Geometric Computation: Introduction

Piotr Indyk

Welcome to 6.838 !

- Overview and goals
- Course Information
- 2D Convex hull
- Signup sheet

seonnetric connoutation

- Geometric computation occurs everywhere:
\longrightarrow - Robotics: motion planning, map construction and localization
\longrightarrow - Geographic Information Systems (GIS): range search, nearest neighbor
\longrightarrow - Simulation: collision detection
\longrightarrow - Computer graphics: visibility tests for rendering
- Computer vision: pattern matching
- Computational drug design: spatial indexing

February 1, 2005
Lecture 1: Introduction to Geometric Computation

Computational Geometry

- Started in mid 70's
- Focused on design and analysis of algorithms for geometric problems
- Many problems well-solved, e.g., Voronoi diagrams, convex hulls
- Many other problems remain open

Course Goals

- Introduction to Computational Geometry
- Well-established results and techniques
- New directions

Syllabus

- Part I - Classic CG:
- 2D Convex hull
- Segment intersection
- LP in low dimensions
- Polygon triangulation
- Range searching
- Point location
- Arrangements and duality
- Voronoi diagrams
- Delaunay triangulations
- Binary space partitions
- Motion planning and Minkowski sum

Use "Computational Geometry: Algorithms and Applications" by de Berg, van Kreveld, Overmars, Schwarzkopf (2 $2^{\text {nd }}$ edition).

Syllabus ctd.

- Part II - New directions:
- LP in higher dimensions
- Closest pair in low dimensions
- Approximate nearest neighbor in low dimensions
- Approximate nearest neighbor in high dimensions: LSH
- Low-distortion embeddings
- Low-distortion embeddings II
- Geometric algorithms for external memory
- Geometric algorithms for streaming data
- Kinetic algorithms
- Pattern matching
- Combinatorial geometry
- Geometric optimization
- Conclusions

Higher dimensions - eigenfaces

 $$
=?
$$

Course Information

- 3-0-9 H-level Graduate Credit
- Grading:
- 4 problem sets (see calendar):
- In each PSet:
- Core component (mandatory): 6.046-style
- Two optional components:
- More theoretical problems
- Java programming assignments
- Can collaborate, but solutions written separately
- No midterm/final J
- Prerequisites: understanding of algorithms and probability (6.046 level)

Questions?

Convexity

- A set is convex if every line segment connecting two points in the set is fully contained in the set

Convex hull

- What is a convex hull of a set of points P ?
- Smallest convex set containing P
- Union of all points expressible by a convex combination of points in P, i.e. points p of the form

$$
\sum_{p \in P} c_{p}{ }^{*} p, c_{p} \geq 0, \Sigma_{p \in P} c_{p}=1
$$

- Definitions not suitable for an algorithm

Computational Problem

- Given $P \subset R^{2},|P|=n$, find the description of $\mathrm{CH}(\mathrm{P})$
$-\mathrm{CH}(\mathrm{P})$ is a convex polygon with at most n vertices
- We want to find those vertices in clockwise order
- Design fast algorithm for this problem
- We assume all points are distinct (otherwise can sort and remove duplicates)
- Any algorithms ?

Simple approach

Simple approach

1. For all pairs (p, q) of points in P /* Check if $p \rightarrow q$ forms a boundary edge */
A. For all points $r \in P-\{p, q\}$:

- If r lies to the left of directed line $p \rightarrow q$, then go to Step 2
B. Add (p, q) to the set of edges E

2. Endfor
3. Order the edges in E to form the boundary of $\mathrm{CH}(\mathrm{P})$

Details

- How to test if r lies to the left of a directed line $p \rightarrow q$?
- Basic geometric operation
- Reduces to checking the sign of a certain determinant
- Constant time operation

Analysis

- Outer loop: $O\left(n^{2}\right)$ repetitions
- Inner loop: O(n) repetitions
- Total time: $O\left(n^{3}\right)$

Problems

- Running time pretty high
- Algorithm can do strange things:
- What 3 points are collinear? (degeneracy)
- What 3 points are near-collinear ?
(robustness)

Collinear points

Nearly collinear points

Problems

- Issues:
- Degeneracy: input is "special"
- Robustness: implementation makes round-off errors
- Solutions:
- Degeneracy: correct algorithm design
- Robustness: higher/arbitrary precision
- Our solution: typically, sweep the issue under the carpet

Andrews algorithm

- Convexify(S,p)
- While $t=|S| \geq 2$ and p left of line $s_{t-1} \rightarrow s_{t}$, remove s_{t} from S
- Add p to the end of S
- Incremental-Hull(P)
- Sort P by x-coordinates
- Create U=\{p $\left.{ }_{1}\right\}$
- For i=2 to n
- Convexify(U, p_{i})
- Create $L=\left\{p_{n}\right\}$
- For $\mathrm{i}=\mathrm{n}-1$ downto 1
- Convexify (L, p_{i})
- Remove first/last point of L, output U and L

Animation

Daniel Vlasic's CH Animation

Issues

- Points with the same x-coordinate
- Modification: Sort by x and then by y
- Solves the degeneracy problem
- Robustness:
- Still an issue
- But the algorithm outputs closed polygonal chain

Analysis

- Sorting: O(n log n)
- Incremental walk: O(n)
- Altogether: O(n log n)

