
March 1, 2005 Lecture 8: Voronoi Diagrams

Voronoi Diagrams

(Slides mostly by Allen Miu)

March 1, 2005 Lecture 8: Voronoi Diagrams

Post Office: What is the area of service?

q

q : free point

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points

March 1, 2005 Lecture 8: Voronoi Diagrams

Definition of Voronoi Diagram

• Let P be a set of n distinct points (sites) in the
plane.

• The Voronoi diagram of P is the subdivision of
the plane into n cells, one for each site.

• A point q lies in the cell corresponding to a site
pi ∈ P iff ||q-pi || < ||q-pj ||, for each pi ∈ P, j ≠ i.

March 1, 2005 Lecture 8: Voronoi Diagrams

Demo

http://www.diku.dk/students/duff/Fortune/
http://wwwpi6.fernuni-hagen.de/GeomLab/VoroGlide/

March 1, 2005 Lecture 8: Voronoi Diagrams

Jeff’s Erickson Web Page
See also the implementation page from Christopher Gold's site www.Voronoi.com.

Enough already!!

Delaunay triangulations and farthest point Delaunay triangulations using 3d convex hulls by Daniel Mark Abrahams-Gessel, fortunately stolen by Anirudh Modi
before the original page was taken off the Web. This is the best one!

Convex hulls, Delaunay triangulations, Voronoi diagrams, and proximity graphs by James E. Baker, Isabel F. Cruz, Luis D. Lejter, Giuseppe Liotta, and Roberto
Tamassia. Source code is available.

Incremental Delaunay triangulations and Voronoi diagrams by Frank Bossen
Voronoi Diagram/Delaunay Triangulation by Paul Chew uses a randomized incremental algorithm with "brute force" point location.
2-Site Voronoi diagrams by Matt Dickerson, from the Middlebury College Undergraduate Research Project in Computational Geometry

The convex hull/Voronoi diagram applet from the GeomNet project provides a secure Java wrapper for existing (non-Java) code. The applet calls qhull to build its
convex hulls and Steve Fortune's sweep2 to build its Voronoi diagrams. A forms interface to the same programs is also available.

VoroGlide, by Christian Icking, Rolf Klein, Peter Köllner, and Lihong Ma. Smoothly maintains the convex hull, Voronoi diagram, and Delaunay triangulation as
points are moved, illustrates incremental construction of the Delaunay triangulation, and includes a recorded demo. Now on a faster server!

Delaunay triangulations by Geoff Leach compares several (very) naïve algorithms. Source code is available.
Bisectors and Voronoi diagrams under convex (polygonal) distance functions by Lihong Ma. The diagram is updated on the fly while sites or vertices of the unit

ball are inserted, deleted, or dragged around. Very cool!
Delaunay triangulations and Dirichlet tesselations and a short applet-enhanced tutorial by Eric C. Olson
The Voronoi Game by Dennis Shasha. Try to place points to maximize the area of your Voronoi regions.
Higher-order Voronoi diagrams by Barry Schaudt
Tessy, yet another interactive Voronoi/Delaunay demo from Keith Voegele. Java not required.

ModeMap, by David Watson, draws Voronoi diagrams, Delaunay triangulations, natural neighbor circles (circumcircles of Delaunay triangles), and (for the very
patient) radial density contours on the sphere. Don't give it more than 80 points.

Delaunay Triangulation from Zhiyuan Zhao's JAVA Gallery of Geometric Algorithms
Delaunay Triangulation Demo at ESSI, Université de Nice/Sophia-Antipolis, France. X terminal required instead of Java. Extremely slow, at least on this side of the

Atlantic.

March 1, 2005 Lecture 8: Voronoi Diagrams

Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases

March 1, 2005 Lecture 8: Voronoi Diagrams

Voronoi Diagram Example:
1 site

March 1, 2005 Lecture 8: Voronoi Diagrams

Two sites form a perpendicular
bisector

Voronoi Diagram is a line
that extends infinitely in
both directions, and the
two half planes on either
side.

March 1, 2005 Lecture 8: Voronoi Diagrams

Collinear sites form a series of
parallel lines

March 1, 2005 Lecture 8: Voronoi Diagrams

Non-collinear sites form Voronoi
half lines that meet at a vertex

A Voronoi vertex is
the center of an empty
circle touching 3 or
more sites.

v

Half lines

A vertex has
degree ≥ 3

March 1, 2005 Lecture 8: Voronoi Diagrams

Voronoi Cells and Segments

v

March 1, 2005 Lecture 8: Voronoi Diagrams

Voronoi Cells and Segments

v

Unbounded CellBounded Cell

Segment

March 1, 2005 Lecture 8: Voronoi Diagrams

Pop quiz

vWhich of the following is true for
2-D Voronoi diagrams?

