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Post Office:  What is the area of service?

q

q : free point

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points



March 1, 2005 Lecture 8: Voronoi Diagrams

Definition of Voronoi Diagram

• Let P be a set of n distinct points (sites) in the 
plane.

• The Voronoi diagram of P is the subdivision of 
the plane into n cells, one for each site.

• A point q lies in the cell corresponding to a site 
pi ∈ P iff ||q-pi || < ||q-pj ||, for each pi ∈ P, j ≠ i.
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Demo

http://www.diku.dk/students/duff/Fortune/
http://wwwpi6.fernuni-hagen.de/GeomLab/VoroGlide/
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Jeff’s Erickson Web Page
See also the implementation page from Christopher Gold's site www.Voronoi.com. 

Enough already!! 

Delaunay triangulations and farthest point Delaunay triangulations using 3d convex hulls by Daniel Mark Abrahams-Gessel, fortunately stolen by Anirudh Modi
before the original page was taken off the Web. This is the best one!

Convex hulls, Delaunay triangulations, Voronoi diagrams, and proximity graphs by James E. Baker, Isabel F. Cruz, Luis D. Lejter, Giuseppe Liotta, and Roberto 
Tamassia. Source code is available. 

Incremental Delaunay triangulations and Voronoi diagrams by Frank Bossen
Voronoi Diagram/Delaunay Triangulation by Paul Chew uses a randomized incremental algorithm with "brute force" point location. 
2-Site Voronoi diagrams by Matt Dickerson, from the Middlebury College Undergraduate Research Project in Computational Geometry

The convex hull/Voronoi diagram applet from the GeomNet project provides a secure Java wrapper for existing (non-Java) code. The applet calls qhull to build its 
convex hulls and Steve Fortune's sweep2 to build its Voronoi diagrams. A forms interface to the same programs is also available. 

VoroGlide, by Christian Icking, Rolf Klein, Peter Köllner, and Lihong Ma. Smoothly maintains the convex hull, Voronoi diagram, and Delaunay triangulation as 
points are moved, illustrates incremental construction of the Delaunay triangulation, and includes a recorded demo. Now on a faster server! 

Delaunay triangulations by Geoff Leach compares several (very) naïve algorithms. Source code is available. 
Bisectors and Voronoi diagrams under convex (polygonal) distance functions by Lihong Ma. The diagram is updated on the fly while sites or vertices of the unit 

ball are inserted, deleted, or dragged around. Very cool! 
Delaunay triangulations and Dirichlet tesselations and a short applet-enhanced tutorial by Eric C. Olson 
The Voronoi Game by Dennis Shasha. Try to place points to maximize the area of your Voronoi regions. 
Higher-order Voronoi diagrams by Barry Schaudt
Tessy, yet another interactive Voronoi/Delaunay demo from Keith Voegele. Java not required. 

ModeMap, by David Watson, draws Voronoi diagrams, Delaunay triangulations, natural neighbor circles (circumcircles of Delaunay triangles), and (for the very 
patient) radial density contours on the sphere. Don't give it more than 80 points. 

Delaunay Triangulation from Zhiyuan Zhao's JAVA Gallery of Geometric Algorithms
Delaunay Triangulation Demo at ESSI, Université de Nice/Sophia-Antipolis, France. X terminal required instead of Java. Extremely slow, at least on this side of the 

Atlantic. 
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Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases
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Voronoi Diagram Example:
1 site
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Two sites form a perpendicular 
bisector

Voronoi Diagram is a line
that extends infinitely in 
both directions, and the
two half planes on either
side.
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Collinear sites form a series of 
parallel lines
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Non-collinear sites form Voronoi 
half lines that meet at a vertex

A Voronoi vertex is 
the center of an empty
circle touching 3 or 
more sites.

v

Half lines

A vertex has
degree ≥ 3
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Voronoi Cells and Segments

v
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Voronoi Cells and Segments

v

Unbounded CellBounded Cell

Segment
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Pop quiz

vWhich of the following is true for
2-D Voronoi diagrams? 

Four or more non-collinear sites are…
1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above
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Pop quiz

vWhich of the following is true for
2-D Voronoi diagrams? 

