Geometric Optimization

Piotr Indyk

Geometric Optimization

- Minimize/maximize something subject to some constraints
- Have seen:
- Linear Programming
- Minimum Enclosing Ball
- Diameter/NN (?)
- All had easy polynomial time algorithms for $d=2$

Today

- NP-hard problems in the plane
- Packing and piercing [Hochbaum-Maass'85]
- TSP, Steiner trees, and a whole lot more [Arora'96] (cf. [Mitchell'96])
- Best exact algorithms exponential in n
- We will see $(1+\varepsilon)$-approximation algorithms that run in poly time for any fixed $\varepsilon>0$ (so, e.g., $\mathrm{n}^{\mathrm{O}}(1 / \varepsilon)$ is OK)
- Such an algorithm is called a PTAS

Packing

- Given: a set C of unit disks $\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{n}}$
- Goal: find a subset C' of C such that:

- All disks in C' are pair-wise disjoint
$-\left|\mathrm{C}^{\prime}\right|$ is maximized
- How to get a solution of size $\geq(1-\varepsilon)$ times optimum ?

Algorithm

Optimization

Algorithm, ctd.

- Impose a grid of granularity k
- For each grid cell a
- Compute C(a) = the set of disks fully contained in a
- Solve the problem for $C(a)$ obtaining $C^{\prime}(a)$
- Report C' =union of C'(a) for all cells a

Computing c'(a)

- The grid cell a has side length $=k$
- Can pack at most k^{2} disks into a
- Solve via exhaustive enumeration \rightarrow running time $\mathrm{O}\left(\mathrm{n}^{k^{\wedge} 2}\right)$
- This also bounds the total running time

Analysis

- Approximation factor:
- Consider the optimal collection of disks C
- Shift the grid at random
- The probability that a given $\mathrm{c} \in \mathrm{C}$ not fully contained in some a is at most
$O(1) / k$
- The expected number of removed disks is $\mathrm{O}(|\mathrm{C}| / \mathrm{k})$
- Setting k=O(1/ ε) suffices
- Altogether: running time $\mathrm{n}^{\mathrm{O}\left(1 / \varepsilon^{\wedge} 2\right)}$

Piercing

- Given: a set C of unit disks $\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{n}}$
- Goal: find a set P of points such that:
$-P \cap c_{i} \neq \varnothing$ for $i=1 \ldots n$
$-|P|$ is minimized
- How to get a solution of size $\leq(1+\varepsilon)$ times optimum ?

Algorithm

Algorithm, ctd.

- Impose a grid G of granularity k
- For each cell a
- Compute $C(a)=$ the set of disks in C intersecting a
- Solve the problem for $C(a)$ obtaining $P(a)$
- Report $P=$ union of $P(a)$ for all cells a

Computing $\mathrm{P}(\mathrm{a})$

- The grid cell a has side length $=k$
- Can pierce C(a) using at most k^{2} points
- Sufficient to consider $O\left(n^{2}\right)$ choices of piercing points (for all points in P)
- Compute arrangement of disks in $\mathrm{C}(\mathrm{a})$
- Points in the same cell equivalent
- Solve via exhaustive enumeration \rightarrow running time $\mathrm{O}\left(\mathrm{n}^{2 \mathrm{k}^{\wedge} 2}\right)$
- This also bounds the total running time

Analysis

- Problem: disks B within distance 1 from the grid boundary
- If we eliminated all the occurrences of the disks in B from all C(a)'s, one could pierce the remainder with cost at most OPT(C)

- Suffices to show that the cost of piercing B is small

More formally

- Define $B(a)=C(a) \cap B$
- The cost of our algorithm is at most

$$
\begin{gathered}
\sum_{a} \mathrm{OPT}(\mathrm{C}(\mathrm{a})) \leq \\
\Sigma_{\mathrm{a}} \operatorname{OPT}(\mathrm{C}(\mathrm{a})-\mathrm{B})+\sum_{a} \mathrm{OPT}(\mathrm{~B}(\mathrm{a}))= \\
\operatorname{OPT}(\mathrm{C}-\mathrm{B})+\sum_{\mathrm{a}} \mathrm{OPT}(\mathrm{~B}(\mathrm{a}))
\end{gathered}
$$

- Also, $\Sigma_{a} \operatorname{OPT}(B(a)) \leq 4$ OPT(B) , since
- Take the optimal piercing T of B
- Define $T(a)=T \cap B(a)$
- We have OPT(B(a)) $\leq|T(a)|$
- Also, each element of T appears in ≤ 4 sets $T(a)$
- Thus $\sum_{a} \mathrm{OPT}(\mathrm{B}(\mathrm{a})) \leq \Sigma_{\mathrm{a}}|\mathrm{T}(\mathrm{a})| \leq 4|\mathrm{~T}|=4 \mathrm{OPT}(\mathrm{B})$

Analysis ctd.

- Suffices to show that the cost OPT(B) of optimally piercing B is $\mathrm{O}(\varepsilon \mathrm{OPT}(\mathrm{C}))$
- Let P be the optimum piercing of C
- Shift the grid at random
- All disks in B are pierced by

$$
P^{\prime}=P \cap(G \oplus \operatorname{Ball}(0,2))
$$

- The probability that a fixed $p \in P$ belongs to P^{\prime} is O(1)/k
- The expected $\left|\mathrm{P}^{\prime}\right|$ of is $\mathrm{O}(|\mathrm{P}|) / \mathrm{k}$
- Setting k=O(1/ ε) suffices
- Altogether: running time $\mathrm{n}^{\mathrm{O}\left(1 / \varepsilon^{\wedge} 2\right)}$

Dynamic programming for TSP

- Divide the points using randomly shifted line
- Enumerate "all" possible configurations C of crossing points
- For each C, solve the two recursive problems
- Choose the C that minimizes the cost

Analysis

- Structure lemma: for any tour T, there is another tour T' with cost not much larger than the cost of T, which has only constant number of crossing points.

