The Visibility Problem and Binary Space Partition

(slides by Nati Srebro)

The Visibility Problem

Algorithms

- Z-buffer:
 - Draw objects in arbitrary order
 - For each pixel, maintain distance to the eye ("z")
 - Only draw pixel if new "z" is closer
- Painter's algorithm:
 - draw objects in order, from back to front

Painter's algorithm

 Can one always order objects from front to back ? That is, is "A occludes B" a partial order ?

Assuming:

- Simple objects, e.g., segments or triangles
- Objects disjoint
- In 2D: Yes
- In 3D: No
- We will have to **split** sometimes

Binary Planar Partitions

Painter's Algorithm

Binary Planar Partitions

Auto-partitions

Auto-partitions

What is the complexity of BSP using auto-partitions ?

Binary Planar Partitions

Goal:

Find binary planer partition, with small number of fragmentations

Random Auto-Partitions

Choose random permutation of segments $(s_1, s_2, s_3, ..., s_n)$

While there is a region containing more than one segment, separate it using first s_i in the region

u can cut v_4 only if *u* appears before v_1, v_2, v_3, v_4 in random permutation

$P(u \text{ cuts } v_4) \leq 1/5$

E[total number of fragments] = n + E[total number of cuts] = n + Σ_u E[num cuts *u* makes] = n+nO(log n) = O(n log n) March 8, 2005

Random Auto-Partitions

Choose random permutation of segments $(s_1, s_2, s_3, ..., s_n)$

While there is a region containing more than one segment, separate it using first s_i in the region

O(n log n) fragments in expectation

What about 3D?

- Assume arbitrary order of triangles
- What is the complexity of the BSP ?
 - Each triangle can be split using n-1 planes
 - From the perspective of the triangle, it is split using n-1 lines
 - Complexity of arrangement: O(n²)
 - Total complexity: O(n³)
- Also, at least Ω(n²)

Zones

The zone of a line / in an arrangement A(L) is the set of faces of A(L) whose closure intersects /.

 Note how this relates to the complexity of inserting a line into a DCEL...

Zone Complexity

- The complexity of a zone is defined as the total complexity of all the faces it consists of, i.e. the sum of the number of edges and vertices of those faces.
- The time it takes to insert line *l_i* into a DCEL is linear in the complexity of the zone of *l_i* in A({*l₁*,...,*l_{i-1}*}).

Zone Theorem

- The complexity of the zone of a line in an arrangement of *m* lines on the plane is O(*m*)
- Therefore:
 - We can insert a line into an arrangement in linear time
 - We can compute the arrangement in O(n²) time

Proof of Zone Theorem

- Given an arrangement of *m* lines, *A*(*L*), and a line *I*.
- Change coordinate system so / is the x-axis.
- Assume (for now) no horizontal lines

Proof of Zone Theorem

• Each edge in the zone of *I* is a *left bounding* edge and a *right bounding edge*.

- Claim: number of left bounding edges $\leq 5m$
- Same for number of right bounding edges
 → Total complexity of *zone(*/) is linear

Proof of Zone Theorem -Base Case-

When *m*=1, this is trivially true.
 (1 left bounding edge ≤ 5)

- Assume true for all but the rightmost line *I_r*:
 i.e. Zone of *I* in *A*(*L*-{*I_r*}) has at most 5(*m*-1)
 left bounding edges
- Assuming no other line intersects / at the same point as I_r, add I_r

- Assume true for all but the rightmost line *I_r*:
 i.e. Zone of *I* in *A*(*L*-{*I_r*}) has at most 5(*m*-1) left bounding edges
- Assuming no other line intersects / at the same point as I_r , add I_r

- Assume true for all but the rightmost line *I_r*:
 i.e. Zone of *I* in *A*(*L*-{*I_r*}) has at most 5(*m*-1)
 left bounding edges
- Assuming no other line intersects / at the same point as I_r , add I_r
 - I_r has one left bounding edge with / (+1)

- Assume true for all but the rightmost line *I_r*:
 i.e. Zone of *I* in *A*(*L*-{*I_r*}) has at most 5(*m*-1) left bounding edges
- Assuming no other line intersects / at the same point as I_r, add I_r
 - I_r has one left bounding edge with / (+1)
 - I_r splits at most two left bounding edges (+2)

Proof of Zone Theorem Loosening Assumptions

- What if I_r intersects I at the same point as another line, I_i does?
 - $-I_r$ has two left bounding edges (+2)
 - $-I_i$ is split into two left bounding edges (+1)
 - As in simpler case, I_r splits two other left bounding edges (+2)

Proof of Zone Theorem Loosening Assumptions

- What if l_r intersects l at the same point as another line, l_i does? (+5)
- What if >2 lines (l_i , l_j , ...) intersect l at the same point?
 - Like above, but *l_i*, *l_j*, ...
 are already split in two
 (+4)

Proof of Zone Theorem -Loosening Assumptions-

- What if there are horizontal lines in L?
- A horizontal line introduces not more complexity into A(L) than a non-horizontal line.

Use internal fragments immediately as "free" cuts March 8, 2005