Delaunay Triangulations

(slides mostly by Glenn Eguchi)

Motivation: Terrains

- Set of data points $\mathrm{A} \subset R^{2}$
- Height $f(\mathrm{p})$ defined at each point p in A
- How can we most naturally approximate height of points not in A?

Option: Discretize

- Let $f(\mathrm{p})=$ height of nearest point for points not in A
- Does not look natural

Better Option: Triangulation

- Determine a triangulation of A in R^{2}, then raise points to desired height
- triangulation: planar subdivision whose bounded faces are triangles with vertices from A

Triangulation: Formal Definition

- maximal planar subdivision: a subdivision S such that no edge connecting two vertices can be added to S without destroying its planarity
- triangulation of set of points P: a maximal planar subdivision whose vertices are elements of P

Triangulation is made of triangles

- Outer polygon must be convex hull
- Internal faces must be triangles, otherwise they could be triangulated further

Triangulation Details

For P consisting of n points, all triangulations contain 2n-2-k triangles, 3n-3-k edges

- $\mathrm{n}=$ number of points in P
- $\mathrm{k}=$ number of points on convex hull of P

Terrain Problem, Revisited

- Some triangulations are "better" than others
- Avoid skinny triangles, i.e. maximize minimum angle of triangulation

(a)

height $=23$
(b)

Angle Optimal Triangulations

- Create angle vector of the sorted angles of triangulation $T,\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{3 m}\right)=\mathrm{A}(T)$ with α_{1} being the smallest angle
- $\mathrm{A}(T)$ is larger than $\mathrm{A}\left(T^{\prime}\right)$ iff there exists an i such that $\alpha_{j}=\alpha^{\prime}$ for all $\mathrm{j}<\mathrm{i}$ and $\alpha_{\mathrm{i}}>\alpha^{\prime}{ }_{i}$
- Best triangulation is triangulation that is angle optimal, i.e. has the largest angle vector.

Angle Optimal Triangulations

Consider two adjacent triangles of T:

- If the two triangles form a convex quadrilateral, we could have an alternative triangulation by performing an edge flip on their shared edge.

Illegal Edges

- Edge e is illegal if:

$$
\min _{1 \leqslant i \leqslant 6} \alpha_{i}<\min _{1 \leqslant i \leqslant 6} \alpha_{i}^{\prime} .
$$

- Only difference between T containing e and T with e flipped are the six angles of the quadrilateral.

Illegal Triangulations

- If triangulation T contains an illegal edge e, we can make $\mathrm{A}(T)$ larger by flipping e.
- In this case, T is an illegal triangulation.

Thales's Theorem

- We can use Thales's Theorem to test if an edge is legal without calculating angles

Let C be a circle, l a line intersecting C in points a and b and p, q, r, and s points lying on the same side of l. Suppose that p and q lie on C, that r lies inside C, and that s lies outside C. Then:

October 2,2003 $\measuredangle a r b>\measuredangle a p b=\measuredangle a q b>\measuredangle a s b$.

resting for miegat Edoes

- If $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}, \mathrm{p}_{\mathrm{k}}, \mathrm{p}_{\mathrm{l}}$ form a convex quadrilateral and do not lie on a common circle, exactly one of $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ and $\mathrm{p}_{\mathrm{k}} \mathrm{p}_{\mathrm{l}}$ is an illegal edge.

- The edge $p_{i} p_{j}$ is illegal iff p_{1} lies inside C.
- Proved using Thales's Theorem. E.g., the angle $\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{j}}-\mathrm{p}_{\mathrm{k}}$ is smaller than the angle $\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{l}}-\mathrm{p}_{\mathrm{k}}$

Computing Legal Triangulations

1. Compute a triangulation of input points P.
2. Flip illegal edges of this triangulation until all edges are legal.

- Algorithm terminates because there is a finite number of triangulations.
- Too slow to be interesting...

Sidetrack: Delaunay Graphs

- Before we can understand an interesting solution to the terrain problem, we need to understand Delaunay Graphs.
- Delaunay Graph of a set of points P is the dual graph of the Voronoi diagram of P

Delaunay Graphs

To obtain $\mathcal{D} \mathcal{G}(P)$:

- Calculate $\operatorname{Vor}(P)$
- Place one vertex in each site of the $\operatorname{Vor}(P)$

Constructing Delaunay Graphs

If two sites s_{i} and s_{j} share an edge (i.e., are adjacent), create an arc between v_{i} and v_{j}, the vertices located in sites s_{i} and s_{j}

Constructing Delaunay Graphs

Finally, straighten the arcs into line segments. The resultant graph is $\mathcal{D} \mathcal{G}(\mathrm{P})$.

