Point Location

(most slides by Sergi Elizalde and
David Pritchard)

February 17, 2005 Lecture 6: Point Location

Point Location

58

i ralP
oo

Lecture 6: Point Location

February 17, 2005

Definition

« Given: a planar subdivision S

« Goal: build a data structure that, given a query
point, determines which face of the planar
subdivision that point lies In

» Detalls: planar subdivision given by:
— Vertices, directed edges and faces

— Perimeters of polygons stored in doubly linked lists

— Can switch between faces, edges and vertices in
constant time

February 17, 2005 Lecture 6: Point Location

First attempt

« Want to divide the plane into easily manageable sections.

» |dea: Divide the graph into slabs, by drawing a vertical line
through every vertex of the graph

i

« Given the query point, do binary search in the proper slab

February 17, 2005 Lecture 6: Point Location

Analysis

* Query time: O(log n)
« Space: O(n?)

February 17, 2005 Lecture 6: Point Location

Second attempt

* Too much splitting!

 |dea: stop the splitting
lines at the first segment
of the subdivision

 We get a trapezoidal
decomposition T(S) of S

* The number of edges still
O(n)

February 17, 2005 Lecture 6: Point Location

Assumptions/Simplifications

 Add a bounding box that contains S

« Assume that the x-coordinates of
coordinates and query are distinct

February 17, 2005 Lecture 6: Point Location

Answering the query

 Build a decision tree:
— Leaves: individual trapezoids

— Internal nodes: YES/NO queries:

 point query: does ¢ lie to the left or the right of a
given point?

* segment query: does ¢ lie above or below a given
line segment?

February 17, 2005 Lecture 6: Point Location

Decision tree: Example

| (Pr).
| ; AP 4
"l: JI||| .
| Gt ;
%)
D .—_’/4":’"’. l- | [.-..-fJ
| Jr l.!i" .|'I {7 - 4 : _F
P~ | B P2) (52
_ 2 Fo . 7 !_._"
| - (73 | |
(| I (B2
) _|_ B F .
1) F

February 17, 2005 Lecture 6: Point Location

DT Construction: Overview

1. Initialization: create a T with the bounding box
R as the only trapezoid, and corresponding DT
D

2. Compute a random permutation of segments
Sq...5,
3. For each segment s;:
A. Find the set of trapezoids in T properly intersected
by s,
B. Remove them from T and replace them by the new
trapezoids that appear because of the insertion of s,

C. Remove the leaves of D for the old trapezoids and
create leaves for the new ones + update links

February 17, 2005 Lecture 6: Point Location

Some notation
Segments top(A) and bottom(A) :

fopt A

bhottom| A

February 17, 2005 Lecture 6: Point Location

leftpl A)

/
_-""-;ll
il e A
|
botiom{ A)

(a)

Some notation, ctd.
Points leftp(A) and rightp(A):

oL lefipl
(.

n,rl!f!

,!'{JJ{J'I: Al

(A)
bottomi A)
4

frcrfteomn| A (1
\\ ~— lefiplA)

(b)

(C)

lefip(A)

Fﬁ/
L toplA)

S :
T o8
5 \

L bottom(A)

(d)

Each A is defined by top(A), bottom(A), leftp(A),

rightp(A)

February 17, 2005

Lecture 6: Point Location

Some notation, ctd.

» Two trapezoids are adjacent if they
share a vertical boundary

 How many trapezoids can be adjacent
toA? .

(,,,4 ‘

'i;_/‘ Ay ‘

A4

February 17, 2005 Lecture 6: Point Location

Adding new segment s,

* Let A, ... A, be the trapezoids
intersected by s, (left to right)

 To find them:

— A, Is the trapezoid
containing the left endpoint
p of s, — find it by querying
the data structure built so
far

— A,y must be a right
neighbor of A

February 17, 2005 Lecture 6: Point Location

Updating T

* Draw vertical extensions
through the endpoints of s,
that were not present, -
partitioning A, ... A,

« Shorten the vertical
extensions that now end at s,,
merging the appropriate
trapezoids

February 17, 2005 Lecture 6: Point Location

Updating D

« Remove the leaves for A,...A,

 Create leaves for the new
trapezoids

« If A, has the left endpoint p of
s. in its interior, replace the leaf
for A, with a point node for p
and a segment node for s,
(similarly with A))

« Replace the leaves of the other
trapezoids with single segment
nodes for s,

« Make the outgoing edges of
the inner nodes point to the
correct leaves

February 17, 2005 Lecture 6: Point Location

Analysis

 Theorem: In the expectation we have
— Running time: O(n log n)
— Storage: O(n)
— Query time O(log n) for a fixed g

February 17, 2005 Lecture 6: Point Location

Expected Query Time

Fix a query point g, and consider the path in D
traversed by the query.

Define
- S, ={s,S,, ..., Si}

— X;= number of nodes added to the search path for g
during iteration |

— P, = probability that some node on the search path of
g is created in iteration |

— A,(S;) = trapezoid containing q in T(S))
From our construction, X, < 3; thus E[X] < 3P
Note that P, = Pr[A (S)) <> A,(S,)]

February 17, 2005 Lecture 6: Point Location

Expected Query Time ctd.

* Whatis P, = Pr[A,(S)) <> A,(Si4)] ?

« Backward analysis: How many segments in S,
affect A,(S;) when they are removed?

At most 4

« Since they have been chosen in random order,
each one has probability 1/i of being s,

* Thus P, =4/i
* E[2, Xi]=2,E[X]1=2;3P;=>;12/i=O(log n)

February 17, 2005 Lecture 6: Point Location

Expected Storage

* Number of nodes bounded by O(n) + > Kk,
where k= number of new trapezoids
created in iteration i

* Define d(A,s) to be 1 iff A disappears from
(S;) when s removed from S,

° ZSESI ZA e T(Si) (A S)< ?
= 4[T(S)|=0()
* E[Kl]= [2scsi 2.4 c1(siy d(As) 11 =0(1)

February 17, 2005 Lecture 6: Point Location

Expected Time

* The time needed to insert s. is O(k,) plus

the time needed to locate the left endpoint
of s, in T(S))

« Expected running time = O(n log n)

February 17, 2005 Lecture 6: Point Location

Extensions

« Can obtain worst-case O(log n) query time

— Show O(log n) for a fixed query holds with
probability 1-1/(Cn?) for large C

— There are O(n?) truly different queries

February 17, 2005 Lecture 6: Point Location

