Segment Intersection

Piotr Indyk

Computational Geometry ctd.

- Segment intersection problem:
- Given: a set of n distinct segments $\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{n}}$, represented by coordinates of endpoints
- Detection: detect if there is any pair $\mathrm{s}_{\mathrm{i}} \neq \mathrm{s}_{\mathrm{j}}$ that intersects
- Reporting: report all pairs of intersecting segments

Segment intersection

- Easy to solve in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
- Is it possible to get a better algorithm for the reporting problem?
- NO (in the worst-case)
- However:
- We will see we can do better for the detection problem
- Moreover, the number of intersections P is usually small.

Then, we would like an output sensitive algorithm, whose running time is low if P is small.

Result

- We will show:
$-\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time for detection
$-\mathrm{O}((\mathrm{n}+\mathrm{P}) \log \mathrm{n})$ time for reporting
- We will use line sweep approach
- Many other applications, e.g.,Voronoi diagrams, motion planning

Orthogonal segments

- All segments are either horizontal or vertical
- Assumption: all coordinates are distinct
- Therefore, only verticalhorizontal intersections exist

Orthogonal segments

- Sweep line:
- A vertical line sweeps the plane from left to right
- It "stops" at all "important" x-coordinates, i.e., when it hits a V -segment or endpoints of an H -segment
- Invariant: all intersections on the left side of the sweep line have been already reported

Orthogonal segments ctd.

- We maintain sorted y coordinates of H -segments currently intersected by the sweep line (using a balanced BST V)
- When we hit the left point of an H -segment, we add its y coordinate to V
- When we hit the right point of an H -segment, we delete its y coordinate from V

Orthogonal segments ctd.

- Whenever we hit a Vsegment having coord. $y_{\text {top }}, y_{\text {bot }}$), we report all H -segments in V with y coordinates in $\left[y_{\text {top }}, y_{\text {bot }}\right]$

Algorithm

- Sort all V-segments and endpoints of Hsegments by their x-coordinates - this gives the "trajectory" of the sweep line
- Scan the elements in the sorted list:
- Left endpoint: add segment to tree V
- Right endpoint: remove segment from
- V-segment: report intersections with the H -segments stored in V

Analysis

- Sorting: O(n log n)
- Add/delete H-segments to/from vertical data structure V:
$-\mathrm{O}(\log \mathrm{n})$ per operation
- O(n $\log n)$ total
- Processing V-segments:
- O(log n) per intersection - SEE NEXT SLIDE
$-\mathrm{O}(\mathrm{P} \log \mathrm{n})$ total
- Overall: $\mathrm{O}((\mathrm{P}+\mathrm{n}) \log \mathrm{n})$ time
- Can be improved to $\mathrm{O}(\mathrm{P}+\mathrm{n} \log \mathrm{n})$

Analyzing intersections

- Given:
- A BST V containing y-coordinates
- An interval $I=\left[y_{\text {bot }} y_{\text {top }}\right]$
- Goal: report all y's in V that belong to I
- Algorithm:
$-\mathrm{y}=\operatorname{Successor}\left(\mathrm{y}_{\text {bot }}\right)$
- While $\mathrm{y} \leq \mathrm{y}_{\text {top }}$
- Report y
- $\mathrm{y}:=$ Successor(y)
- End
- Time: (number of reported y 's) ${ }^{*} \mathrm{O}(\log \mathrm{n})+\mathrm{O}(\log \mathrm{n})$

The general case

- Assumption: all coordinates of endpoints and intersections distinct
- In particular:
- No vertical segments
- No three segments intersect at one point

Sweep line

- Invariant (as before): all intersections on the left of the sweep line have been already reported
- Stops at all "important" xcoordinates, i.e., when it hits endpoints or intersections
- Problem I: Do not know the intersections in advance!
- The list of intersection coordinates is constructed and maintained dynamically
(in a "horizontal" data structure H)

Sweep line

- Also need to maintain the information about the segments intersecting the sweep line
- Problem II: Cannot keep the values of ycoordinates of the segments !
- Instead, we will maintain their order .I.e., at any point, we maintain all segments intersecting the sweep line, sorted by the y-coordinates of the intersections
(in a "vertical" data structure V)
- Key idea: check only for the intersections of segments that are neighbors in V

Java applet

- http://www.lems.brown.edu/~wq/projects/cs252.html
- Example used in the lecture:

Algorithm

- Initialize the "vertical" BST V (to "empty")
- Initialize the "horizontal" priority queue H (to contain the segments' endpoints sorted by x-coordinates)
- Repeat
- Take the next "event" p from H:
// Update V
- If p is the left endpoint of a segment, add the segment to V
- If p is the right endpoint of a segment, remove the segment from V
- If p is the intersection point of s and s^{\prime}, swap the order of s and s ' in V, report p
(continued on the next slide)

Algorithm ctd.

// Update H

- For each new pair of neighbors s and s^{\prime} in V:
- Check if s and s' intersect on the right side of the sweep line
- If so, add their intersection point to H
- Remove the possible duplicates in H
- Until H is empty

Analysis

- Initializing H: O(n $\log \mathrm{n})$
- Updating V:
- O(log n) per operation
$-\mathrm{O}((\mathrm{P}+\mathrm{n}) \log \mathrm{n})$ total
- Updating H:
- $\mathrm{O}(\log \mathrm{n})$ per intersection
- O(P $\log n)$ total
- Overall: $\mathrm{O}((\mathrm{P}+\mathrm{n}) \log \mathrm{n})$ time

Correctness

- All reported intersections are correct
- Assume there is an intersection not reported. Let $\mathrm{p}=(\mathrm{x}, \mathrm{y})$ be the first such unreported intersection (of s and s')
- Let x' be the last event before p. Observe that:
- At time x' segments s and s' are neighbors on the sweep line
- Since no intersections were missed till then, V maintained the right order of intersecting segments
- Thus, s and s' were neighbors in V at time x'. Thus, their intersection should have been detected

Next week

- Randomized algorithm for linear programming
- Very efficient in low dimensions