Properties of Delaunay Graphs

No two edges cross; $\mathcal{D} G(P)$ is a plane graph.

- Proved using the empty circle property

Delaunay Triangulations

- Some sets of more than 3 points of Delaunay graph may lie on the same circle.
- These points form empty convex polygons, which can be triangulated.
- Delaunay Triangulation is a triangulation obtained by adding 0 or more edges to the Delaunay Graph.

Properties of Delaunay Triangles

From the properties of Voronoi Diagrams...

- Three points $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}, \mathrm{p}_{\mathrm{k}} \in P$ are vertices of the same face of the $\mathcal{D G}(P)$ iff the circle through $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}, \mathrm{p}_{\mathrm{k}}$ contains no point of P on its interior.

Proof:
-Assume there are other points inside the circle.
-Choose one point p inside the circle, and remove all other points but p_{i}, p_{j}, p_{k}.Note that, after the removal of points,
p_{i}, p_{j}, p_{k} remains a triangle.

- Assume lies opposite p_{j}
- p is closer to the center than are $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}, \mathrm{p}_{\mathrm{k}}$.

So, the center belongs to the interior of the Voronoi face of p.

- Consider a segment o-p. There is a point q on that segment
that is equidistant to p_{j} and p, but its distance to $p_{i} p_{k}$ is larger.
-Therefore, the Voronoi cells of p_{i} and p share an edge, so there is a Delaunay edge between p_{j} and p.
-But the Delaunay edges cannot intersect. QED

Legal Triangulations, revisited

A triangulation T of P is legal iff T is a $\mathcal{D T}(\mathrm{P})$.

- DT \rightarrow Legal: Empty circle property and Thale's Theorem implies that all $\mathcal{D T}$ are legal
- Legal \rightarrow DT: Proved on p. 190 from the definitions and via contradiction.

DT and Angle Optimal

The angle optimal triangulation is a $\mathcal{D I}$. Why?

- If P is in general position, $\mathcal{D T}(P)$ is unique and thus, is angle optimal.
What if multiple $\mathcal{D T}$ exist for P ?
- Not all $\mathcal{D T}$ are angle optimal.
- By Thale's Theorem, the minimum angle of each of the $\mathcal{D T}$ is the same.
- Thus, all the $\mathcal{D T}$ are equally "good" for the terrain problem. All $\mathcal{D T}$ maximize the minimum angle.

Terrain Problem, revisited

Therefore, the problem of finding a triangulation that maximizes the minimum angle is reduced to the problem of finding a Delaunay Triangulation.

So how do we find the Delaunay Triangulation?

How do we compute $\mathcal{D I}(P)$?

- Compute $\operatorname{Vor}(P)$ then dualize into $\mathcal{D T}(P)$.
- We could also compute $\mathcal{D} \mathcal{I}(P)$ using a randomized incremental method.

The rest is for the "curious"

Algorithm Overview

1. Initialize triangulation T with a "big enough" helper bounding triangle that contains all points P.
2. Randomly choose a point p_{r} from P.
3. Find the triangle Δ that p_{r} lies in.
4. Subdivide Δ into smaller triangles that have p_{r} as a vertex.
5. Flip edges until all edges are legal.
6. Repeat steps $2-5$ until all points have been added to T.

Triangle Subdivision: Case 1 of 2

Assuming we have already found the triangle that p_{r} lives in, subdivide Δ into smaller triangles that have p_{r} as a vertex.

Two possible cases:

1) p_{r} lies in the interior of Δ

Triangle Subdivision: Case 2 of 2

2) p_{r} falls on an edge between two adjacent triangles

Lecture 9: Delaunay triangulations

Which edges are illegal?

- Before we subdivided, all of our edges were legal.
- After we add our new edges, some of the edges of T may now be illegal, but which ones?

Outer Edges May Be Illegal

- An edge can become illegal only if one of its incident triangles changed.
- Outer edges of the incident triangles $\left\{p_{j} p_{k}, p_{i} p_{k}\right.$, $\left.\mathrm{p}_{\mathrm{k}} \mathrm{p}_{\mathrm{j}}\right\}$ or $\left\{\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{l}}, \mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}, \mathrm{p}_{\mathrm{j}} \mathrm{p}_{\mathrm{k}}, \mathrm{p}_{\mathrm{k}} \mathrm{p}_{\mathrm{i}}\right\}$ may have become illegal.