Four or more non-collinear sites are…
1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above
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Degenerate Case: 
no bounded cells!

v
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Summary of Voronoi Properties
A point q lies on a Voronoi edge between sites pi and 
pj iff the largest empty circle centered at q touches 
only pi and pj
– A Voronoi edge is a subset of  locus of points equidistant 

from pi and pj

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points
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Summary of Voronoi Properties
A point q is a vertex iff the largest empty circle 
centered at q touches at least 3 sites
– A Voronoi vertex is an intersection of 3 more segments, 

each equidistant from a pair of sites

e

e : Voronoi edge

v
v : Voronoi vertex

pi

pi : site points
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Voronoi diagrams have linear 
complexity {v, e = O(n)}

Intuition: Not all bisectors are Voronoi edges!

e

e : Voronoi edge

pi

pi : site points
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Voronoi diagrams have linear 
complexity {v, e = O(n)}

Claim: For n ≥ 3, v ≤ 2n − 5 and e ≤ 3n − 6
Proof: (General Case)
• Euler’s Formula: for connected, planar graphs,

v – e + f = 2 
Where:
v is the number of vertices
e is the number of edges
f   is the number of faces
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Voronoi diagrams have linear 
complexity {v, e = O(n)}

Claim: For n ≥ 3, v ≤ 2n − 5 and e ≤ 3n − 6
Proof: (General Case)
• For Voronoi graphs, f = n (v +1) – e + n = 2

epi

p∞

To apply Euler’s Formula, we
“planarize” the Voronoi diagram 
by connecting half lines to 
an extra vertex.
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Voronoi diagrams have linear 
complexity {v, e = O(n)}

Moreover,

and

so

together with

we get, for n ≥ 3

ev
PVorv

⋅=∑
∈

2)deg(
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A really degenerate case

• The graph has “loops”, i.e., edges from p∞ to itself 
• The “standard” Euler formula does not apply
• But:

– One can extend Euler formula to loops (each loop creates a 
new face) and show that it still works

– Or, one can recall that the Voronoi diagram for this case has 
still a linear complexity

…
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Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases
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Constructing Voronoi Diagrams

Given a half plane intersection algorithm…
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Constructing Voronoi Diagrams

Given a half plane intersection algorithm…
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Constructing Voronoi Diagrams

Given a half plane intersection algorithm…

Repeat for each site

Running Time: 
O( n2 log n )
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Faster Algorithm

• Fortune’s Algorithm:
– Sweep line approach
– Voronoi diagram constructed as horizontal line 

sweeps the set of sites from top to bottom
– Incremental construction:

• maintains portion of diagram which cannot change 
due to sites below sweep line, 

• keeps track of incremental changes for each site 
(and Voronoi vertex) it “sweeps”



March 1, 2005 Lecture 8: Voronoi Diagrams

Algorithms Outline

• Ideas
• Data structures
• Events
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Invariant
What is the invariant we are looking for?

Maintain a representation of the locus of points q that 
are closer to some site pi above the sweep line than to 

the line itself (and thus to any site below the line).

e
v

pi

Sweep Line

q
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Beach line
Which points are closer to a site above the sweep 

line than to the sweep line itself?

Sweep Line

pi

q

The set of parabolic arcs form a beach-line that bounds 
the locus of all such points 

Equidistance
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Edges
Break points trace out Voronoi edges.

Equidistance

Sweep Line

pi

q



March 1, 2005 Lecture 8: Voronoi Diagrams

Arcs flatten out as sweep line moves down.

Sweep Line

pi

q
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Eventually, the middle arc disappears.

Sweep Line

pi

q
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We have detected a circle that is empty (contains no 
sites) and touches 3 or more sites.