Four or more non-collinear sites are…
1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above

March 1, 2005 Lecture 8: Voronoi Diagrams

Pop quiz

vWhich of the following is true for
2-D Voronoi diagrams?

Four or more non-collinear sites are…
1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above

March 1, 2005 Lecture 8: Voronoi Diagrams

Degenerate Case:
no bounded cells!

v

March 1, 2005 Lecture 8: Voronoi Diagrams

Summary of Voronoi Properties
A point q lies on a Voronoi edge between sites pi and
pj iff the largest empty circle centered at q touches
only pi and pj
– A Voronoi edge is a subset of locus of points equidistant

from pi and pj

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points

March 1, 2005 Lecture 8: Voronoi Diagrams

Summary of Voronoi Properties
A point q is a vertex iff the largest empty circle
centered at q touches at least 3 sites
– A Voronoi vertex is an intersection of 3 more segments,

each equidistant from a pair of sites

e

e : Voronoi edge

v
v : Voronoi vertex

pi

pi : site points

March 1, 2005 Lecture 8: Voronoi Diagrams

Voronoi diagrams have linear
complexity {v, e = O(n)}

Intuition: Not all bisectors are Voronoi edges!

e

e : Voronoi edge

pi

pi : site points

March 1, 2005 Lecture 8: Voronoi Diagrams

Voronoi diagrams have linear
complexity {v, e = O(n)}

Claim: For n ≥ 3, v ≤ 2n − 5 and e ≤ 3n − 6
Proof: (General Case)
• Euler’s Formula: for connected, planar graphs,

v – e + f = 2
Where:
v is the number of vertices
e is the number of edges
f is the number of faces

March 1, 2005 Lecture 8: Voronoi Diagrams

Voronoi diagrams have linear
complexity {v, e = O(n)}

Claim: For n ≥ 3, v ≤ 2n − 5 and e ≤ 3n − 6
Proof: (General Case)
• For Voronoi graphs, f = n (v +1) – e + n = 2

epi

p∞

To apply Euler’s Formula, we
“planarize” the Voronoi diagram
by connecting half lines to
an extra vertex.

March 1, 2005 Lecture 8: Voronoi Diagrams

Voronoi diagrams have linear
complexity {v, e = O(n)}

Moreover,

and

so

together with

we get, for n ≥ 3

ev
PVorv

⋅=∑
∈

2)deg(
)(

),(PVorv∈∀ 3)deg(≥v

)1(32 +≥⋅ ve

2)1(=+−+ nev

63,52 −≤−≤ nenv

March 1, 2005 Lecture 8: Voronoi Diagrams

A really degenerate case

• The graph has “loops”, i.e., edges from p∞ to itself
• The “standard” Euler formula does not apply
• But:

– One can extend Euler formula to loops (each loop creates a
new face) and show that it still works

– Or, one can recall that the Voronoi diagram for this case has
still a linear complexity

…

March 1, 2005 Lecture 8: Voronoi Diagrams

Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases

March 1, 2005 Lecture 8: Voronoi Diagrams

Constructing Voronoi Diagrams

Given a half plane intersection algorithm…

March 1, 2005 Lecture 8: Voronoi Diagrams

Constructing Voronoi Diagrams

Given a half plane intersection algorithm…

March 1, 2005 Lecture 8: Voronoi Diagrams

Constructing Voronoi Diagrams

Given a half plane intersection algorithm…

March 1, 2005 Lecture 8: Voronoi Diagrams

Constructing Voronoi Diagrams

Given a half plane intersection algorithm…

Repeat for each site

Running Time:
O(n2 log n)

March 1, 2005 Lecture 8: Voronoi Diagrams

Faster Algorithm

• Fortune’s Algorithm:
– Sweep line approach
– Voronoi diagram constructed as horizontal line

sweeps the set of sites from top to bottom
– Incremental construction:

• maintains portion of diagram which cannot change
due to sites below sweep line,

• keeps track of incremental changes for each site
(and Voronoi vertex) it “sweeps”

March 1, 2005 Lecture 8: Voronoi Diagrams

Algorithms Outline

• Ideas
• Data structures
• Events

March 1, 2005 Lecture 8: Voronoi Diagrams

Invariant
What is the invariant we are looking for?

