Motion Planning

Piotr Indyk

March 10, 2005

Piano Mover's Problem

- Given:
 - A set of obstacles
 - The initial position of a robot
 - The final position of a robot
- Goal: find a path that
 - Moves the robot from the initial to final position
 - Avoids the obstacles (at all times)

March 10, 2005

Basic notions

- Work space the space with obstacles
- Configuration space:
 - The robot (position) is a point
 - Forbidden space = positions in which robot collides with an obstacle
 - Free space: the rest
- Collision-free path in the work space = path in the free part of configuration space

March 10, 2005

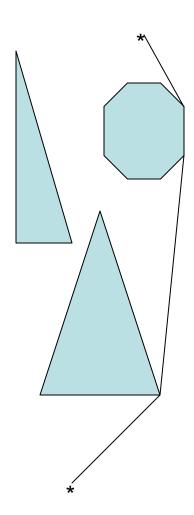
Demo

 http://www.diku.dk/hjemmesider/studerend e/palu/start.html

March 10, 2005

Point case

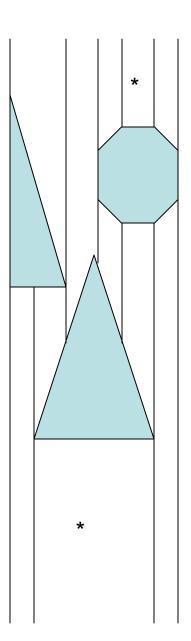
- Assume that the robot is a point
- Then the work space=configuration space
- Free space = the bounding box – the obstacles



March 10, 2005

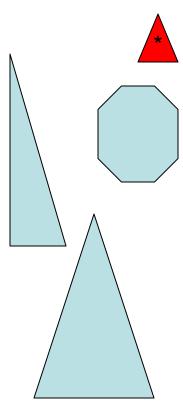
Finding a path

- Compute the trapezoidal map to represent the free space
- Place a node
 - At the center of each trapezoid
 - At each edge of the trapezoid
- Put the "visibility" edges
- Path finding=BFS in the graph



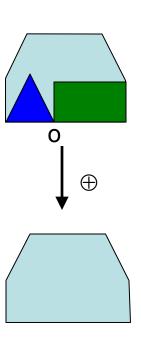
Non-point robots

- C-obstacle = the set of robot positions which overlap an obstacle
- Free space: the bounding box minus all C-obstacles
- Given a robot and obstacles, how to calculate C-obstacles?



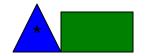
Minkowski Sum

- Minkowski Sum of two sets
 P and Q is defined as
 P⊕Q={p+q: p∈P, q∈Q}
- How to define C-obstacles using Minkowski Sums?



March 10, 2005

C-obstacles



C-obstacles

- The C-obstacle of P w.r.t. robot R is equal to P⊕(-R)
- Proof:
 - Assume robot R collides with P at position c
 - I.e., consider $t \in (R+c) \cap P$
 - We have $t-c \in R \rightarrow c-t \in -R \rightarrow c \in t+(-R)$
 - Since t∈P, we have c∈P \oplus (-R)
- Reverse direction is similar

Properties of P⊕R

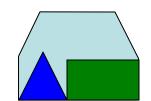
- Assume P,R convex, with n (resp. m) edges
- Theorem: P⊕R is convex:
- Proof:
 - Consider $t_1, t_2 \in P \oplus R$. We know $t_i = p_i + r_i$ for $p_i \in P$, $r_i \in R$
 - P,Q convex: $\lambda p_1 + (1 \lambda)p_2 \in P$, $\lambda r_1 + (1 \lambda)r_2 \in R$
 - Therefore:

$$\lambda t_1 + (1 - \lambda)t_2 = \lambda(p_1 + r_1) + (1 - \lambda)(p_2 + r_2) \in P \oplus R$$

March 10, 2005

Properties of P⊕R II

 Observation: an extreme point of P⊕R in direction d is a sum of extreme points of P and R in direction d



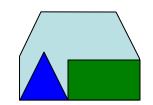
 Proof: for p ranging in P and r ranging in R:

```
max (p+r)*d
= max p*d +r*d
= max p*d +max r*d
```

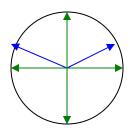
March 10, 2005

Properties of P⊕R III

 Theorem: P⊕R has at most n+m edges.



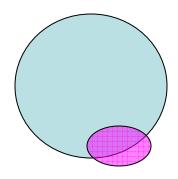
- Proof:
 - Consider the space of directions

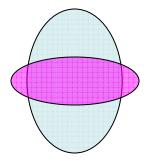


March 10, 2005

More complex obstacles

- Pseudo-disc pairs: O₁
 and O₂ are in pd
 position, if O₁-O₂ and O₂-O₁ are connected
- At most two proper intersections of boundaries

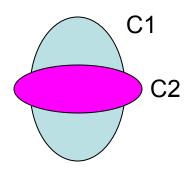


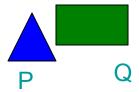


March 10, 2005

Minkowski sums are pseudo-discs

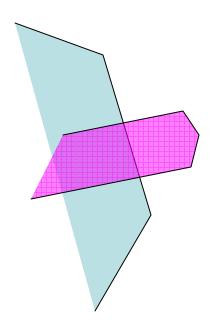
- Consider convex P,Q,R, such that P and Q are disjoint. Then C₁=P⊕R and C₂=Q⊕R are in pd position.
- Proof:
 - Consider C₁-C₂, assume it has 2 connected components
 - There are two different directions d and d':
 - In which C₁ is more extreme than C₂
 - Somewhere in between d and d' , as well as d' and d, C_2 is more extreme than C_1
 - By properties of ⊕, direction d is more extreme for C₁=P⊕R than C₂=Q⊕R iff it is more extreme for P than for Q
 - Thus, there are two different directions d and d':
 - In which P is more extreme than Q
 - Somewhere in between d and d', as well as d' and d,
 Q is more extreme than P
 - Configuration impossible for disjoint, convex P,Q





Union of pseudo-discs

- Let $P_1,...,P_k$ be polygons in pd position. Then their union has complexity $|P_1| + ... + |P_k|$
- Proof:
 - Suffices to bound the number of vertices
 - Each vertex either original or induced by intersection
 - Charge each intersection vertex to the next original vertex in the interior of the union
 - Each vertex charged at most twice



Convex R Non-convex P

- Triangulate P into T₁,...,T_n
- Compute R⊕T₁,..., R ⊕T_n
- Compute their union
- Complexity: |R| n
- Similar algorithmic complexity

March 10, 2005