The Visibility Problem and
 Binary Space Partition

(slides by Nati Srebro)

March 8, 2005

The Visibility Problem

March 8, 2005

Algorithms

- Z-buffer:
- Draw objects in arbitrary order
- For each pixel, maintain distance to the eye ("z")
- Only draw pixel if new " z " is closer
- Painter's algorithm:
- draw objects in order, from back to front

Painter's algorithm

- Can one always order objects from front to back ? That is, is "A occludes B" a partial order?
Assuming:
- Simple objects, e.g., segments or triangles
- Objects disjoint
- In 2D: Yes
- In 3D: No
- We will have to split sometimes

Binary Planar Partitions

March 8, 2005

Painter's Algorithm

March 8, 2005

Binary Planar Partitions

March 8, 2005

Auto-partitions

March 8, 2005

Auto-partitions

March 8, 2005

What is the complexity of BSP using auto-partitions?

March 8, 2005

Binary Planar Partitions

Goal:

Find binary planer partition,

with small number of fragmentations

Random Auto-Partitions

Choose random permutation of segments

$$
\left(s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right)
$$

While there is a region containing more than one segment, separate it using first s_{i} in the region

Analysis

u can cut v_{4} only if u appears before $v_{1}, v_{2}, v_{3}, v_{4}$ in random permutation

$P\left(u\right.$ cuts $\left.v_{4}\right) \leq 1 / 5$

March 8, 2005

Random Auto-Partitions

E [total number of fragments] = $\mathrm{n}+\mathrm{E}$ [total number of cuts]
$=n+\Sigma_{u} E[$ num cuts u makes $]=n+n O(\log n)=O(n \log n)$

Random Auto-Partitions

Choose random permutation of segments

$$
\left(s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right)
$$

While there is a region containing more than one segment, separate it using first s_{i} in the region
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ fragments in expectation

What about 3D ?

- Assume arbitrary order of triangles
- What is the complexity of the BSP ?
- Each triangle can be split using n-1 planes
- From the perspective of the triangle, it is split using $n-1$ lines
- Complexity of arrangement: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Total complexity: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Also, at least $\Omega\left(\mathrm{n}^{2}\right)$

Zones

- The zone of a line / in an arrangement $A(L)$ is the set of faces of $A(L)$ whose closure intersects l.

- Note how this relates to the complexity of inserting a line into a DCEL...

Zone Complexity

- The complexity of a zone is defined as the total complexity of all the faces it consists of, i.e. the sum of the number of edges and vertices of those faces.
- The time it takes to insert line l_{i} into a DCEL is linear in the complexity of the zone of l_{i} in $\mathrm{A}\left(\left\{I_{1}, \ldots, l_{i-1}\right\}\right)$.

Zone Theorem

- The complexity of the zone of a line in an arrangement of m lines on the plane is $O(m)$
- Therefore:
- We can insert a line into an arrangement in linear time
- We can compute the arrangement in $O\left(n^{2}\right)$ time

Proof of Zone Theorem

- Given an arrangement of m lines, $A(L)$, and a line $/$.
- Change coordinate system so / is the x-axis.
- Assume (for now) no horizontal lines

March 8, 2005

Proof of Zone Theorem

- Each edge in the zone of / is a left bounding edge and a right bounding edge.

- Claim: number of left bounding edges $\leq 5 m$
- Same for number of right bounding edges \rightarrow Total complexity of zone(/) is linear

Proof of Zone Theorem -Base Case-

- When $m=1$, this is trivially true. (1 left bounding edge ≤ 5)

March 8, 2005

Proof of Zone Theorem -Inductive Case-

- Assume true for all but the rightmost line I_{r} : i.e. Zone of / in $A\left(L-\left\{I_{r}\right\}\right)$ has at most $5(m-1)$ left bounding edges
- Assuming no other line intersects / at the same point as I_{r}, add I_{r}

Proof of Zone Theorem -Inductive Case-

- Assume true for all but the rightmost line l_{r} : i.e. Zone of / in $A\left(L-\left\{I_{r}\right\}\right)$ has at most 5(m-1) left bounding edges
- Assuming no other line intersects / at the same point as I_{r}, add I_{r}

Proof of Zone Theorem -Inductive Case-

- Assume true for all but the rightmost line I_{r} : i.e. Zone of / in $A\left(L-\left\{\|_{r}\right\}\right)$ has at most 5(m-1) left bounding edges
- Assuming no other line intersects / at the same point as I_{r}, add I_{r}
$-I_{r}$ has one left bounding edge with / (+1)

Proof of Zone Theorem -Inductive Case-

- Assume true for all but the rightmost line I_{r} : i.e. Zone of / in $A\left(L-\left\{I_{r}\right\}\right)$ has at most $5(m-1)$ left bounding edges
- Assuming no other line intersects / at the same point as I_{r}, add I_{r}
$-I_{r}$ has one left bounding edge with / (+1)
$-I_{r}$ splits at most two left bounding edges (+2)

Proof of Zone Theorem Loosening Assumptions

- What if I_{r} intersects / at the same point as another line, l_{i} does?
$-I_{r}$ has two left bounding edges (+2)
$-l_{i}$ is split into two left bounding edges (+1)
- As in simpler case,
I_{r} splits two other left bounding edges (+2)

Proof of Zone Theorem Loosening Assumptions

- What if l_{r} intersects l at the same point as another line, l_{i} does? (+5)
- What if >2 lines $\left(l_{i}, l_{j}, \ldots\right)$ intersect l at the same point?
- Like above, but l_{i}, l_{j}, \ldots are already split in two (+4)

Proof of Zone Theorem -Loosening Assumptions-

- What if there are horizontal lines in L ?
- A horizontal line introduces not more complexity into $A(L)$ than a non-horizontal line.

March 8, 2005

Free cuts

Use internal fragments immediately as "free" cuts March 8, 2005