Maintain a representation of the locus of points q that
are closer to some site pi above the sweep line than to

the line itself (and thus to any site below the line).

e
v

pi

Sweep Line

q

March 1, 2005 Lecture 8: Voronoi Diagrams

Beach line
Which points are closer to a site above the sweep

line than to the sweep line itself?

Sweep Line

pi

q

The set of parabolic arcs form a beach-line that bounds
the locus of all such points

Equidistance

March 1, 2005 Lecture 8: Voronoi Diagrams

Edges
Break points trace out Voronoi edges.

Equidistance

Sweep Line

pi

q

March 1, 2005 Lecture 8: Voronoi Diagrams

Arcs flatten out as sweep line moves down.

Sweep Line

pi

q

March 1, 2005 Lecture 8: Voronoi Diagrams

Eventually, the middle arc disappears.

Sweep Line

pi

q

March 1, 2005 Lecture 8: Voronoi Diagrams

We have detected a circle that is empty (contains no
sites) and touches 3 or more sites.

Circle Event

Sweep Line

pi

q

Voronoi vertex!

March 1, 2005 Lecture 8: Voronoi Diagrams

Beach Line Properties

• Voronoi edges are traced by the break
points as the sweep line moves down.
– Emergence of a new break point(s) (from

formation of a new arc or a fusion of two
existing break points) identifies a new edge

• Voronoi vertices are identified when two
break points meet (fuse).
– Decimation of an old arc identifies new vertex

March 1, 2005 Lecture 8: Voronoi Diagrams

Algorithms Outline

• Ideas
• Data structures
• Events

March 1, 2005 Lecture 8: Voronoi Diagrams

Data Structures

• Current state of the Voronoi diagram
– Doubly linked list of half-edge, vertex, cell records

• Current state of the beach line
– Keep track of break points
– Keep track of arcs currently on beach line

• Current state of the sweep line
– Priority event queue sorted on decreasing y-coordinate

March 1, 2005 Lecture 8: Voronoi Diagrams

Doubly Linked List (D)
• Goal: a simple data structure that allows an

algorithm to traverse a Voronoi diagram’s
segments, cells and vertices

e
v

Cell(pi)

March 1, 2005 Lecture 8: Voronoi Diagrams

Doubly Linked List (D)
• Divide segments into uni-directional half-edges
• A chain of counter-clockwise half-edges forms a cell
• Define a half-edge’s “twin” to be its opposite half-edge of the

same segment

e
v

Cell(pi)

March 1, 2005 Lecture 8: Voronoi Diagrams

Doubly Linked List (D)

• Cell Table
– Cell(pi) : pointer to any incident half-edge

• Vertex Table
– vi : list of pointers to all incident half-edges

• Doubly Linked-List of half-edges; each has:
– Pointer to Cell Table entry
– Pointers to start/end vertices of half-edge
– Pointers to previous/next half-edges in the CCW chain
– Pointer to twin half-edge

March 1, 2005 Lecture 8: Voronoi Diagrams

Balanced Binary Tree (T)
• Internal nodes represent break points between two arcs

– Also contains a pointer to the D record of the edge being traced

• Leaf nodes represent arcs, each arc is in turn represented
by the site that generated it
– Also contains a pointer to a potential circle event

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

pi
pj

pk
pl

l

March 1, 2005 Lecture 8: Voronoi Diagrams

Event Queue (Q)

• An event is an interesting point encountered by the
sweep line as it sweeps from top to bottom
– Sweep line makes discrete stops, rather than a

continuous sweep

• Consists of Site Events (when the sweep line
encounters a new site point) and Circle Events
(when the sweep line encounters the bottom of an
empty circle touching 3 or more sites).

• Events are prioritized based on y-coordinate

March 1, 2005 Lecture 8: Voronoi Diagrams

Summarizing Data Structures

• Current state of the Voronoi diagram
– Doubly linked list of half-edge, vertex, cell records

• Current state of the beach line
– Keep track of break points

• Inner nodes of binary search tree; represented by a tuple
– Keep track of arcs currently on beach line

• Leaf nodes of binary search tree; represented by a site that
generated the arc

• Current state of the sweep line
– Priority event queue sorted on decreasing y-coordinate

March 1, 2005 Lecture 8: Voronoi Diagrams

Algorithms Outline

• Ideas
• Data structures
• Events

March 1, 2005 Lecture 8: Voronoi Diagrams

Circle Event
An arc disappears whenever an empty circle touches

three or more sites and is tangent to the sweep line.

