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Motivation: Terrains

• Set of data points A ⊂ R2

• Height ƒ(p) defined at each point p in A

• How can we most naturally approximate 
height of points not in A?
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Option: Discretize

• Let ƒ(p) = height of nearest point for points not in A

• Does not look natural
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Better Option: Triangulation

• Determine a triangulation of A in R2, then raise points to 
desired height

• triangulation: planar subdivision whose bounded faces are 
triangles with vertices from A
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Triangulation: Formal Definition

• maximal planar subdivision: a subdivision S
such that no edge connecting two vertices 
can be added to Swithout destroying its 
planarity

• triangulation of set of points P: a maximal 
planar subdivision whose vertices are 
elements of P
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Triangulation is made of triangles

• Outer polygon must be convex hull

• Internal faces must be triangles, otherwise 
they could be triangulated further
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Triangulation Details

For Pconsisting of n points, all triangulations 
contain 2n-2-k triangles, 3n-3-k edges

• n = number of points in P

• k = number of points on convex hull of P
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Terrain Problem, Revisited

• Some triangulations are “better”  than others

• Avoid skinny triangles, i.e. maximize 
minimum angle of triangulation
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Angle Optimal Triangulations

• Create angle vector of the sorted angles of 
triangulation T, (α1, α2, α3, … α3m) = A(T)
with α1 being the smallest angle

• A(T) is larger than A(T’ ) iff there exists an i
such that αj = α’ j for all j < i and αi > α’ i

• Best triangulation is triangulation that is 
angle optimal, i.e. has the largest angle 
vector.
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Angle Optimal Triangulations

Consider two adjacent triangles of T:

• If the two triangles form a convex 
quadrilateral, we could have an alternative 
triangulation by performing an edge flip on 
their shared edge.
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• Edge e is illegal if:

• Only difference between T containing eand T’
with e flipped are the six angles of the 
quadrilateral.

Illegal Edges
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Illegal Triangulations

• If triangulation T contains an illegal edge e, 
we can make A(T) larger by flipping e.

• In this case, T is an illegal triangulation.
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Thales’s Theorem
• We can use Thales’s Theorem to test if an 

edge is legal without calculating angles

Let C be a circle, l a line 
intersecting C in points a and b
and p, q, r, and spoints lying on 
the same side of l. Suppose that 
p and q lie on C, that r lies 
inside C, and that s lies outside 
C. Then:
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Testing for Illegal Edges

• The edge pipj is illegal iff pl lies inside C.
– Proved using Thales’s Theorem. E.g., the angle      

pi-pj-pk is smaller than the angle pi-pl-pk

• If pi, pj, pk, pl form a 
convex quadrilateral and 
do not lie on a common 
circle, exactly one of pipj

and pkpl is an illegal 
edge.
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Computing Legal Triangulations

1. Compute a triangulation of input points P.

2. Flip illegal edges of this triangulation until 
all edges are legal.

• Algorithm terminates because there is a 
finite number of triangulations.

• Too slow to be interesting…
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Sidetrack: Delaunay Graphs

• Before we can understand an interesting 
solution to the terrain problem, we need to 
understand Delaunay Graphs.

• Delaunay Graph of a set of points P is the 
dual graph of the Voronoi diagram of P
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Delaunay Graphs
To obtain DG(P):

• Calculate Vor(P)

• Place one vertex in each site of the Vor(P)
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Constructing Delaunay Graphs

If two sites si and sj share an edge (i.e., are 
adjacent), create an arc between vi and vj, 
the vertices located in sites si and sj
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Constructing Delaunay Graphs

Finally, straighten the arcs into line segments. 
The resultant graph is DG(P).
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Properties of Delaunay Graphs

No two edges cross; DG(P) is a plane graph.

• Proved using the empty 
circle property
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Delaunay Triangulations

• Some sets of more than 3 points of Delaunay graph may 
lie on the same circle. 

• These points form empty convex polygons, which can be 
triangulated. 

• Delaunay Triangulation is a triangulation obtained by 
adding 0 or more edges to the Delaunay Graph.
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Properties of Delaunay Triangles

From the properties of Voronoi Diagrams…

• Three points pi, pj, pk ∈ P are vertices of the same 
face of the DG(P) iff the circle through pi, pj, pk

contains no point of P on its interior.

Proof:
•Assume there are other points inside the circle. 
•Choose one point p inside the circle, and remove all other points 
but pi, pj, pk.Note that, after the removal of points,
pi, pj, pk remains a triangle.
•Assume  lies opposite pj .
• p is closer to the center than are pi, pj, pk.  
So,  the center belongs to the interior of the Voronoi face of p.