Circle Event

Sweep Line

pi

q

Voronoi vertex!
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Beach Line Properties

• Voronoi edges are traced by the break 
points as the sweep line moves down.
– Emergence of a new break point(s) (from 

formation of a new arc or a fusion of two 
existing break points) identifies a new edge

• Voronoi vertices are identified when two 
break points meet (fuse).
– Decimation of an old arc identifies new vertex
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Algorithms Outline

• Ideas
• Data structures
• Events
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Data Structures

• Current state of the Voronoi diagram
– Doubly linked list of half-edge, vertex, cell records

• Current state of the beach line
– Keep track of break points
– Keep track of arcs currently on beach line

• Current state of the sweep line
– Priority event queue sorted on decreasing y-coordinate
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Doubly Linked List (D)
• Goal: a simple data structure that allows an 

algorithm to traverse a Voronoi diagram’s 
segments, cells and vertices

e
v

Cell(pi)
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Doubly Linked List (D)
• Divide segments into uni-directional half-edges
• A chain of counter-clockwise half-edges forms a cell
• Define a half-edge’s “twin” to be its opposite half-edge of the 

same segment

e
v

Cell(pi)
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Doubly Linked List (D)

• Cell Table
– Cell(pi) : pointer to any incident half-edge

• Vertex Table
– vi : list of pointers to all incident half-edges

• Doubly Linked-List of half-edges; each has:
– Pointer to Cell Table entry
– Pointers to start/end vertices of half-edge
– Pointers to previous/next half-edges in the CCW chain
– Pointer to twin half-edge
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Balanced Binary Tree (T)
• Internal nodes represent break points between two arcs

– Also contains a pointer to the D record of the edge being traced

• Leaf nodes represent arcs, each arc is in turn represented 
by the site that generated it
– Also contains a pointer to a potential circle event

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

pi
pj

pk
pl

l
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Event Queue (Q)

• An event is an interesting point encountered by the 
sweep line as it sweeps from top to bottom
– Sweep line makes discrete stops, rather than a 

continuous sweep

• Consists of Site Events (when the sweep line 
encounters a new site point) and Circle Events 
(when the sweep line encounters the bottom of an 
empty circle touching 3 or more sites).

• Events are prioritized based on y-coordinate
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Summarizing Data Structures

• Current state of the Voronoi diagram
– Doubly linked list of half-edge, vertex, cell records

• Current state of the beach line
– Keep track of break points

• Inner nodes of binary search tree; represented by a tuple
– Keep track of arcs currently on beach line

• Leaf nodes of binary search tree; represented by a site that 
generated the arc

• Current state of the sweep line
– Priority event queue sorted on decreasing y-coordinate
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Algorithms Outline

• Ideas
• Data structures
• Events
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Circle Event
An arc disappears whenever an empty circle touches 

three or more sites and is tangent to the sweep line.

Sweep line helps determine that the circle is indeed empty.

Circle Event!
Sweep Line

pi
q

Voronoi vertex!
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Site Event
A new arc appears when a new site appears.  

l
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Site Event
A new arc appears when a new site appears.  

l
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Site Event
Original arc above the new site is broken into two

Number of arcs on beach line is O(n)

l
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Event Queue Summary
• Site Events are 

– given as input
– represented by the (x,y)-coordinate of the site point

• Circle Events are
– represented by the (x,y)-coordinate of the lowest point of an empty 

circle touching three or more sites
– computed on the fly (intersection of the two bisectors in between 

the three sites)
– “anticipated”: these newly generated events may represented by 

the (x,y)-coordinate of the lowest point of an empty circle touching 
three or more sites; they can be false and need to be removed later

• Event Queue prioritizes events based on their y-
coordinates
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“Algorithm”

1. Initialize 
• Event queue Q all site events
• Binary search tree T  ∅
• Doubly linked list D ∅

2. While Q not ∅,
• Remove event (e) from Q with largest y-

coordinate
• HandleEvent(e, T, D)
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Handling Site Events

1. Locate the existing arc (if any) that is above the 
new site

2. Break the arc by replacing the leaf node with a 
sub tree representing the new arc and its break 
points

3. Add two half-edge records in the doubly linked 
list

4. Check for potential circle event(s), add them to 
event queue if they exist
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Handling Circle Events

1. Add vertex to corresponding edge record in doubly 
linked list

2. Delete from T the leaf node of the disappearing arc 
and its associated circle events in the event queue

3. Create new edge record in doubly linked list
4. Check the new triplets formed by the former 

neighboring arcs for potential circle events
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Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases
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Handling Site Events
1. Locate the leaf representing the existing arc 

that is above the new site
– Delete the potential circle event in the event queue