New Edges are Legal

Are the new edges (edges involving p_{r}) legal?
Consider any new edge $\mathrm{p}_{\mathrm{r}} \mathrm{p}_{1}$.
Before adding $\mathrm{p}_{\mathrm{r}} \mathrm{p}_{1}$,

- p_{1} was part of some triangle $p_{i} p_{j} p_{1}$
- Circumcircle C of $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$, and p_{1} did not contain any other points of P in its interior

New edges incident to p_{r} are Legal

- If we shrink C, we can find a circle C^{\prime} that passes through $\mathrm{p}_{\mathrm{r}} \mathrm{p}_{1}$
- C' contains no points in its interior.
- Therefore, $\mathrm{p}_{\mathrm{r}} \mathrm{p}_{1}$ is legal.

Any new edge incident p_{r} is legal.

Flip Illegal Edges

- Now that we know which edges have become illegal, we flip them.
- However, after the edges have been flipped, the edges incident to the new triangles may now be illegal.
- So we need to recursively flip edges...

LegalizeEdge

$\mathrm{p}_{\mathrm{r}}=$ point being inserted $p_{i} p_{j}=$ edge that may need to be flipped

LegalizeEdge $\left(\mathrm{p}_{\mathrm{r}}, \mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}, T\right)$

1. if $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ is illegal

2. then Let $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}} \mathrm{p}_{1}$ be the triangle adjacent to $p_{r} p_{i} p_{j}$ along $p_{i} p_{j}$
3. Replace $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ with $\mathrm{p}_{\mathrm{r}} \mathrm{p}_{1}$
4. LegalizeEdge $\left(\mathrm{p}_{\mathrm{r}}, \mathrm{p}_{\mathrm{i}} \mathrm{p}_{1}, T\right)$
5. LegalizeEdge $\left(\mathrm{p}_{\mathrm{r}}, \mathrm{p}_{1} \mathrm{p}_{\mathrm{j}}, T\right)$

Flipped edges are incident to p_{r}

Notice that when LEGALIZEEDGE flips edges, these new edges are incident to p_{r}

- By the same logic as earlier, we can shrink the circumcircle of $p_{i} p_{j} p_{1}$ to find a circle that passes through p_{r} and p_{r}.
- Thus, the new edges are legal.

Bounding Triangle

Remember, we skipped step 1 of our algorithm.

1. Begin with a "big enough" helper bounding triangle that contains all points.
Let $\left\{p_{-3}, p_{-2}, p_{-1}\right\}$ be the vertices of our bounding triangle.
"Big enough" means that the triangle:

- contains all points of P in its interior.
- will not destroy edges between points in P .

Considerations for Bounding Triangle

- We could choose large values for $\mathrm{p}_{-1}, \mathrm{p}_{-2}$ and p_{-3}, but that would require potentially huge coordinates.
- Instead, we'll modify our test for illegal edges, to act as if we chose large values for bounding triangle.

Bounding Triangle

We'll pretend the vertices of the bounding triangle are at:
$\mathrm{p}_{-1}=(3 \mathrm{M}, 0)$
$\mathrm{p}_{-2}=(0,3 \mathrm{M})$
$\mathrm{p}_{-3}=(-3 \mathrm{M},-3 \mathrm{M})$
$\mathrm{M}=$ maximum absolute value of any coordinate of a point in P

Modified Illegal Edge Test

$\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ is the edge being tested p_{k} and p_{1} are the other two vertices of the triangles incident to $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$

Illegal Edge Test, Case 1

Case 1) Indices i and j are both negative

- $p_{i} p_{j}$ is an edge of the bounding triangle
- $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ is legal, want to preserve edges of bounding triangle

Illegal Edge Test, Case 2

Case 2) Indices $\mathrm{i}, \mathrm{j}, \mathrm{k}$, and l are all positive.

- This is the normal case.
- $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ is illegal iff p_{l} lies inside the circumcircle of $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}} \mathrm{p}_{\mathrm{k}}$

Illegal Edge Test, Case 3

Case 3) Exactly one of $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}$ is negative
-We don't want our bounding triangle to destroy any Delaunay edges.
-If i or j is negative, $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ is illegal.

- Otherwise, $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ is legal.

October 2, 2003

Illegal Edge Test, Case 4

Case 4) Exactly two of $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}$ are negative.
$\cdot \mathrm{k}$ and 1 cannot both be negative (either p_{k} or p_{1} must be p_{r})
-i and j cannot both be negative - One of i or j and one of k or 1 must be negative
-If negative index of i and j is smaller than negative index of k and $1, \mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ is legal.

