Low-Distortion Embeddings II

Piotr Indyk

April 07, 2005

In the previous lecture

- Definition of embedding f:M→M' with distortion c
- Isometric embedding of I_1^d into $I_\infty^{2^{d}}$
 - $-I_{\infty}^{d'}$ diameter in O(nd') time
 - $-I_1^d$ diameter in O(n2^d) time
- Embedding of M=(X,D) into I_{∞}^{d}
 - Isometry for d=|X|
 - Distortion O(c) for $d=|X|^{1/c}$

Today

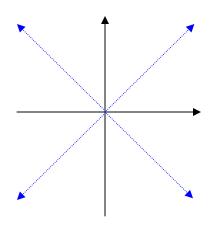
- $(1+\epsilon)$ -distortion embedding of I_2 into I_{∞}
 - Approximate diameter in I_2
- $(1+\epsilon)$ -distortion embedding of (X,I_2) , X in R^d, into $I_2^{d'}$, where d'=O(log $|X|/\epsilon^2$)
 - $-(1+\epsilon)$ -approximate Near Neighbor in I_2^d
 - Query time: O(d log n / ϵ^2)
 - Space: $n^{O(\log(1/\epsilon)/\epsilon^2)}$
- $(1+\epsilon)$ -distortion embedding of I_2^d into $I_1^{d'}$, where d'=O(d/ $\epsilon^2 \log(1/\epsilon)$)

(1+ ϵ)-embedding of I_2 into I_{∞}

- We know:
 - (1+ ϵ)-embedding of I_2^d into $I_1^{O(d/\epsilon^2 \log(1/\epsilon))}$
 - Isometry of I_1^d into $I_\infty^{2^d}$
 - Therefore: (1+ ϵ)-embedding of I_2^d into I_∞^d , where d'=2^{O(d/\epsilon^2 log(1/\epsilon))}
- We will improve d' to $O(1/\epsilon)^{(d-1)/2}$

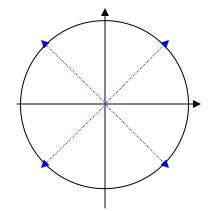
Consider d=2

- For embedding into I₁ we used f(x,y)=[x+y,x-y,-x+y,-x-y]
 - Since f linear, we have ||f(p)-f(q)||=||f(p-q)||
 - $||(x,y)||_1 = |x|+|y| = \max[x+y, x-y, -x+y, -x-y]$



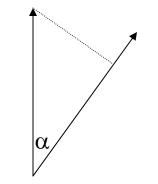
Embedding of I_2

- Again, use projections
 - Onto unit (I_2) vectors $v_1 \dots v_k$
 - Requirement: vectors are "densely" spaced
 - I.e., for any u there is v_i such that $u^*v_i \ge ||u||_2 / (1+\epsilon)$
 - Can assume ||u||₂=1
- How big is k ?



Lemma

- Consider two unit vectors u and v, such that the angle(u,v)=α.
 Then u*v ≥ 1-O(α²)
- Proof: u*v=cos(α)
 - ≈ 1+ α cos'(α) + α^2 cos''(α)/2
 - **≈** 1- Θ(α²)
- Therefore, suffices to use $2\pi/\epsilon^{1/2}$ vectors to get distortion $1+O(\epsilon)$



Higher Dimensions

- For d=2 we get $d'=O(1/\epsilon^{1/2})$
- For any d we get $d'=O_d(1/\epsilon)^{(d-1)/2}$
 - Can "cover" a unit sphere in R^d with O_d(1/α)^{d-1}
 vectors so that any v has angle <α with at least one of the vectors
 - The remainder is the same
- Yields an $O_d(1/\epsilon)^{(d-1)/2}n$ time algorithm for approximate diameter in I_2