• Consider a segment o-pj. There is a point q on that segment
that is equidistant to pj and p,but its distance to pi pk is larger.

•Therefore, the Voronoi cells of pj and p share an edge, so there
is a Delaunay edge between pj and p.

•But the Delaunay edges cannot intersect. QED.
p

o

pi

pj

pk
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Legal Triangulations, revisited
A triangulation T of P is legal iff T is a DT(P).

• DT → Legal: Empty circle property and 
Thale’s Theorem implies that all DT are legal

• Legal → DT: Proved on p. 190 from the 
definitions and via contradiction.
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DT and Angle Optimal

The angle optimal triangulation is a DT. Why?
• If P is in general position, DT(P) is unique and 

thus, is angle optimal.
What if multiple DT exist for P?
• Not all DT are angle optimal.
• By Thale’s Theorem, the minimum angle of each 

of the DT is the same.
• Thus, all the DT are equally “good”  for the terrain 

problem. All DT maximize the minimum angle.
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Terrain Problem, revisited

Therefore, the problem of finding a triangulation 
that maximizes the minimum angle is reduced 
to the problem of finding a Delaunay 
Triangulation.

So how do we find the Delaunay Triangulation?
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How do we compute DT(P)?

• Compute Vor(P) then dualize into DT(P).

• We could also compute DT(P) using a 
randomized incremental method.
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The rest is for the “curious”
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Algorithm Overview

1. Initialize triangulation T with a “big enough”  
helper bounding triangle that contains all points P.

2. Randomly choose a point pr from P.
3. Find the triangle ∆ that pr lies in.
4. Subdivide ∆ into smaller triangles that have pr as a 

vertex.
5. Flip edges until all edges are legal.
6. Repeat steps 2-5 until all points have been added 

to T.
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Triangle Subdivision: Case 1 of 2

Assuming we have already found the triangle that pr lives in, 
subdivide ∆ into smaller triangles that have pr as a vertex.

Two possible cases:

1) pr lies in the interior of ∆∆∆∆
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Triangle Subdivision: Case 2 of 2

2) pr falls on an edge between two adjacent 
triangles
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Which edges are illegal?

• Before we subdivided, all of our edges were 
legal.

• After we add our new edges, some of the 
edges of T may now be illegal, but which 
ones?
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Outer Edges May Be Illegal
• An edge can become illegal only if one of its 

incident triangles changed.

• Outer edges of the incident triangles { pjpk, pipk,
pkpj}  or { pipl, plpj, pjpk, pkpi}  may have become 
illegal.
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New Edges are Legal
Are the new edges (edges involving pr) legal?

Consider any new edge prpl.

Before adding prpl,

• pl was part of some triangle pipjpl

• Circumcircle C of pi, pj, and pl did not contain any other 
points of P in its interior
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New edges incident to pr are 
Legal

• If we shrink C, we can find a circle C’  that passes through 
prpl

• C’  contains no points in its interior.
• Therefore, prpl is legal.
Any new edge incident pr is legal.
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Flip Illegal Edges

• Now that we know which edges have 
become illegal, we flip them.

• However, after the edges have been flipped, 
the edges incident to the new triangles may 
now be illegal.

• So we need to recursively flip edges…
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LegalizeEdge

pr = point being inserted
pipj = edge that may need to be flipped

LEGALIZEEDGE(pr, pipj, T)
1. if pipj is illegal
2. then Let pipjpl be the triangle adjacent to     

prpipj along pipj

3. Replace pipj with prpl

4. LEGALIZEEDGE(pr, pipl, T) 
5. LEGALIZEEDGE(pr, plpj, T)
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Flipped edges are incident to pr

Notice that when LEGALIZEEDGE flips edges, 
these new edges are incident to pr

• By the same logic as 
earlier, we can shrink the 
circumcircle of pipjpl to 
find a circle that passes 
through pr and pl.
• Thus, the new edges are 
legal.
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Bounding Triangle
Remember, we skipped step 1 of our algorithm.
1. Begin with a “ big enough”  helper bounding triangle 

that contains all points.
Let { p-3, p-2, p-1}  be the vertices of our bounding triangle.

“ Big enough”  means that the 
triangle:
• contains  all points of P in its 
interior.
• will not destroy edges between 
points in P.
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Considerations for Bounding 
Triangle

• We could choose large values for p-1, p-2

and p-3, but that would require potentially 
huge coordinates.