- Otherwise $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ is illegal.

Triangle Location Step

Remember, we skipped step 3 of our algorithm.
3. Find the triangle T that p_{r} lies in.

- Take an approach similar to Point Location approach.
- Maintain a point location structure \mathcal{D}, a directed acyclic graph.

Structure of \mathcal{D}

- Leaves of \mathcal{D} correspond to the triangles of the current triangulation.
- Maintain cross pointers between leaves of \mathfrak{D} and the triangulation.
- Begin with a single leaf, the bounding triangle $\mathrm{p}_{-1} \mathrm{p}_{-2} \mathrm{p}_{-3}$

Subdivision and \mathcal{D}

- Whenever we split a triangle Δ_{1} into smaller triangles Δ_{a} and Δ_{b} (and possibly Δ_{c}), add the smaller triangles to D as leaves of Δ_{1}

Subdivision and \mathcal{D}

split Δ_{1}

Lecture 9: Delaunay triangulations

Edge Flips and \mathcal{D}

- Whenever we perform an edge flip, create leaves for the two new triangles.
- Attach the new triangles as leaves of the two triangles replaced during the edge flip.

Edge Flips and \mathcal{D}

Searching \mathcal{D}

$\mathrm{p}_{\mathrm{r}}=$ point we are searching with

1. Let the current node be the root node of \mathcal{D}.
2. Look at child nodes of current node. Check which triangle p_{r} lies in.
3. Let current node $=$ child node that contains p_{r}
4. Repeat steps 2 and 3 until we reach a leaf node.

Searching \mathcal{D}

- Each node has at most 3 children.
- Each node in path represents a triangle in \mathcal{D} that contains p_{r}
- Therefore, takes O (number of triangles in \mathcal{D} that contain p_{r})

Properties of \mathcal{D}

Notice that the:

- Leaves of \mathcal{D} correspond to the triangles of the current triangulation.
- Internal nodes correspond to destroyed triangles, triangles that were in an earlier stage of the triangulation but are not present in the current triangulation.

Algorithm Overview

1. Initialize triangulation T with helper bounding triangle. Initialize \mathcal{D}.
2. Randomly choose a point p_{r} from P.
3. Find the triangle Δ that p_{r} lies in using \mathcal{D}.
4. Subdivide Δ into smaller triangles that have p_{r} as a vertex. Update \mathcal{D} accordingly.
5. Call LEGALIZEEDGE on all possibly illegal edges, using the modified test for illegal edges. Update \mathcal{D} accordingly.
6. Repeat steps $2-5$ until all points have been added October $\mathrm{TO}_{2} 20$ T3

Analysis Goals

- Expected running time of algorithm is:
$\mathrm{O}(n \log n)$
- Expected storage required is:
$\mathrm{O}(n)$

First, some notation...

- $\mathrm{P}_{\mathrm{r}}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{r}}\right\}$
- Points added by iteration r
- $\Omega=\left\{\mathrm{p}_{-3}, \mathrm{p}_{-2}, \mathrm{p}_{-1}\right\}$
- Vertices of bounding triangle
- $\mathcal{D} \mathcal{G}_{\mathrm{r}}=\mathcal{D} \mathcal{G}\left(\Omega \cup \mathrm{P}_{\mathrm{r}}\right)$
- Delaunay graph as of iteration r

Sidetrack: Expected Number of $\Delta \mathrm{s}$

It will be useful later to know the expected number of triangles created by our algorithm...

Lemma 9.11 Expected number of triangles created by DelaunayTriangulation is $9 n+1$.

- In initialization, we create 1 triangle (bounding triangle).

Expected Number of Triangles

In iteration r where we add p_{r},

- in the subdivision step, we create at most 4 new triangles. Each new triangle creates one new edge incident to p_{r}
- each edge flipped in LegalizeEdge creates two new triangles and one new edge incident to p_{r}

Expected Number of Triangles

Let $\mathrm{k}=$ number of edges incident to p_{r} after insertion of p_{r}, the degree of p_{r}

- We have created at most $2(\mathrm{k}-3)+3$ triangles.
- -3 and +3 are to account for the triangles created in the subdivision step
The problem is now to find the expected degree of \mathbf{p}_{r}

Expected Degree of p_{r}

Use backward analysis:

- Fix P_{r}, let p_{r} be a random element of P_{r}
- $\mathcal{D} \mathcal{G}_{\mathrm{r}}$ has 3(r+3)-6 edges
- Total degree of $\mathrm{P}_{\mathrm{r}} \leq 2[3(\mathrm{r}+3)-9]=6 \mathrm{r}$

