Closest Pair

Piotr Indyk

March 29, 2005

Lecture 12: Closest Pair

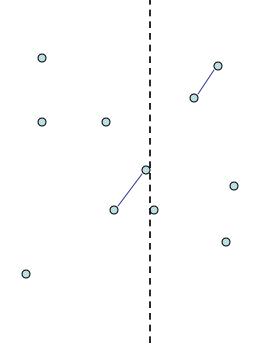
Closest Pair

- Find a closest pair among $p_1 \dots p_n \in \mathbb{R}^d$
- Easy to do in O(dn²) time
 - For all $p_i \neq p_j$, compute $||p_i p_j||$ and choose the minimum
- We will aim for better time, as long as d is "small"
- For now, focus on d=2

Divide and conquer

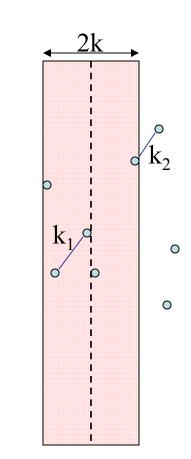
• Divide:

- Compute the median of xcoordinates
- Split the points into P_L and P_R , each of size n/2
- Conquer: compute the closest pairs for P_L and P_R
- Combine the results (the hard part)



Combine

- Let $k=\min(k_1,k_2)$
- Observe:
 - Need to check only pairs which cross the dividing line
 - Only interested in pairs within distance < k
- Suffices to look at points in the 2k-width strip around the median line



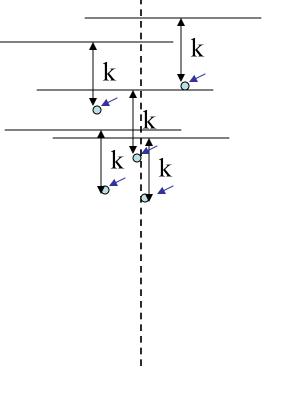
0

0

0

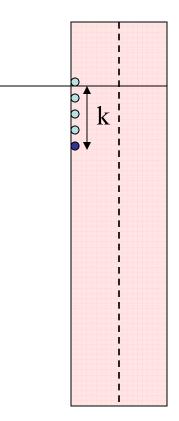
Scanning the strip

- Sort all points in the strip by their ycoordinates, forming q₁...q_t, t ≤ n.
- Let y_i be the y-coordinate of q_i
- $k_{min} = k$
- For i=1 to t
 - j=i-1
 - While $y_i y_j < k$
 - If $||q_i-q_j|| < k_{\min}$ then $k_{\min} = ||q_i-q_j||$
 - j:=j-1
- Report k_{min} (and the corresponding pair)



Analysis

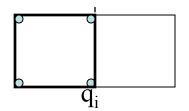
- Correctness: easy
- Running time is more involved
- Can we have many q_i's that are within distance k from q_i?
- No
- Proof by *packing* argument



Analysis, ctd.

Theorem: there are at most 7 q_j 's , j<i, such that y_i - $y_j \le k$. **Proof:**

- Each such q_i must lie either in the left or in the right k × k square
- Within each square, all points have distance distance ≥ k from others
- We can pack at most 4 such points into one square, so we have 8 points total (incl. q_i)



At most 4

- Split the square into 4 subsquares of size $k/2 \times k/2$
- Diameter of each square is k/2^{1/2} < k → at most one point per sub-square

 ,

Running time

- Divide: O(n)
- Combine: O(n log n) because we sort by y
- However, we can:
 - Sort all points by y at the beginning
 - Divide preserves the y-order of points Then combine takes only O(n)
- We get T(n)=2T(n/2)+O(n), so T(n)=O(n log n)

Higher dimensions (sketch)

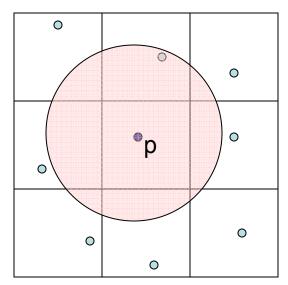
- Divide: split P into P_L and P_R using the hyperplane x=t
- Conquer: as before
- Combine:
 - Need to take care of points with x in [t-k,t+k]
 - This is essentially the same problem, but in d-1 dimensions
 - We get:
 - T(n,d)=2T(n/2, d)+T(n,d-1)
 - T(n,1)=O_d(1) n
 - Solves to: T(n,d)=n log^{d-1} n

Closest Pair with Help

- Given: P={p₁...p_n} of points from R^d, such that the closest distance is in (t,c t]
- Goal: find the closest pair
- Will give an O((2c d^{1/2})^d n) time algorithm
- Note: by scaling we can assume t=1

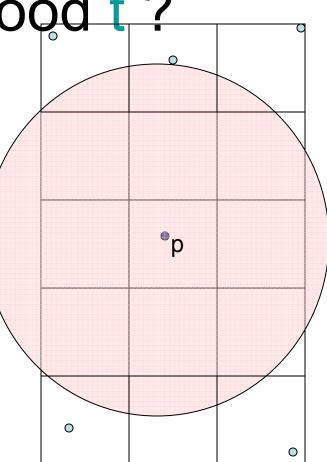
Algorithm

- Impose a cubic grid onto R^d, where each cell is a 1/d^{1/2} ×1/d^{1/2} cube
- Put each point into a bucket corresponding to the cell it belongs to
- Diameter of each cell is ≤1, so at most one point per cell
- For each p∈P, check all points in cells intersecting a ball B(p,c)
- How many cells are there ?
 - All are contained in a d-dimensional box of side $2(c+1/d^{1/2}) \le 2(c+1)$
 - At most $(2 d^{1/2} (c+1))^d$ such cells
- Total time: O((2c d^{1/2})^d n)



How to find good t?

- Repeat:
 - Choose a random point p in P
 - Let t=t(p)=D(p,P-{p})
 - Impose a grid with side t'< t/(1+d^{1/2})
 i.e., such that any pair of adjacent
 cells has diameter <t
 - Put the points into the grid cells
 - Remove all points whose all adjacent cells are empty
- Until P is empty
- Observation: the values t are decreasing



Correctness

- Consider t computed in the last iteration
 - There is a pair of points with distance t (it defines t)
 - There is no pair of points with distance t' or less (otherwise they would have been placed in adjacent cells, and the algorithm would have continued)
 - We get c=t/t'~ 2 d^{1/2}

Running time

- Consider t(p₁)...t(p_m)
- An iteration is lucky if t(p_i) ≥ t for at last half of points p_i
- The probability of being lucky is $\geq 1/2$
- Expected #iterations till a lucky one is ≤2
- After we are lucky, the number of points is ≤ m/2
- Total expected time = 3^d times O(n+n/2+n/4+...+1)