Motion Planning

Piotr Indyk

Piano Mover's Problem

- Given:
- A set of obstacles
- The initial position of a robot
- The final position of a robot
- Goal: find a path that
- Moves the robot from the initial to final position
- Avoids the obstacles (at all times)

Basic notions

- Work space - the space with obstacles
- Configuration space:
- The robot (position) is a point
- Forbidden space $=$ positions in which robot collides with an obstacle
- Free space: the rest
- Collision-free path in the work space = path in the free part of configuration space

Demo

- http://www.diku.dk/hjemmesider/studerend e/palu/start.html

Point case

- Assume that the robot is a point
- Then the work space=configuration space
- Free space = the bounding box - the obstacles

Finding a path

- Compute the trapezoidal map to represent the free space
- Place a node
- At the center of each trapezoid
- At each edge of the trapezoid
- Put the "visibility" edges
- Path finding=BFS in the graph

Non-point robots

- C-obstacle = the set of robot positions which overlap an obstacle
- Free space: the bounding box minus all C-obstacles
- Given a robot and obstacles, how to calculate C-obstacles ?

Minkowski Sum

- Minkowski Sum of two sets P and Q is defined as $P \oplus Q=\{p+q: p \in P, q \in Q\}$
- How to define C-obstacles using Minkowski Sums?

C-obstacles

C-obstacles

- The C-obstacle of P w.r.t. robot R is equal to $\mathrm{P} \oplus(-\mathrm{R})$
- Proof:
- Assume robot R collides with P at position c
- I.e., consider $t \in(R+c) \cap P$
- We have $t-c \in R \rightarrow c-t \in-R \rightarrow c \in t+(-R)$
- Since $t \in P$, we have $c \in P \oplus(-R)$
- Reverse direction is similar

Properties of $\mathrm{P} \oplus \mathrm{R}$

- Assume P,R convex, with n (resp. m) edges
- Theorem: $\mathrm{P} \oplus \mathrm{R}$ is convex:
- Proof:
- Consider $t_{1}, t_{2} \in P \oplus R$. We know $t_{i}=p_{i}+r_{i}$ for $p_{i} \in P, r_{i} \in R$
$-P, Q$ convex: $\lambda p_{1}+(1-\lambda) p_{2} \in P, \lambda r_{1}+(1-\lambda) r_{2} \in R$
- Therefore:

$$
\lambda t_{1}+(1-\lambda) t_{2}=\lambda\left(p_{1}+r_{1}\right)+(1-\lambda)\left(p_{2}+r_{2}\right) \in P \oplus R
$$

Properties of $P \oplus R$ II

- Observation: an extreme point of $P \oplus R$ in direction d is a sum of extreme points of P and R in
 direction d
- Proof: for p ranging in P and r ranging in R :

$$
\begin{aligned}
& \max (p+r)^{*} d \\
= & \max p^{*} d+r^{*} d \\
= & \max p^{*} d+\max r^{*} d
\end{aligned}
$$

Properties of $\mathrm{P} \oplus$ R III

- Theorem: $\mathrm{P} \oplus \mathrm{R}$ has at most n+m edges.
- Proof:
- Consider the space of directions

More complex obstacles

- Pseudo-disc pairs: O_{1} and O_{2} are in pd position, if $\mathrm{O}_{1}-\mathrm{O}_{2}$ and $\mathrm{O}_{2}-$ O_{1} are connected

- At most two proper intersections of boundaries

Minkowski sums are pseudo-discs

- Consider convex P, Q, R, such that P and Q are disjoint. Then $\mathrm{C}_{1}=\mathrm{P} \oplus \mathrm{R}$ and $\mathrm{C}_{2}=\mathrm{Q} \oplus \mathrm{R}$ are in pd position.
- Proof:
- Consider $\mathrm{C}_{1}-\mathrm{C}_{2}$, assume it has 2 connected components
- There are two different directions d and d':
- In which C_{1} is more extreme than C_{2}
- Somewhere in between d and d^{\prime}, as well as d' and d, C_{2} is more extreme than C_{1}
- By properties of \oplus, direction d is more extreme for $C_{1}=P \oplus R$ than $C_{2}=Q \oplus R$ iff it is more extreme for P than for Q
- Thus, there are two different directions d and d':
- In which P is more extreme than Q

- Somewhere in between d and d^{\prime}, as well as d^{\prime} and d, Q is more extreme than P
- Configuration impossible for disjoint, convex P,Q

Union of pseudo-discs

- Let P_{1}, \ldots, P_{k} be polygons in pd position. Then their union has complexity $\left|P_{1}\right|+\ldots+\left|P_{k}\right|$
- Proof:
- Suffices to bound the number of vertices
- Each vertex either original or induced by intersection
- Charge each intersection vertex to the next original vertex in the interior of the union
- Each vertex charged at most twice

Convex $\mathrm{R} \oplus$ Non-convex P

- Triangulate P into T_{1}, \ldots, T_{n}
- Compute $R \oplus T_{1}, \ldots, R \oplus T_{n}$
- Compute their union
- Complexity: $|R| n$
- Similar algorithmic complexity