2. Break the arc by replacing the leaf node with a 
sub tree representing the new arc and break 
points

3. Add a new edge record in the link list
4. Check for potential circle event(s), add them to 

queue if they exist
– Store in the corresponding leaf of T a pointer to the 

new circle event in the queue

Running Time

O(log n)

O(1)

O(1)

O(1)
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Handling Circle Events

1. Delete from T the leaf node of the 
disappearing arc and its associated 
circle events in the event queue

2. Add vertex record in doubly link list
3. Create new edge record in doubly 

link list
4. Check the new triplets formed by the 

former neighboring arcs for potential 
circle events

Running Time

O(log n)

O(1)

O(1)

O(1)
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Total Running Time

• Each new site can generate at most two new 
arcs →beach line can have at most 2n – 1 
arcs

• Each “false circle event” can be charged to 
a real event → O(n) events

• Site/Circle Event Handler O(log n)

O(n log n) total running time
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Is Fortune’s Algorithm Optimal?
• We can sort numbers using any algorithm that 

constructs a Voronoi diagram!

• Map input numbers to a position on the number 
line.  The resulting Voronoi diagram is doubly 
linked list that forms a chain of unbounded cells in 
the left-to-right  (sorted) order.

-5 1 3 6 7

Number
Line
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Remaining slides
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A Circle Event

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl
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Add vertex to corresponding edge record

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl

Half Edge Record
Endpoints.add(x, y)

Half Edge Record
Endpoints.add(x, y)

Link!
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Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pm

pm pl

< pm, pl>
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Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>
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Create new edge record

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

New Half Edge Record
Endpoints.add(x, y)

A new edge is traced out by the new 
break point < pk, pm>
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Check the new triplets for 
potential circle events

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

Q y…
new circle event
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Minor Detail

• Algorithm terminates when Q = ∅, but the 
beach line and its break points continue to 
trace the Voronoi edges
– Terminate these “half-infinite” edges via a 

bounding box
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Algorithm Termination

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l

pmpm pl

< pm, pl>

< pk, pm>

Q ∅
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Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q ∅
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Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q ∅

Terminate half-lines 
with a bounding box!
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Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases
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Degenerate Cases

• Events in Q share the same y-coordinate
– Can additionally sort them using x-coordinate

• Circle event involving more than 3 sites
– Current algorithm produces multiple degree 3 

Voronoi vertices joined by zero-length edges
– Can be fixed in post processing
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Degenerate Cases

• Site points are collinear (break points 
neither converge or diverge)
– Bounding box takes care of this 

• One of the sites coincides with the lowest 
point of the circle event
– Do nothing
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Site coincides with circle event: 
the same algorithm applies!

1. New site detected
2. Break one of the arcs an infinitesimal distance 

away from the arc’s end point
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Site coincides with circle event
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Locate the existing arc that is above 
the new site

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

• The x coordinate of the new site is used for the binary search
• The x coordinate of each breakpoint along the root to leaf path

is computed on the fly

pi
pj

pk
pl

lpm
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Break the Arc

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

Corresponding leaf replaced by a new sub-tree

pi
pj

pk
pl

lpm

pm pl

< pl, pm>

< pm, pl>

pl

Different arcs can be 
induced by the same site! 
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Add a new edge record in the doubly 
linked list

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pm pl

< pl, pm>

< pm, pl>

pl

pi
pj

pk
pl

lpm

New Half Edge Record
Endpoints ∅

Pointers to two half-edge 
records

lpm
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Checking for Potential Circle Events
• Scan for triple of consecutive arcs and 

determine if breakpoints converge
– Triples with new arc in the middle do not have 

break points that converge
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Checking for Potential Circle Events
• Scan for triple of consecutive arcs and 

determine if breakpoints converge
– Triples with new arc in the middle do not have 

break points that converge
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Converging break points may not 
always yield a circle event

• Appearance of a new site before the circle 
event makes the potential circle non-empty 

l

(The original circle event becomes a false alarm)
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Handling Site Events

1. Locate the leaf representing the existing arc that is 
above the new site

– Delete the potential circle event in the event queue
2. Break the arc by replacing the leaf node with a 

sub tree representing the new arc and break points
3. Add a new edge record in the doubly linked list
4. Check for potential circle event(s), add them to 

queue if they exist
– Store in the corresponding leaf of T a pointer to the 

new circle event in the queue


