framework (see [Don06b] and [DTO6] for
more details). Gaussian measurement matrices with-

on rows andn columns can recover signals with sparsity
k = pm below the thick curve and cannot recover signals
with sparsity & above the curve. This figure thus shows
that the empirical behavior of binary sparse matrices with
LP decoding is consistent with the analytic performance
of Gaussian random matrices. Furthermore, the empirical
values of the asymptotic constants seem to agree. See [BI08]
for further experimental data.

V. CONCLUSION

We show in this paper that the geometric and the com-
binatorial approaches to sparse signal recovery are differ
ent manifestations of a common underyling phenomenon.
Thus, we are able to show a unified perspective on both
approaches—the key unifiying elements are the adjacency
matrices of unbalanced expanders.

In most of the recent applications obmpressed sensing
a physical device instantiates the measurement afid, as
such, these applications need measurement matrices which
are conducive to physical measurement processes. This
paper shows that there is another, quite different, large,
natural class of measurement matrices, combined with the
same (or similar) recovery algorithms for sparse signal
approximation. These measurement matrices may or may not
be conducive to physical measurement processes but they are
quite amenable to computational or digital signal measure-
ment. Our work suggests a number of applications in digital
or computational “sensing” such as efficient numericaldine
algebra and network coding.

The preliminary experimental analysis exhibits interggti
high-dimensional geometric phenomena as well. Our results
suggest that the projection of polytopes under Gaussian
random matrices is similar to that of projection by sparse
random matrices, despite the fact that Gaussian random
matrices are quite different from sparse ones.

Acknowledgments: The authors would like to thank:
Venkat Guruswami and Salil Vadhan, for their help on
the expanders front; David Donoho and Jared Tanner for

Our theoretical analysis shows that, up to constant factorgproviding the data for the analytic Gaussian treshold curve
our scheme achieves the best known bounds for sparse Figure 4; Justin Romberg for his help and clarifications
approximate recovery. In order to determine the exact galueregarding the/;-MAGIC package; and Tasos Sidiropoulos



for many helpful comments. [GSTV07] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Varsin.
One sketch for all: fast algorithms for compressed sensing. In
ACM STOC 2007pages 237-246, 2007.

[Ind07] P. Indyk. Sketching, streaming and sublinear-space
REFERENCES algorithms. Graduate course notes, available at
[AMS99]  N. Alon, Y. Matias, and M. Szegedy. The Space Compjexi 288? I1stellar.mt.edu/ S/ course/6/fa07/6.895/,
of Approximating the Frequency Momentk.Comput. System : - . .
Sci p§8(1):137—?47 1993. ¥ P 4 [Ind08] P. Indyk. Explicit constructions for compressed sirg of
[BGIT08] R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, and M. J. sparse signaisSODA 2008.

[IR0O8] P. Indyk and M. Ruzic. Fast and effective sparse recpv

Strauss. Combining geometry and combinatorics: a unified ) . .
99 y using sparse random matrice®reprint, 2008.

approach to sparse signal recoveayXiv:0804.4666 2008. -
[B108] R. Berinde and P. Indyk. Sparse recovery using spasdom [KTO7] B. S. Kashin and V. N. Temlyakov. A remark on compressed
matrices.MIT-CSAIL Technical Repar2008. sensing.Preprint, 2007.' . . .
[CCFC02] M. Charikar, K. Chen, and M. Farach-Colton. Finglirequent [Man92] Y. Mansour. Rapdomlzed interpolation and approxiomabf
items in data streamdCALP, 2002. MUto3 ;parif pholinomlaISICALP,DlQQZ. - Algorith d
[CDDO06] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensiné utos] - Muthukrishnan. ata strea’ms. gorithms  an
and bestk-term approximationPreprint, 2006. applications (invited talk at soda’03). Available at

! . s http://athos.rutgers.edg/muthu/stream-1-1.pL2003.
Cha08 V. Chandar. A negative result concerning explicittnoas . ;
[ ] with the restricted igometry propert?.reprintg 200%. [NTO8] D. Negdell and J. A. Trc_)pp. Cosamp: Iterative _S|gnabmzry
[CMO04] G. Cormode and S. Muthukrishnan. Improved data stream forggé ;nSCSng%StSe and inaccurate sampleshrxiv math.NA
summaries: The count-min sketch and its applications. : : . . . .
FSTTCS 2004. [NVO7] D. Ne_edell and R. Vershynln. l_Jnlform uncertalntylm!ple
[CMO06] G. Cormode and S. Muthukrishnan. Combinatorial akjons an_d Sz'%g;;l recovery via regularized orthogonal matching pur
3 ; suit. .
?éigﬁggrgﬁzegyif:;g?ﬁcﬁ%% 4l\(3lti1rA2n(;166Conf. Information [SBB06a] S. Sarvotham, D. Baron, and R. G. Baraniuk. Compdesse

