
External Memory Algorithms
for Geometric Problems

Piotr Indyk
(slides partially by Lars Arge and

Jeff Vitter)

April 14, 2005 Lecture 17: External Memory
Algorithms

2

Compared to Previous Lectures

• Another way to tackle large data sets
• Exact solutions (no more embeddings)

April 14, 2005 Lecture 17: External Memory
Algorithms

3

External Memory Model
• Parameters:

– N : Elements in structure
– B : Elements per block
– M : Elements in main

memory

D

P

M

Block I/O

April 14, 2005 Lecture 17: External Memory
Algorithms

4

Today

• Sorting: O(N/B logMN) time
• 1D data structure for searching in external

memory (B-tree): O(logBN) time
• 2D problem: finding all intersections

among a set of horizontal and vertical
segments: O(N/B logM/BN) time

April 14, 2005 Lecture 17: External Memory
Algorithms

5

Sorting

• M/B-way merge sort:
– Split N elements into K=M/B sequences
– Sort recursively
– Merge in O(N/B) time:

• Recurrence: T(N)= K T(N/K)+O(N/B)
• T(N)=O(N/B logK N)

M

Sorted sequence

April 14, 2005 Lecture 17: External Memory
Algorithms

6

Horizontal/Vertical Line
Intersection

• Given: a set of N horizontal and vertical
line segments

• Goal: find all H/V intersections
• Assumption: all x and y coordinates of

endpoints different

April 14, 2005 Lecture 17: External Memory
Algorithms

7

Main Memory Algorithm
• Presort the points in y-order
• Sweep the plane top down with

a horizontal line
• When reaching a V-segment,

store its x value in a tree.
When leaving it, delete the x
value from the tree

• Invariant: the balanced tree
stores the V-segments hit by
the sweep line

• When reaching an H-segment,
search (in the tree) for its
endpoints, and report all
values/segments in between

• Total time is O(N log N + P)

April 14, 2005 Lecture 17: External Memory
Algorithms

8

External Memory Issues

• Can use B-tree as a search tree:
O(N log B N) operations

• Still much worse than the
O(N/B * log M/B N) sorting bound

April 14, 2005 Lecture 17: External Memory
Algorithms

9

1D Version of the Intersection
Problem

• Given: a set of N 1D horizontal and
vertical line segments (i.e., intervals and
points on a line)

• Goal: find all point/segment intersections
• Assumption: all x coordinates of

endpoints different

April 14, 2005 Lecture 17: External Memory
Algorithms

10

Interlude: External Stack
• Stack:

– Push
– Pop

• Can implement a stack in
external memory using
O(P/B) I/O’s per P
operations
– Always keep ≤2B top

elements in main memory
– Perform disk access only

when it is “earned”:
• Read when necessary
• Write when starting a new

block

…

April 14, 2005 Lecture 17: External Memory
Algorithms

11

Back to 1D Intersection Problem
• Will use fast stack and sorting implementations

• Sort all points and intervals in x-order (of the left
endpoint)

• Iterate over consecutive (end)points p
– If p is a left endpoint of I, add I to the stack S
– If p is a point, pop all intervals I from stack S and push

them on stack S’ , while:
• Eliminating all “dead” intervals
• Reporting all “alive” intervals

– Push the intervals back from S’ to S

April 14, 2005 Lecture 17: External Memory
Algorithms

12

Analysis

• Sorting: O(N/B * log M/B N) I/O’s
• Each interval is pushed/popped when:

– An intersection is reported, or
– Is eliminated as “dead”

• Total stack operations: O(N+P)
• Total stack I/O’s: O((N+P)/B)

April 14, 2005 Lecture 17: External Memory
Algorithms

13

Back to the 2D Case

April 14, 2005 Lecture 17: External Memory
Algorithms

14

Algorithm
• Divide the x-range into M/B slabs, so that

each slab contains the same number of V-
segments

• Each slab has a stack storing V-segments
• Sort all segments in the y-order
• For each segment I:

– If I is a V-segment, add I to the stack in the
proper slab

– If I is an H-segment, then for all slabs S
which intersect I:

• If I spans S, proceed as in the 1D case
• Otherwise, store the intersection of S and

I for later
• For each slab, recurse on the segments

stored in that slab

April 14, 2005 Lecture 17: External Memory
Algorithms

15

The recursion
• For each slab separately

we apply the same
algorithm

• On the bottom level we
have only one V-segment,
which is easy to handle

• Recursion depth: log M/B N

April 14, 2005 Lecture 17: External Memory
Algorithms

16

Analysis
• Initial presorting: O(N/B * log M/B N) I/O’s
• First level of recursion:

– At most O(N+P) pop/push operations
– At most 2N of H-segments stored
– Total: O((N+P)/B) I/O’s

• Further recursion levels:
– The total number of H-segment pieces (over all slabs)

is at most twice the number of the input H-segments;
it does not double at each level

– By the above argument we pay O(N/B) I/O’s per level
• Total: O(P/B+N/B * log M/B N) I/O’s

April 14, 2005 Lecture 17: External Memory
Algorithms

17

Off-line Range Queries

• Given: N points in 2D and N’ rectangles
• Goal: Find all pairs p, R such that p is in R

April 14, 2005 Lecture 17: External Memory
Algorithms

18

Summary

• On-line queries: O(log B N) I/O’s
• Off-line queries: O(1/B*log M/B N) I/O’s

amortized
• Powerful techniques:

– Sorting
– Stack
– Distribution sweep

April 14, 2005 Lecture 17: External Memory
Algorithms

19

References

• See http://www.brics.dk/MassiveData02,
especially:
– First lecture by Lars Arge (for B-trees etc)
– Second lecture by Jeff Vitter (for distribution

sweep)

April 14, 2005 Lecture 17: External Memory
Algorithms

20

Searching in External Memory

• Dictionary (or successor) data structure
for 1D data:
– Maintains elements (e.g., numbers) under

insertions and deletions
– Given a key K, reports the successor of K;

i.e., the smallest element which is greater or
equal to K

April 14, 2005 Lecture 17: External Memory
Algorithms

21

Search Trees

)(log2 NΟ

• Binary search tree:
– Standard method for search among N

elements
– We assume elements in leaves

– Search traces at least one root-leaf path

April 14, 2005 Lecture 17: External Memory
Algorithms

22

(a,b)-tree (or B-tree)
• T is an (a,b)-tree (a≥2 and

b≥2a-1)
– All leaves on the same level
– Except for the root, all nodes

have degree between a and b
– Root has degree between 2

and b
• Choose a,b=Θ(B) to have

– Depth: O(logBN)
– Space: O(N/B) blocks

(2,4)−tree

April 14, 2005 Lecture 17: External Memory
Algorithms

23

(a,b)-Tree Insert
• Insert:

– Search and insert element in
leaf v

– WHILE v has b+1 elements
Split v:

• make nodes v’ and v’’ with
(b+1)/2 elements each

• insert element in parent (make
new root if necessary)

• v=parent(v)
• Insert touches O(logBN)

nodes
• Delete is analogous

v

v’ v’’

⎡ ⎤2
1+b ⎣ ⎦2

1+b

1+b

April 14, 2005 Lecture 17: External Memory
Algorithms

24

(a,b)-Tree Delete

v

v

1−a

12 −≥ a

April 14, 2005 Lecture 17: External Memory
Algorithms

25

B-trees

• Used everywhere in databases
• Typical depth is 3 or 4
• Top two levels kept in main memory – only

1-2 I/O’s per element

