Geometric Computation: Introduction

Piotr Indyk

February 1, 2005

Welcome to 6.838 !

- Overview and goals
- Course Information
- 2D Convex hull
- Signup sheet

Geometric Computation

- Geometric computation occurs everywhere:
- Robotics: motion planning, map construction and localization
- Geographic Information Systems (GIS): range search, nearest neighbor
- Simulation: collision detection
- Computer graphics: visibility tests for rendering
 - Computer vision: pattern matching
 - Computational drug design: spatial indexing

February 1, 2005

Computational Geometry

- Started in mid 70's
- Focused on design and analysis of algorithms for geometric problems
- Many problems well-solved, e.g., Voronoi diagrams, convex hulls
- Many other problems remain open

Course Goals

- Introduction to Computational Geometry
 - Well-established results and techniques
 - New directions

Syllabus

- Part I Classic CG:
 - 2D Convex hull
 - Segment intersection
 - LP in low dimensions
 - Polygon triangulation
 - Range searching
 - Point location
 - Arrangements and duality
 - Voronoi diagrams
 - Delaunay triangulations
 - Binary space partitions
 - Motion planning and Minkowski sum

Use "Computational Geometry: Algorithms and Applications" by de Berg, van Kreveld, Overmars, Schwarzkopf (2nd edition).

Syllabus ctd.

- Part II New directions:
 - LP in higher dimensions
 - Closest pair in low dimensions
 - Approximate nearest neighbor in low dimensions
 - Approximate nearest neighbor in high dimensions: LSH
 - Low-distortion embeddings
 - Low-distortion embeddings II
 - Geometric algorithms for external memory
 - Geometric algorithms for streaming data
 - Kinetic algorithms
 - Pattern matching
 - Combinatorial geometry
 - Geometric optimization
 - Conclusions

February 1, 2005

Higher dimensions - eigenfaces

February 1, 2005

Course Information

- 3-0-9 H-level Graduate Credit
- Grading:
 - 4 problem sets (see calendar):
 - In each PSet:
 - Core component (mandatory): 6.046-style
 - Two optional components:
 - More theoretical problems
 - Java programming assignments
 - Can collaborate, but solutions written separately
 - No midterm/final J
- Prerequisites: understanding of algorithms and probability (6.046 level)

Questions ?

February 1, 2005

Convexity

• A set is convex if every line segment connecting two points in the set is fully contained in the set

Convex hull

- What is a convex hull of a set of points P ?
 - Smallest convex set containing P
 - Union of all points expressible by a convex combination of points in P, i.e. points p of the form

 $\sum_{p \in P} c_p^* p, c_p \ge 0, \sum_{p \in P} c_p = 1$

• Definitions not suitable for an algorithm

February 1, 2005

Computational Problem

- Given $P \subset \mathbb{R}^2$, |P| = n, find the *description* of CH(P)
 - CH(P) is a convex polygon with at most n vertices
 - We want to find those vertices in clockwise order
- Design fast algorithm for this problem
- We assume all points are distinct (otherwise can sort and remove duplicates)
- Any algorithms ?

February 1, 2005

Simple approach

- 1. For all pairs (p,q) of points in P
- /* Check if $p \rightarrow q$ forms a boundary edge */
 - A. For all points $r \in P-\{p,q\}$:
 - If r lies to the left of directed line $p \rightarrow q$, then go to Step 2
 - B. Add (p,q) to the set of edges E
- 2. Endfor
- 3. Order the edges in E to form the boundary of CH(P)

Details

- How to test if r lies to the left of a directed line p→q ?
 - Basic geometric operation
 - Reduces to checking the sign of a certain determinant
 - Constant time operation

Analysis

- Outer loop: O(n²) repetitions
- Inner loop: O(n) repetitions
- Total time: O(n³)

Problems

- Running time pretty high
- Algorithm can do strange things:
 - What 3 points are collinear ? (degeneracy)
 - What 3 points are near-collinear ? (robustness)

Collinear points

Nearly collinear points

February 1, 2005

Problems

- Issues:
 - Degeneracy: input is "special"
 - Robustness: implementation makes round-off errors
- Solutions:
 - Degeneracy: correct algorithm design
 - Robustness: higher/arbitrary precision
- Our solution: typically, sweep the issue under the carpet

Andrews algorithm

- Convexify(S,p)
 - While t=|S|≥2 and p left of line $s_{t-1} \rightarrow s_t$, remove s_t from S
 - Add p to the end of S
- Incremental-Hull(P)
 - Sort P by x-coordinates
 - Create $U=\{p_1\}$
 - For i=2 to n
 - Convexify(U,p_i)
 - Create $L=\{p_n\}$
 - For i=n-1 downto 1
 - Convexify(L,p_i)
 - Remove first/last point of L, output U and L

Animation

Daniel Vlasic's CH Animation

February 1, 2005

Issues

- Points with the same x-coordinate
- Modification: Sort by x and then by y
- Solves the degeneracy problem
- Robustness:
 - Still an issue
 - But the algorithm outputs closed polygonal chain

Analysis

- Sorting: O(n log n)
- Incremental walk: O(n)
- Altogether: O(n log n)