• Instead, we’ ll modify our test for illegal 
edges, to act as if we chose large values for 
bounding triangle.
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Bounding Triangle

We’ ll pretend the vertices of the bounding 
triangle are at:

p-1 = (3M, 0)
p-2 = (0, 3M)
p-3 = (-3M, -3M) 

M = maximum absolute value of 
any coordinate of a point in P
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Modified Illegal Edge Test

pipj is the edge being tested

pk and pl are the other two 
vertices of the triangles 
incident to pipj

Our illegal edge test falls into one of 4 cases.
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Illegal Edge Test, Case 1

Case 1) Indices i and j are both negative

• pipj is an edge of the bounding triangle

• pipj is legal, want to preserve edges of 
bounding triangle
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Illegal Edge Test, Case 2

Case 2) Indices i, j, k, and l are all positive.

• This is the normal 
case.

• pipj is illegal iff pl lies 
inside the circumcircle 
of pipjpk
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Illegal Edge Test, Case 3

Case 3) Exactly one of i, j, k, l is negative

•We don’ t want our 
bounding triangle to 
destroy any Delaunay 
edges.

•If i or j is negative, pipj is 
illegal.

•Otherwise, pipj is legal.
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Illegal Edge Test, Case 4
Case 4) Exactly two of i, j, k, l are negative.

•k and l cannot both be negative 
(either pk or pl must be pr)

•i and j cannot both be negative

•One of i or j and one of k or l 
must be negative

•If negative index of i and j is 
smaller than negative index of k 
and l, pipj is legal.

•Otherwise pipj is illegal.
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Triangle Location Step

Remember, we skipped step 3 of our algorithm. 

3. Find the triangle T that pr lies in.

• Take an approach similar to Point Location 
approach.

• Maintain a point location structure D, a 
directed acyclic graph.
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Structure of D

• Leaves of D correspond to the triangles of 
the current triangulation.

• Maintain cross pointers between leaves of D
and the triangulation.

• Begin with a single leaf, the bounding 
triangle p-1p-2p-3
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Subdivision and D

• Whenever we split a triangle ∆1 into smaller 
triangles ∆a and ∆b (and possibly ∆c), add 
the smaller triangles to D as leaves of ∆1
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Subdivision and D

∆A

∆B

∆C

∆A ∆B ∆C
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Edge Flips and D

• Whenever we perform an edge flip, create 
leaves for the two new triangles.

• Attach the new triangles as leaves of the 
two triangles replaced during the edge flip.
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Edge Flips and D

∆C

∆C

∆C
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Searching D

pr = point we are searching with
1. Let the current node be the root node of D.
2. Look at child nodes of current node. Check 

which triangle pr lies in.
3. Let current node = child node that contains 

pr

4. Repeat steps 2 and 3 until we reach a leaf 
node.
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Searching D

• Each node has at most 3 children.
• Each node in path represents a triangle in D

that contains pr

• Therefore, takes O(number of triangles in D
that contain pr)
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Properties of D

Notice that the:
• Leaves of D correspond to the triangles of 

the current triangulation.

• Internal nodes correspond to destroyed 
triangles, triangles that were in an earlier 
stage of the triangulation but are not present 
in the current triangulation.
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Algorithm Overview
1. Initialize triangulation T with helper bounding 

triangle. Initialize D.
2. Randomly choose a point pr from P.
3. Find the triangle ∆ that pr lies in using D.
4. Subdivide ∆ into smaller triangles that have pr as 

a vertex. Update D accordingly.
5. Call LEGALIZEEDGE on all possibly illegal 

edges, using the modified test for illegal edges. 
Update D accordingly.

6. Repeat steps 2-5 until all points have been added 
to T.
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Analysis Goals

• Expected running time of algorithm is:

O(n log n)

• Expected storage required is:

O(n)
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First, some notation…

• Pr = { p1, p2, …, pr}
– Points added by iteration r

• Ω = { p-3, p-2, p-1}
– Vertices of bounding triangle

• DGr = DG(Ω ∪ Pr)
– Delaunay graph as of iteration r
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Sidetrack: Expected Number of ∆s

It will be useful later to know the expected number of 
triangles created by our algorithm…

Lemma 9.11 Expected number of triangles 
created by DELAUNAYTRIANGULATION is 9n+1.

