External Memory Algorithms for Geometric Problems

Piotr Indyk
(slides partially by Lars Arge and
Jeff Vitter)

Compared to Previous Lectures

- Another way to tackle large data sets
- Exact solutions (no more embeddings)

External Memory Model

- Parameters:
- N : Elements in structure
$-B \quad$: Elements per block
- M : Elements in main
memory

Today

- Sorting: $\mathrm{O}\left(\mathrm{N} / \mathrm{B} \log _{\mathrm{M}} \mathrm{N}\right)$ time
- 1D data structure for searching in external memory (B-tree): $\mathrm{O}\left(\log _{\mathrm{B}} \mathrm{N}\right)$ time
- 2D problem: finding all intersections among a set of horizontal and vertical segments: $\mathrm{O}\left(\mathrm{N} / \mathrm{B} \log _{\mathrm{M} / \mathrm{B}} \mathrm{N}\right)$ time

Sorting

- M/B-way merge sort:
- Split N elements into $K=M / B$ sequences
- Sort recursively
- Merge in $O(N / B)$ time:

Sorted sequence

- Recurrence: $\mathrm{T}(\mathrm{N})=\mathrm{K} T(\mathrm{~N} / \mathrm{K})+\mathrm{O}(\mathrm{N} / \mathrm{B})$
- $\mathrm{T}(\mathrm{N})=\mathrm{O}\left(\mathrm{N} / \mathrm{B} \log _{\mathrm{k}} \mathrm{N}\right)$

April 14, 2005
Lecture 17: External Memory Algorithms

Horizontal/Vertical Line Intersection

- Given: a set of N horizontal and vertical line segments
- Goal: find all H/V intersections
- Assumption: all x and y coordinates of endpoints different

Main Memory Algorithm

- Presort the points in y-order
- Sweep the plane top down with a horizontal line
- When reaching a V-segment, store its x value in a tree. When leaving it, delete the x value from the tree
- Invariant: the balanced tree stores the V-segments hit by the sweep line
- When reaching an H-segment, search (in the tree) for its
 endpoints, and report all values/segments in between
- Total time is $\mathrm{O}(\mathrm{N} \log \mathrm{N}+\mathrm{P})$

External Memory Issues

- Can use B-tree as a search tree: $\mathrm{O}\left(\mathrm{N} \log _{\mathrm{B}} \mathrm{N}\right)$ operations
- Still much worse than the $\mathrm{O}\left(\mathrm{N} / \mathrm{B}^{*} \log _{\mathrm{m} / \mathrm{B}} \mathrm{N}\right)$ sorting bound

1D Version of the Intersection Problem

- Given: a set of N 1D horizontal and vertical line segments (i.e., intervals and points on a line)
- Goal: find all point/segment intersections
- Assumption: all x coordinates of endpoints different

Interlude: External Stack

- Stack:
- Push
- Pop
- Can implement a stack in external memory using O(P/B) I/O's per P operations
- Always keep $\leq 2 B$ top elements in main memory
- Perform disk access only when it is "earned":
- Read when necessary
- Write when starting a new
 block

Back to 1D Intersection Problem

- Will use fast stack and sorting implementations
- Sort all points and intervals in x-order (of the left endpoint)
- Iterate over consecutive (end)points p
- If p is a left endpoint of I, add I to the stack S
- If p is a point, pop all intervals I from stack S and push them on stack S^{\prime}, while:
- Eliminating all "dead" intervals
- Reporting all "alive" intervals
- Push the intervals back from S ' to S

Analysis

- Sorting: $\mathrm{O}\left(\mathrm{N} / \mathrm{B}\right.$ * $\left.\log _{\text {м/в }} \mathrm{N}\right)$ I/O's
- Each interval is pushed/popped when:
- An intersection is reported, or
- Is eliminated as "dead"
- Total stack operations: $\mathrm{O}(\mathrm{N}+\mathrm{P})$
- Total stack I/O’s: O((N+P)/B)

Back to the 2D Case

Algorithm

- Divide the x-range into M/B slabs, so that each slab contains the same number of V segments
- Each slab has a stack storing V-segments
- Sort all segments in the y-order
- For each segment I :
- If I is a V-segment, add I to the stack in the proper slab
- If I is an H-segment, then for all slabs S which intersect I:
- If I spans S, proceed as in the 1D case
- Otherwise, store the intersection of S and I for later
- For each slab, recurse on the segments stored in that slab

The recursion

- For each slab separately we apply the same algorithm
- On the bottom level we have only one V-segment, which is easy to handle
- Recursion depth: $\log _{\text {m/в }} \mathrm{N}$

Analysis

- Initial presorting: O(N/B * $\log _{\text {M/B }} N$) I/O's
- First level of recursion:
- At most $\mathrm{O}(\mathrm{N}+\mathrm{P})$ pop/push operations
- At most 2 N of H -segments stored
- Total: O((N+P)/B) I/O's
- Further recursion levels:
- The total number of H-segment pieces (over all slabs) is at most twice the number of the input H-segments; it does not double at each level
- By the above argument we pay $O(N / B)$ I/O's per level
- Total: $\mathrm{O}\left(\mathrm{P} / \mathrm{B}+\mathrm{N} / \mathrm{B}^{*} \log _{\text {m/B }} \mathrm{N}\right) \mathrm{I} / \mathrm{O}$'s

Off-line Range Queries

- Given: N points in 2D and N' rectangles
- Goal: Find all pairs p, R such that p is in R

Summary

- On-line queries: $O\left(\log _{\mathrm{B}} \mathrm{N}\right)$ I/O's
- Off-line queries: $O\left(1 / B^{*} \log _{\text {м/в }} N\right)$ I/O's amortized
- Powerful techniques:
- Sorting
- Stack
- Distribution sweep

References

- See http://www.brics.dk/MassiveData02, especially:
- First lecture by Lars Arge (for B-trees etc)
- Second lecture by Jeff Vitter (for distribution sweep)

Searching in External Memory

- Dictionary (or successor) data structure for 1D data:
- Maintains elements (e.g., numbers) under insertions and deletions
- Given a key K, reports the successor of K; i.e., the smallest element which is greater or equal to K

Search Trees

- Binary search tree:
- Standard method for search among N elements
- We assume elements in leaves

- Search traces at least one root-leaf path

(a,b)-tree (or B-tree)

- T is an (a, b)-tree ($a \geq 2$ and $b \geq 2 a-1$)
- All leaves on the same level
- Except for the root, all nodes
 have degree between a and b
- Root has degree between 2 and b
- Choose $a, b=\Theta(B)$ to have
- Depth: $\mathrm{O}\left(\log _{\mathrm{B}} \mathrm{N}\right)$
- Space: O(N/B) blocks

(a, b)-Tree Insert

- Insert:
- Search and insert element in leaf v
- WHILE v has $b+1$ elements Split v :
- make nodes v^{\prime} and $v^{\prime \prime}$ with (b+1)/2 elements each

- insert element in parent (make new root if necessary)
- v=parent(v)
- Insert touches $\mathrm{O}\left(\log _{\mathrm{B}} \mathrm{N}\right)$ nodes
- Delete is analogous

(a, b)-Tree Delete

B-trees

- Used everywhere in databases
- Typical depth is 3 or 4
- Top two levels kept in main memory - only 1-2 I/O's per element

