Orthogonal Range Queries

Piotr Indyk

Range Searching in 2D

- Given a set of n points, build a data structure that for any query
 rectangle R, reports all points in R

Kd-trees [Bentley]

- Not the most efficient solution in theory
- Everyone uses it in practice
- Algorithm:
- Choose x or y coordinate (alternate)
- Choose the median of the coordinate; this defines a horizontal or vertical line
- Recurse on both sides
- We get a binary tree:
- Size: O(N)
- Depth: O(log N)
- Construction time: O(N log N)

Kd-tree: Example

Each tree node v corresponds to a region Reg(v).

Kd-tree: Range Queries

1. Recursive procedure, starting from $v=r o o t$
2. Search (v, R):
a) If v is a leaf, then report the point stored in v if it lies in R
b) Otherwise, if $R e g(v)$ is contained in R, report all points in the subtree of v
c) Otherwise:

- If Reg(left(v)) intersects R, then Search(left(v),R)
- If Reg(right(v)) intersects R , then Search(right(v),R)

Query demo

Query Time Analysis

- We will show that Search takes at most $O\left(n^{1 / 2}+P\right)$ time, where P is the number of reported points
- The total time needed to report all points in all sub-trees (i.e., taken by step b) is $O(P)$
- We just need to bound the number of nodes v such that Reg(v) intersects R but is not contained in R. In other words, the boundary of R intersects the boundary of Reg(v)
- Will make a gross overestimation: will bound the number of Reg(v) which are crossed by any of the 4 horizontal/vertical lines

Query Time Continued

- What is the max number $\mathrm{Q}(\mathrm{n})$ of regions in an n-point kd-tree intersecting (say, vertical) line ?
-If we split on $x, Q(n)=1+Q(n / 2)$
-If we split on $y, Q(n)=1+2^{*} Q(n / 2)$
-Since we alternate, we can write $Q(n)=2+2 Q(n / 4)$
- This solves to $O\left(n^{1 / 2}\right)$

Analysis demo

A Faster Solution

- Query time: $O\left(\log ^{2} n+P\right)$
- Space: O(n log n)

Idea I: Ranks

- Sort x and y coordinates of input points
- For a rectangle $\mathrm{R}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] \times\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]$, we have point $(u, v) \in R$ iff

$-\operatorname{succ}_{x}\left(\mathrm{x}_{1}\right) \leq \operatorname{rank}_{\mathrm{x}}(\mathrm{u}) \leq \operatorname{pred}_{\mathrm{x}}\left(\mathrm{x}_{2}\right)$
$-\operatorname{succ}_{y}\left(\mathrm{y}_{1}\right) \leq \operatorname{rank}_{\mathrm{y}}(\mathrm{v}) \leq \operatorname{pred}_{\mathrm{y}}\left(\mathrm{y}_{2}\right)$
- Thus we can replace
- Point coordinates by their rank
- Query boundaries by succ/pred; this adds $O(\log n)$ to the query time

Dyadic intervals

- Assume n is a power of 2. Dyadic intervals are:
- [1,1] , [2,2] ... [n,n]
- [1,2] , [3, 4] ... [n-1,n]
$-[1,4],[5,8] \ldots[n-3, n]$
-
- [1..n]
- Any interval \{a...b\} can be decomposed into O(log n) dyadic intervals:
- Imagine a full binary tree over \{1...n\}
- Each node corresponds to a dyadic interval
- Any interval \{a...b\} can be "covered" using O(log n) sub-trees

Range Trees

- For each level

I=1...log n, partition x-ranks using level-| dyadic intervals

- This induces vertical strips
- Within each strip, construct a BST on ycoordinates

Range Trees

September 18, 2003
Lecture 5: Orthogonal Range

Range Trees

September 18, 2003
Lecture 5: Orthogonal Range

Analysis

- Each point occurs in log n different levels
- Space: O(n log n)
- How do we implement the query ?

Query procedure

- Consider query R=X×Y
- Partition X into dyadic intervals
- For each interval, query the corresponding strip BST using Y

Query procedure

September 18, 2003
Lecture 5: Orthogonal Range Queries

Query procedure

September 18, 2003
Lecture 5: Orthogonal Range Queries

Analysis ctd.

- Query time:
- O(log n + output) time per strip
- O(log n) strips
- Total: O($\log ^{2} n+P$)
- Faster than kd-tree, but space O(n log n)
- Recursive application of the idea gives
- O(logd n) query time
- O(n log ${ }^{d-1} n$) space
for the d-dimensional problem

Lecture 5: Orthogonal Range Queries

Approximate Nearest Neighbor (ANN)

- Given: a set of points P in the plane
- Goal: given a query point

q, and $\varepsilon>0$, find a point
p ' whose distance to q is at most $(1+\varepsilon)$ times the distance from q to its nearest neighbor

Our "solution"

- We will "solve" the problem using kd-trees...
- ...under the assumption that all leaf cells of the kd-tree for P have bounded aspect ratio
- Assumption somewhat strict, but satisfied in practice for most of the leaf cells
- We will show
- O(log $\left.n / \varepsilon^{2}\right)$ query time
- O(n) space (inherited from kd-tree)

ANN Query Procedure

- Locate the leaf cell containing q
- Enumerate all leaf cells C in the increasing order of distance from q (denote it by r)
- Update p' so that it is the closest point seen so far

- Note: r increases, dist(q,p') decreases
- Stop if $\operatorname{dist}\left(\mathrm{q}, \mathrm{p}^{\prime}\right)<(1+\varepsilon)^{*} r$

Analysis

- Running time:
-All cells C seen so far (except maybe for the last one) have diameter > $\varepsilon^{*} r$
$-\ldots$ Because if not, then $p(C)$ would have been a $(1+\varepsilon)$-approximate nearest neighbor, and we would have stopped
-The number of cells with diameter $\varepsilon^{*} r$, bounded aspect ratio, and touching a ball of radius r is at most $O\left(1 / \varepsilon^{2}\right)$