• In initialization, we create 1 triangle 
(bounding triangle).
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Expected Number of Triangles

In iteration r where we add pr,

• in the subdivision step, we create at most 4 
new triangles. Each new triangle creates one 
new edge incident to pr

• each edge flipped in LEGALIZEEDGE creates 
two new triangles and one new edge 
incident to pr
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Expected Number of Triangles

Let k = number of edges incident to pr after 
insertion of pr, the degree of pr

• We have created at most 2(k-3)+3 triangles.

• -3 and +3 are to account for the triangles 
created in the subdivision step

The problem is now to find the expected 
degree of pr
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Expected Degree of pr

Use backward analysis:

• Fix Pr, let pr be a random element of Pr

• DGr has 3(r+3)-6 edges

• Total degree of Pr ≤ 2[3(r+3)-9] = 6r

E[degree of random element of Pr] ≤ 6
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Triangles created at step r

Using the expected degree of pr, we can find the 
expected number of triangles created in step r.

deg(pr, DGr) = degree of pr in DGr
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Expected Number of Triangles

Now we can bound the number of triangles:

≤ 1 initial ∆ + ∆s created at step 1 + ∆s 
created at step 2 + … + ∆s created at step n

≤ 1 + 9n

Expected number of triangles created is 9n+1.
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Storage Requirement

• D has one node per triangle created

• 9n+1 triangles created

• O(n) expected storage
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Expected Running Time

Let’s examine each step…
1. Begin with a “ big enough”  helper bounding 

triangle that contains all points.
O(1) time, executed once = O(1)

2. Randomly choose a point pr from P.
O(1) time, executed n times = O(n)

3. Find the triangle ∆ that pr lies in.
Skip step 3 for now…
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Expected Running Time

4. Subdivide ∆ into smaller triangles that have pr as a 
vertex.

O(1) time executed n times = O(n)

5. Flip edges until all edges are legal.

In total, expected to execute a total number of times 
proportional to number of triangles created = O(n)

Thus, total running time without point location step is O(n).
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Point Location Step
• Time to locate point pr is

O(number of nodes of D we visit)
+ O(1) for current triangle

• Number of nodes of D we visit
= number of destroyed triangles that contain pr

• A triangle is destroyed by pr if its circumcircle contains 
pr

We can charge each triangle visit to a Delaunay triangle 
whose circumcircle contains pr
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Point Location Step

K(∆) = subset of points in P that lie in the 
circumcircle of ∆

• When pr ∈ K(∆), charge to ∆.

• Since we are iterating through P, each point 
in K(∆) can be charged at most once.

Total time for point location:
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Point Location Step

We want to have O(n log n) time, therefore 
we want to show that:
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Point Location Step

Introduce some notation…
Tr = set of triangles of DG(Ω ∪ Pr)

Tr \ Tr-1 triangles created in stage r

Rewrite our sum as:
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Point Location Step

More notation…
k(Pr, q) = number of triangles ∆ ∈ Tr such that q

is contained in ∆
k(Pr, q, pr) = number of triangles ∆ ∈ Tr such that

q is contained in ∆ and pr is incident to ∆
Rewrite our sum as:
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Point Location Step

Find the E[k(Pr, q, pr)] then sum later…
• Fix Pr, so k(Pr, q, pr) depends only on pr.
• Probability that pr is incident to a triangle 

is 3/r
Thus:
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Point Location Step

Using:

We can rewrite our sum as:
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Point Location Step

Now find E[k(Pr, pr+1)]…

• Any of the remaining n-r points is equally 
likely to appear as pr+1

So:
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Point Location Step

Using:

We can rewrite our sum as:
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Point Location Step

Find k(Pr, pr+1)
• number of triangles of Tr that contain pr+1

• these are the triangles that will be destroyed 
when pr+1 is inserted; Tr \ Tr+1

• Rewrite our sum as:
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Point Location Step
Remember, number of triangles in triangulation of n 

points with k points on convex hull is 2n-2-k
• Tm has 2(m+3)-2-3=2m+1
• Tm+1 has two more triangles than Tm
Thus, card(Tr \ Tr+1)

= card(triangles destroyed by pr)
= card(triangles created by pr) – 2
= card(Tr+1 \ Tr) - 2

We can rewrite our sum as:
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Point Location Step

Remember we fixed Pr earlier…
• Consider all Pr by averaging over both sides of 

the inequality, but the inequality comes out 
identical.

E[number of triangles created by pr]
= E[number of edges incident to pr+1 in Tr+1]
= 6

Therefore:
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Analysis Complete

If we sum this over all r, we have shown that:

And thus, the algorithm runs in O(n log n) time.