Sweep line helps determine that the circle is indeed empty.

Circle Event!
Sweep Line

pi
q

Voronoi vertex!

March 1, 2005 Lecture 8: Voronoi Diagrams

Site Event
A new arc appears when a new site appears.

l

March 1, 2005 Lecture 8: Voronoi Diagrams

Site Event
A new arc appears when a new site appears.

l

March 1, 2005 Lecture 8: Voronoi Diagrams

Site Event
Original arc above the new site is broken into two

Number of arcs on beach line is O(n)

l

March 1, 2005 Lecture 8: Voronoi Diagrams

Event Queue Summary
• Site Events are

– given as input
– represented by the (x,y)-coordinate of the site point

• Circle Events are
– represented by the (x,y)-coordinate of the lowest point of an empty

circle touching three or more sites
– computed on the fly (intersection of the two bisectors in between

the three sites)
– “anticipated”: these newly generated events may represented by

the (x,y)-coordinate of the lowest point of an empty circle touching
three or more sites; they can be false and need to be removed later

• Event Queue prioritizes events based on their y-
coordinates

March 1, 2005 Lecture 8: Voronoi Diagrams

“Algorithm”

1. Initialize
• Event queue Q all site events
• Binary search tree T ∅
• Doubly linked list D ∅

2. While Q not ∅,
• Remove event (e) from Q with largest y-

coordinate
• HandleEvent(e, T, D)

March 1, 2005 Lecture 8: Voronoi Diagrams

Handling Site Events

1. Locate the existing arc (if any) that is above the
new site

2. Break the arc by replacing the leaf node with a
sub tree representing the new arc and its break
points

3. Add two half-edge records in the doubly linked
list

4. Check for potential circle event(s), add them to
event queue if they exist

March 1, 2005 Lecture 8: Voronoi Diagrams

Handling Circle Events

1. Add vertex to corresponding edge record in doubly
linked list

2. Delete from T the leaf node of the disappearing arc
and its associated circle events in the event queue

3. Create new edge record in doubly linked list
4. Check the new triplets formed by the former

neighboring arcs for potential circle events

March 1, 2005 Lecture 8: Voronoi Diagrams

Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases

March 1, 2005 Lecture 8: Voronoi Diagrams

Handling Site Events
1. Locate the leaf representing the existing arc

that is above the new site
– Delete the potential circle event in the event queue

2. Break the arc by replacing the leaf node with a
sub tree representing the new arc and break
points

3. Add a new edge record in the link list
4. Check for potential circle event(s), add them to

queue if they exist
– Store in the corresponding leaf of T a pointer to the

new circle event in the queue

Running Time

O(log n)

O(1)

O(1)

O(1)

March 1, 2005 Lecture 8: Voronoi Diagrams

Handling Circle Events

1. Delete from T the leaf node of the
disappearing arc and its associated
circle events in the event queue

2. Add vertex record in doubly link list
3. Create new edge record in doubly

link list
4. Check the new triplets formed by the

former neighboring arcs for potential
circle events

Running Time

O(log n)

O(1)

O(1)

O(1)

March 1, 2005 Lecture 8: Voronoi Diagrams

Total Running Time

• Each new site can generate at most two new
arcs →beach line can have at most 2n – 1
arcs

• Each “false circle event” can be charged to
a real event → O(n) events

• Site/Circle Event Handler O(log n)

O(n log n) total running time

March 1, 2005 Lecture 8: Voronoi Diagrams

Is Fortune’s Algorithm Optimal?
• We can sort numbers using any algorithm that

constructs a Voronoi diagram!

• Map input numbers to a position on the number
line. The resulting Voronoi diagram is doubly
linked list that forms a chain of unbounded cells in
the left-to-right (sorted) order.

-5 1 3 6 7

Number
Line

March 1, 2005 Lecture 8: Voronoi Diagrams

Remaining slides

March 1, 2005 Lecture 8: Voronoi Diagrams

A Circle Event

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl

March 1, 2005 Lecture 8: Voronoi Diagrams

Add vertex to corresponding edge record

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl

Half Edge Record
Endpoints.add(x, y)

Half Edge Record
Endpoints.add(x, y)

Link!

