Geometric Pattern Matching

Piotr Indyk

Matching in a Scene

Eigenfaces

Formalization: Shapes

- Today:
 - A shape is a set A of points in R²
 - -|A|=n
- In general, A could consist of segments etc.

Formalization: (Dis)similarity

- Hausdorff distance
 - $-DH(A,B)=\max_{a\in A} \min_{b\in B} ||a-b||$
 - -H(A,B)=max[DH(A,B),DH(B,A)]
- Earth-Mover Distance
 - Minimum cost of a one-to-one matching between A and B
 - $EMD(A,B) = min_{f:A \to B} \sum_{a \in A} ||a-f(a)||, f is 1:1$
- Bottleneck matching
 - $-BM(A,B)=min_{f:A\rightarrow B}, max_{a\in A} ||a-f(a)||, f is 1:1$

Alignment

- In general, A and B are not aligned
- So, in general, we want
 - $-DH_T(A,B)=min_{t\in T}DH(t(A),B)$, where
 - T=translations
 - T=translations and rotations
 - . . .
 - Same for H

Algorithms

Exact DH O(n log n)

Approx. DH O(n)

• Exact DH_T $O(n^4)$

• Approx. DH_T $O(n^2)$

• Approx. H_T O(n log n)

• $DH_{T+R}=0$ O(

Computing H(A,B)

- Given A,B, how fast can we compute H(A,B)?
 - We will compute DH(A,B)
 - Construct a Voronoi diagram V for B
 - Construct a point location structure for V
 - For each a in A, find its NN in B
- Total time: O(n log n)

Approximate Hausdorff

- Assume we just want an algorithm that:
 - If DH(A,B) ≤r, answers YES
 - If DH(A,B)≥(1+ ε)r, answers NO
- Algorithm:
 - Impose a grid with cell diameter er
 - For each b∈B, mark all cells within distance r from b
 - For each a∈A, check if a's cel<u>t</u> is marked
- Time: $O(n/\epsilon^2)$

Decision Problem

- Again, focus on if DH_T(A,B) ≤r
- For a∈A, define

$$T(a)=\{ t: \exists b \in B \mid |t(a)-b|| \leq r \}$$

• $DH_T(A,B) \le r \text{ iff } \bigcap_{a \in A} T(a) \text{ is non-empty}$

Example

Algorithm

- Compute the arrangement of all disks
- Check for non-emptiness
- Analysis:
 - Number of disks: n²
 - Size of the arrangement: O(n⁴)
 - Can compute the arrangement in time $O(n^4)$
 - Total time: O(n⁴)
- Can be improved to O(n³ log n)
 [Chew,Goodrich,Huttenlocher,Kedem,Kleinberg, Kravets'93]

Running time

- Running time pretty high
- Can we speed it up?
- A (1+ε)-approximate algorithm for the decision version of DH_T:
 - Impose a grid will pixel diameter εr
 - Approximate each disk by $O(1/\epsilon^2)$ cells
 - Each T(a) is approximated by $O(n/\epsilon^2)$ cells
 - Need to check intersection of n T(a)'s
 - $-O(n^2/\epsilon^2)$ time

Approximate Algorithm for H()

 Reference point: a point r(A) such that if we set t=r(B)-r(A), then

$$H(t(A), B) \le c H_T(A, B)$$

- Note that t transforms r(A) into r(B)
- This will give us a c-approximate algorithm with time O(n log n)

Constructing a Ref Point

• $r(A)=(\min_{a\in A} a_x, \min_{a\in A} a_y)$

- Introduced in [Alt, Behrends, Blomer'91]
- Improved in [Aichholzer, Alt, Rote'94]

Theorem

Theorem: r(A) is a reference point with $c=1+\sqrt{2}$ Proof:

- Consider optimal t ,i.e., s.t. H(t(A),B)=H_T(A,B)
- What is $\left|\min_{a \in A} t(a)_x \min_{b \in B} b_x\right|$?
- It is at most H_T(A,B)
- Same for |min_{a∈A} t(a)_y min_{b∈B} b_y|
- Thus $||r(t(A))-r(B)|| \le \sqrt{2} H_T(A,B)$
- We can translate t(A) by a vector of length $\sqrt{2} H_T(A,B)$, so that r(A) is aligned with r(B)

Exact matching under T+R

- Check if DH_{T+R}(A,B)=0
 - Can modify the algorithm to allow small error
 - Technique used in practice

Algorithm

- Take any pair a,a'∈A, let r=||a-a'||
- Find all pairs b,b'∈B such that ||b-b'||=r
- For all such pairs
 - Compute t that transforms (a,a') into (b,b')
 - Check if $t(A) \subseteq B$

Analysis

- Choosing a,a': constant time
- Enumerating b,b': O(n²) time
- Checking match: O(n P), where P is the number of pairs b,b'∈B s.t. ||b-b'||=r
- The bound for P is ...
- ...deferred to the next episode ©

The $(1+\sqrt{2})$ Factor is Tight (for this reference point)

Face Recognition

