Geometric Pattern Matching

Piotr Indyk

Matching in a Scene

Eigenfaces

Formalization: Shapes

- Today:
- A shape is a set A of points in R^{2}
- |A|=n
- In general, A could consist of segments etc.

Formalization: (Dis)similarity

- Hausdorff distance

$$
\begin{aligned}
& -D H(A, B)=\max _{a \in A} \min _{b \in B}\|a-b\| \\
& -H(A, B)=\max [D H(A, B), D H(B, A)]
\end{aligned}
$$

- Earth-Mover Distance
- Minimum cost of a one-to-one matching between A and B
$-\operatorname{EMD}(A, B)=\min _{f: A \rightarrow B,} \sum_{a \in A}\|a-f(a)\|, f$ is $1: 1$
- Bottleneck matching
$-B M(A, B)=\min _{f: A \rightarrow B}, \max _{a \in A}\|a-f(a)\|, f$ is $1: 1$

Alignment

- In general, A and B are not aligned
- So, in general, we want
$-\mathrm{DH}_{\mathrm{T}}(\mathrm{A}, \mathrm{B})=\mathrm{min}_{\mathrm{t} \in \mathrm{T}} \mathrm{DH}(\mathrm{t}(\mathrm{A}), \mathrm{B})$, where
- T=translations
- T=translations and rotations
- Same for H

Algorithms

- Exact DH
- Approx. DH
- Exact DH
- Approx. DH_{T}
- Approx. H_{T}
- $\mathrm{DH}_{\mathrm{T}+\mathrm{R}}=0$
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
$\mathrm{O}(\mathrm{n})$
$O\left(n^{4}\right)$
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
O()

Computing $\mathrm{H}(\mathrm{A}, \mathrm{B})$

- Given A, B, how fast can we compute $H(A, B)$?
- We will compute $\operatorname{DH}(A, B)$
- Construct a Voronoi diagram V for B
- Construct a point location structure for V
- For each a in A, find its NN in B
- Total time: $\mathrm{O}(\mathrm{n}$ log n$)$

Approximate Hausdorff

- Assume we just want an algorithm that:
- If $\mathrm{DH}(\mathrm{A}, \mathrm{B}) \leq r$, answers YES
- If $\mathrm{DH}(\mathrm{A}, \mathrm{B}) \geq(1+\varepsilon) \mathrm{r}$, answers NO
- Algorithm:
- Impose a grid with cell diameter ε r
- For each $b \in B$, mark all cells within distance r from b
- For each $a \in A$, check if a's cel is marked
- Time: $O\left(n / \varepsilon^{2}\right)$

Decision Problem

- Again, focus on if $\mathrm{DH}_{\mathrm{T}}(\mathrm{A}, \mathrm{B}) \leq r$
- For $a \in A$, define

$$
T(a)=\{t: \exists b \in B\|t(a)-b\| \leq r\}
$$

- $\mathrm{DH}_{T}(\mathrm{~A}, \mathrm{~B}) \leq \mathrm{r}$ iff $\cap_{\mathrm{a} \in \mathrm{A}} T(\mathrm{a})$ is non-empty

Example

Algorithm

- Compute the arrangement of all disks
- Check for non-emptiness
- Analysis:
- Number of disks: n^{2}
- Size of the arrangement: $O\left(n^{4}\right)$
- Can compute the arrangement in time $O\left(n^{4}\right)$
- Total time: O(n²)
- Can be improved to $\mathrm{O}\left(\mathrm{n}^{3} \log \mathrm{n}\right)$ [Chew,Goodrich,Huttenlocher,Kedem,Kleinberg, Kravets'93]

Running time

- Running time pretty high
- Can we speed it up?
- A (1+ $)$-approximate algorithm for the decision version of DH_{T} :
- Impose a grid will pixel diameter εr
- Approximate each disk by $\mathrm{O}\left(1 / \varepsilon^{2}\right)$ cells
- Each $T(a)$ is approximated by $O\left(n / \varepsilon^{2}\right)$ cells
- Need to check intersection of $n T(a)$'s
- O($\left.\mathrm{n}^{2} / \varepsilon^{2}\right)$ time

Approximate Algorithm for H()

- Reference point: a point $r(A)$ such that if we set $t=r(B)-r(A)$, then $H(t(A), B) \leq c H_{T}(A, B)$
- Note that transforms $r(A)$ into $r(B)$
- This will give us a c-approximate algorithm with time $O(n \log n)$

Constructing a Ref Point

- $r(A)=\left(\min _{a \in A} a_{x}, \min _{a \in A} a_{y}\right)$

- Introduced in [Alt, Behrends, Blomer'91]
- Improved in [Aichholzer, Alt, Rote'94]

Theorem

Theorem: $r(A)$ is a reference point with $c=1+\sqrt{ } 2$ Proof:

- Consider optimal t,i.e., s.t. $H(t(A), B)=H_{T}(A, B)$
- What is $\left|\min _{a \in A} t(a)_{x}-\min _{b \in B} b_{x}\right|$?
- It is at most $H_{T}(A, B)$
- Same for $\left|\min _{a \in A} t(a)_{y}-\min _{b \in B} b_{y}\right|$
- Thus $\|r(t(A))-r(B)\| \leq \sqrt{ } 2 H_{T}(A, B)$
- We can translate $t(A)$ by a vector of length $\sqrt{ } 2 H_{T}(A, B)$, so that $r(A)$ is aligned with $r(B)$

Exact matching under T+R

- Check if $\mathrm{DH}_{T+R}(\mathrm{~A}, \mathrm{~B})=0$
- Can modify the algorithm to allow small error
- Technique used in practice

Algorithm

- Take any pair $a, a^{\prime} \in A$, let $r=\left\|a-a^{\prime}\right\|$
- Find all pairs $b, b^{\prime} \in B$ such that $\| b-b^{\prime}| |=r$
- For all such pairs
- Compute that transforms (a, a') into (b,b’)
- Check if $t(A) \subseteq B$

Analysis

- Choosing a,a' : constant time
- Enumerating b,b' : O(n²) time
- Checking match: $O(n P)$, where P is the number of pairs $b, b^{\prime} \in B$ s.t. ||b-b'||=r
- The bound for P is ...
- ...deferred to the next episode $)$

The $(1+\sqrt{ } 2)$ Factor is Tight (for this reference point)

Face Recognition