N . sensing reconstruction via belief propagatiofechnical Re-
CRTO6 E. J. Cands, J. Romberg, and T. Tao. Stable signal recover - ) .
: ] from incomplete and ina?ccurate measuremems?nm. Pure y port ECE-0601, Electrical and Computer Engineering Depart
Appl. Math, 59(8):1208-1223, 2006. [SBBO6b] 2ergésgti:n?lvgrséargg&and R. G. Baraniuk. Sudazede
[CRVWO02] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigdersean- . i ’ e :

domness conductors and constant-degree lossless expanders fast me;tsurltagﬁent and I'eCOﬂSt][uCtIOI‘l_ of sEarse (s)(gglEiEE
STOC-CCC 2002. International Symposium on Information TheoR006.

[DDT+08] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun [Tao07] T. Tao. Open question: deterministic uup matrid¥eblog at

- : A ; . http://terrytao.wordpress.com 2007.
K. Kelly, and R. Baraniuk. Single-pixel imaging via com- ’ S )
pressive samplinglEEE Signal Processing Magazin2008. [Tem02] V. Temlyakov. Nonlinear methods of approximatiéiounda

[DeV07]  R. DeVore. Deterministic constructions of compreksensing [TGO5] gor;s ?rci)%mgﬁé. Rﬂact:h.gill)k/):r(t)ozéignal recovery from fiak
matrlc_(es.preprlnp 2007'. . . information via Orthogonal Matching Pursuit. Submitted to
[DMO08] W. Dai and O. Milenkovic. Subspace pursuit for comsies IEEE Trans. Inform. TheoryApril 2005
sensing: Closing the gap between performance and complex + ’ : . .
ity. Arxiv:0803.0811 2008. [TLW+06] Dharmpal Takhar, Jason Laska, Michael B. Wakin, Marco F.

. . Duarte, Dror Baron, Shriram Sarvotham, Kevin Kelly, and
[DMTO7]  C. Dwork, F. McSherry, and K. Talwar. The price of yaty h ' . o . '
and the limits of Ip decodingSTOG 2007. Richard G. Baraniuk. A new compressive imaging camera

[Don06a] D. L. Donoho. Compressed SensindEEE Trans. Info. architecture_using _optlcal-domaln compression. - Aroc.
Theory 52(4):1289—1306, Apr. 2006 IS&T/SPIE Symposium on Electronic Imagir&p06.
[Donosh] DavidyL oo Higih—(?irﬁensio.nal centrally-symriet [XHO7]  W. Xu and B. Hassibi. Efficient compressive sensinghwit

- . h ) ; A determinstic guarantees using expander grapB&E Infor-
polytopes with neighborliness proportional to dimension. mation Theory Worksho2007
Disc. Comput. Geomet85(4):617-652, 2006. ’
[DTO6] D. L. Donoho and J. Tanner. Thresholds for the recpwar
sparse solutions via 11 minimizatioRroc. of the 40th Annual
Conference on Information Sciences and Systems (CISS)
2006. To appear.
[DWB05] M. F. Duarte, M. B. Wakin, and R. G. Baraniuk. Fast
reconstruction of piecewise smooth signals from random pro-
jections. InProc. SPARSQ5Rennes, France, Nov. 2005.
[EVO3] C. Estan and G. Varghese. New directions in traffic meas
ment and accounting: Focusing on the elephants, ignoring the
mice. ACM Transactions on Computer Syster2803.
[GGIT02a] A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan, and
M. Strauss. Near-optimal sparse fourier representatioas vi
sampling. STOG 2002.
[GGIT02b] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukr-
ishnan, and M. J. Strauss. Fast, small-space algorithms for
approximate histogram maintenance. AGM Symposium on
Theoretical Computer Scienc2002.
[GKMSO03] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and Nbtrauss.
One-Pass Wavelet Decompositions of Data Streant<EE
Trans. Knowl. Data Eng.15(3):541-554, 2003.
[GLRO8] V. Guruswami, J. Lee, and A. Razborov. Almost euclidea
subspaces of I1 via expander cod8©ODA 2008.
[Gro06] Rice DSP Group. Compressed sensing resourdeailable
athttp://ww. dsp. ece. ri ce. edu/ cs/, 2006.
[GSTVO06] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vsrsin.
Algorithmic linear dimension reduction in thé, norm for
sparse vectors. Submitted for publication, 2006.