March 1, 2005 Lecture 8: Voronoi Diagrams

Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pm

pm pl

< pm, pl>

March 1, 2005 Lecture 8: Voronoi Diagrams

Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

March 1, 2005 Lecture 8: Voronoi Diagrams

Create new edge record

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

New Half Edge Record
Endpoints.add(x, y)

A new edge is traced out by the new
break point < pk, pm>

March 1, 2005 Lecture 8: Voronoi Diagrams

Check the new triplets for
potential circle events

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

Q y…
new circle event

March 1, 2005 Lecture 8: Voronoi Diagrams

Minor Detail

• Algorithm terminates when Q = ∅, but the
beach line and its break points continue to
trace the Voronoi edges
– Terminate these “half-infinite” edges via a

bounding box

March 1, 2005 Lecture 8: Voronoi Diagrams

Algorithm Termination

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l

pmpm pl

< pm, pl>

< pk, pm>

Q ∅

March 1, 2005 Lecture 8: Voronoi Diagrams

Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q ∅

March 1, 2005 Lecture 8: Voronoi Diagrams

Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q ∅

Terminate half-lines
with a bounding box!

March 1, 2005 Lecture 8: Voronoi Diagrams

Outline
• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases

March 1, 2005 Lecture 8: Voronoi Diagrams

Degenerate Cases

• Events in Q share the same y-coordinate
– Can additionally sort them using x-coordinate

• Circle event involving more than 3 sites
– Current algorithm produces multiple degree 3

Voronoi vertices joined by zero-length edges
– Can be fixed in post processing

March 1, 2005 Lecture 8: Voronoi Diagrams

Degenerate Cases

• Site points are collinear (break points
neither converge or diverge)
– Bounding box takes care of this

• One of the sites coincides with the lowest
point of the circle event
– Do nothing

March 1, 2005 Lecture 8: Voronoi Diagrams

Site coincides with circle event:
the same algorithm applies!

1. New site detected
2. Break one of the arcs an infinitesimal distance

away from the arc’s end point

March 1, 2005 Lecture 8: Voronoi Diagrams

Site coincides with circle event

March 1, 2005 Lecture 8: Voronoi Diagrams

Locate the existing arc that is above
the new site

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

• The x coordinate of the new site is used for the binary search
• The x coordinate of each breakpoint along the root to leaf path

is computed on the fly

pi
pj

pk
pl

lpm

March 1, 2005 Lecture 8: Voronoi Diagrams

Break the Arc

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

Corresponding leaf replaced by a new sub-tree

pi
pj

pk
pl

lpm

pm pl

< pl, pm>

< pm, pl>

pl

Different arcs can be
induced by the same site!

March 1, 2005 Lecture 8: Voronoi Diagrams

Add a new edge record in the doubly
linked list

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pm pl

< pl, pm>

< pm, pl>

pl

pi
pj

pk
pl

lpm

New Half Edge Record
Endpoints ∅

Pointers to two half-edge
records

lpm

March 1, 2005 Lecture 8: Voronoi Diagrams

Checking for Potential Circle Events
• Scan for triple of consecutive arcs and

determine if breakpoints converge
– Triples with new arc in the middle do not have

break points that converge

March 1, 2005 Lecture 8: Voronoi Diagrams

Checking for Potential Circle Events
• Scan for triple of consecutive arcs and

determine if breakpoints converge
– Triples with new arc in the middle do not have

break points that converge

March 1, 2005 Lecture 8: Voronoi Diagrams

Checking for Potential Circle Events
• Scan for triple of consecutive arcs and

determine if breakpoints converge
– Triples with new arc in the middle do not have

break points that converge

March 1, 2005 Lecture 8: Voronoi Diagrams

Converging break points may not
always yield a circle event

• Appearance of a new site before the circle
event makes the potential circle non-empty

l

(The original circle event becomes a false alarm)

March 1, 2005 Lecture 8: Voronoi Diagrams

Handling Site Events

1. Locate the leaf representing the existing arc that is
above the new site

– Delete the potential circle event in the event queue
2. Break the arc by replacing the leaf node with a

sub tree representing the new arc and break points
3. Add a new edge record in the doubly linked list
4. Check for potential circle event(s), add them to

queue if they exist
– Store in the corresponding leaf of T a pointer to the

new circle event in the queue

