Segment Intersection

Piotr Indyk

 $\ensuremath{\mathbb{C}}$ 2003 by Piotr Indyk

Introduction to Algorithms

Computational Geometry ctd.

- Segment intersection problem:
 - Given: a set of n distinct segments $s_1...s_n$, represented by coordinates of endpoints
 - Detection: detect if there is any pair $s_i \neq s_j$ that intersects
 - Reporting: report all pairs of intersecting segments

Segment intersection

- Easy to solve in $O(n^2)$ time
- Is it possible to get a better algorithm for the reporting problem ?
- NO (in the worst-case)
- However:
 - We will see we can do better for the detection problem
 - Moreover, the number of intersections P is usually small.

Then, we would like an *output sensitive* algorithm, whose running time is low if P is small.

Result

- We will show:
 - $-O(n \log n)$ time for detection
 - $-O((n+P)\log n)$ time for reporting
- We will use *line sweep approach*
 - Many other applications, e.g., Voronoi diagrams, motion planning

Orthogonal segments

- All segments are either horizontal or vertical
- Assumption: all coordinates are distinct
- Therefore, only verticalhorizontal intersections exist

Orthogonal segments

- Sweep line:
 - A vertical line sweeps the plane from left to right
 - It "stops" at all "important" x-coordinates, i.e., when it hits a V-segment or endpoints of an H-segment
 - Invariant: all intersections on the left side of the sweep line have been already reported

Orthogonal segments ctd.

- We maintain sorted ycoordinates of H-segments currently intersected by the sweep line (using a balanced BST V)
- When we hit the left point of an H-segment, we add its y-coordinate to V
- When we hit the right point of an H-segment, we delete its ycoordinate from V

Orthogonal segments ctd.

Whenever we hit a V-segment having coord.
y_{top}, y_{bot}), we report all H-segments in V with y-coordinates in [y_{top}, y_{bot}]

Algorithm

- Sort all V-segments and endpoints of Hsegments by their x-coordinates – this gives the "trajectory" of the sweep line
- Scan the elements in the sorted list:
 - Left endpoint: add segment to tree V
 - Right endpoint: remove segment from V
 - V-segment: report intersections with the H-segments stored in V

Analysis

- Sorting: O(n log n)
- Add/delete H-segments to/from vertical data structure V:
 - $-O(\log n)$ per operation
 - $-O(n \log n)$ total
- Processing V-segments:
 - $-O(\log n)$ per intersection SEE NEXT SLIDE
 - $-O(P \log n)$ total
- Overall: O((P+ n) log n) time
- Can be improved to O(P +n log n)

Analyzing intersections

- Given:
 - A BST V containing y-coordinates
 - An interval I=[y_{bot},y_{top}]
- Goal: report all y's in V that belong to I
- Algorithm:
 - $y=Successor(y_{bot})$
 - While $y \le y_{top}$
 - Report y
 - y:=Successor(y)
 - End
- Time: (number of reported y's)* $O(\log n) + O(\log n)$

The general case

- Assumption: all coordinates of endpoints and intersections distinct
- In particular:
 - -No vertical segments
 - No three segments intersect at one point

Sweep line

- Invariant (as before): all intersections on the left of the sweep line have been already reported
- Stops at all "important" xcoordinates, i.e., when it hits endpoints or intersections
- Problem I: Do not know the intersections in advance !
- The list of intersection coordinates is constructed and maintained *dynamically*

(in a "horizontal" data structure H)

Sweep line

- Also need to maintain the information about the segments intersecting the sweep line
- Problem II: Cannot keep the values of ycoordinates of the segments !
- Instead, we will maintain their *order* .I.e., at any point, we maintain all segments intersecting the sweep line, sorted by the y-coordinates of the intersections

(in a "vertical" data structure V)

• Key idea: check only for the intersections of segments that are neighbors in V

Java applet

- <u>http://www.lems.brown.edu/~wq/projects/cs252.html</u>
- Example used in the lecture:

Algorithm

- Initialize the "vertical" BST V (to "empty")
- Initialize the "horizontal" priority queue H (to contain the segments' endpoints sorted by x-coordinates)
- Repeat
 - Take the next "event" **p** from **H**:
 - // Update V
 - If p is the left endpoint of a segment, add the segment to \boldsymbol{V}
 - If p is the right endpoint of a segment, remove the segment from V
 - If p is the intersection point of s and s', swap the order of s and s' in V, report p

(continued on the next slide)

Algorithm ctd.

// Update H

- For each new pair of neighbors s and s' in V:
 - Check if s and s' intersect on the right side of the sweep line
 - If so, add their intersection point to H
 - Remove the possible duplicates in H
- Until H is empty

Analysis

- Initializing H: O(n log n)
- Updating V:
 - $-O(\log n)$ per operation
 - $-O((P+n) \log n)$ total
- Updating H:
 - $-O(\log n)$ per intersection
 - $-O(P \log n)$ total
- Overall: O((P+ n) log n) time

Correctness

- All reported intersections are correct
- Assume there is an intersection not reported. Let p=(x,y) be the first such unreported intersection (of s and s')
- Let x' be the last event before p. Observe that:
 - At time x' segments s and s' are neighbors on the sweep line
 - Since no intersections were missed till then, V maintained the right order of intersecting segments
 - Thus, s and s' were neighbors in V at time x'. Thus, their intersection should have been detected

Next week

- Randomized algorithm for linear programming
- Very efficient in low dimensions