Covering vs Packing

- Assume we want to cover the sphere using disks of radius α
- This can be achieved by packing , as many as possible, disks of radius $\alpha/2$
- How many disks can be pack ?
 - Each disk has volume $\Theta_d(\alpha/2)^{d-1}$ times smaller than the volume of the sphere
 - Inverse of that gives the packing/covering bound

Dimensionality Reduction

[Johnson-Lindenstrauss'85]: For any X in R^d, |X|=n, there is a $(1+\epsilon)$ -distortion embedding of (X,I_2) , into $I_2^{d'}$, where d'=O(log n / ϵ^2)

April 07, 2005

Proof

- Need to show that for any pair p,q in X, we have ||f(p)-f(q)|| ≈ S ||p-q|| - X ≈ C means X=(1± ε)C
- Our mapping: f(u)=Au, A "random"
- Sufficient to show that for a *fixed* u=p-q, where p,q in X, the prob. that

||Au||≈S||u|| does not hold

is at most 1/n²

- Because #pairs $\{p,q\}$, times $1/n^2$, is at most 1/2
- In fact, by linearity of A we can assume ||u||=1, so we just need to show ||Au|| ≈ S

April 07, 2005

Normal Distribution

- Normal distribution:
 - Range: (-∞, ∞)
 - Density: $f(x)=e^{-x^{2/2}}/(2\pi)^{1/2}$
 - Mean=0, Variance=1
- Basic facts:
 - If X and Y independent r.v. with normal distribution, then X+Y has normal distribution
 - Var(cX)=c² Var(X)
 - If X,Y independent, then Var(X+Y)=Var(X)+Var(Y)

Back to embedding

- We map f(u)=Au=[a¹*u,...,a^d*u], where each entry of A has normal distribution
- Consider $Z=a^{i*}u = a^{*}u = \sum_{i} a_{i} u_{i}$
- Each term a_i u_i
 - Has normal distribution
 - With variance u_i^2
- Thus, Z has normal distribution with variance ∑_i u_i²=1
- This holds for each a^j

What is $||Au||_2$

- $||Au||^2 = (a^1 * u)^2 + ... + (a^{d'} * u)^2 = Z_1^2 + ... + Z_{d'}^2$ where:
 - All Z_i 's are independent
 - Each has normal distribution with variance=1
- Therefore, $E[||Au||^2]=d'*E[Z_1^2]=d'$
- By Chernoff-like bound

 $\Pr[||Au||^2 - d'| > \varepsilon d'] < e^{-B d' \varepsilon^2} < 1/n^2$

for some constant B

• So, $||Au||_2 \approx (d')^{1/2}$ with probability $1-1/n^2$

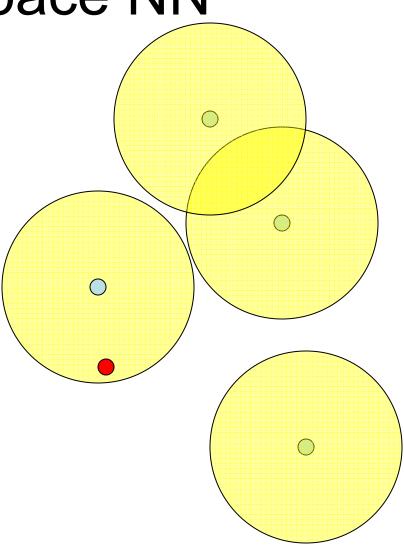
April 07, 2005

Application to Near Neighbor

- Suppose we have an algorithm with:
 - O(d) query time
 - $-O(1/\epsilon)^d$ n space
- Then we get:
 - $-O(d \log n / \epsilon^2)$ query time
 - $n^{O(\log(1/\epsilon)/\epsilon^2)}$ space

$O(1/\epsilon)^d$ n space NN

Assume r=1



Grid

- Impose a grid with side length= $\epsilon/d^{1/2}$
- Parameters:
 - Cell diameter: ε
 - -#cells/ball: $O(1/\epsilon)^d$
- Store all cells touching a ball