$\mathrm{E}\left[\right.$ degree of random element of $\left.\mathrm{P}_{\mathrm{r}}\right] \leq 6$

Triangles created at step r

Using the expected degree of pr , we can find the expected number of triangles created in step r .
$\operatorname{deg}\left(\mathrm{p}_{\mathrm{r}}, \mathcal{D} \mathcal{G}_{\mathrm{r}}\right)=$ degree of p_{r} in $\mathcal{D} \mathcal{G}_{\mathrm{r}}$
$\mathrm{E}[$ number of triangles created in step $r] \leqslant \mathrm{E}\left[2 \operatorname{deg}\left(p_{r}, \mathcal{D} \mathcal{G}_{r}\right)-3\right]$

$$
\begin{aligned}
& =2 \mathrm{E}\left[\operatorname{deg}\left(p_{r}, \mathcal{D} \mathcal{G}_{r}\right)\right]-3 \\
& \leqslant 2 \cdot 6-3=9
\end{aligned}
$$

Expected Number of Triangles

Now we can bound the number of triangles:
≤ 1 initial $\Delta+\Delta$ s created at step $1+\Delta \mathrm{s}$ created at step $2+\ldots+\Delta$ s created at step n
$\leq 1+9$ n

Expected number of triangles created is $9 n+1$.

Storage Requirement

- \mathcal{D} has one node per triangle created
- $9 n+1$ triangles created
- O(n) expected storage

Expected Running Time

Let's examine each step...

1. Begin with a "big enough" helper bounding triangle that contains all points. $\mathrm{O}(1)$ time, executed once $=\mathrm{O}(1)$
2. Randomly choose a point p_{r} from P. $\mathrm{O}(1)$ time, executed n times $=\mathrm{O}(\mathrm{n})$
3. Find the triangle Δ that p_{r} lies in.

Expected Running Time

4. Subdivide Δ into smaller triangles that have p_{r} as a vertex.
$\mathrm{O}(1)$ time executed n times $=\mathrm{O}(\mathrm{n})$
5. Flip edges until all edges are legal. In total, expected to execute a total number of times proportional to number of triangles created $=\mathrm{O}(\mathrm{n})$

Thus, total running time without point location step is $\mathrm{O}(\mathrm{n})$.

Point Location Step

- Time to locate point p_{r} is

O (number of nodes of \mathcal{D} we visit)
$+\mathrm{O}(1)$ for current triangle

- Number of nodes of \mathcal{D} we visit
$=$ number of destroyed triangles that contain p_{r}
- A triangle is destroyed by p_{r} if its circumcircle contains p_{r}

We can charge each triangle visit to a Delaunay triangle whose circumcircle contains p_{r}

Point Location Step

$\mathrm{K}(\Delta)=$ subset of points in P that lie in the circumcircle of Δ

- When $\mathrm{p}_{\mathrm{r}} \in \mathrm{K}(\Delta)$, charge to Δ.
- Since we are iterating through P, each point in $K(\Delta)$ can be charged at most once.
Total time for point location:

$$
O\left(n+\sum_{\Delta} \operatorname{card}(K(\Delta))\right)
$$

October 2, 2003

Point Location Step

We want to have $\mathrm{O}(n \log n)$ time, therefore we want to show that:

$$
\sum_{\Delta} \operatorname{card}(K(\Delta))=O(n \log n),
$$

Point Location Step

Introduce some notation...
$\mathcal{T}_{\mathrm{r}}=$ set of triangles of $\mathcal{D G}\left(\Omega \cup P_{\mathrm{r}}\right)$
$\mathcal{T}_{\mathrm{r}} \backslash \mathcal{T}_{\mathrm{r}-1}$ triangles created in stage r
Rewrite our sum as:

$$
\sum_{r=1}^{n}\left(\sum_{\Delta \in \mathcal{T}_{r} \backslash \mathcal{I}_{r-1}} \operatorname{card}(K(\Delta))\right) .
$$

Point Location Step

More notation...
$k\left(P_{\mathrm{r}}, q\right)=$ number of triangles $\Delta \in \mathcal{T}_{\mathrm{r}}$ such that q is contained in Δ
$k\left(P_{\mathrm{r}}, q, p_{\mathrm{r}}\right)=$ number of triangles $\Delta \in \mathcal{T}_{\mathrm{r}}$ such that q is contained in Δ and p_{r} is incident to Δ
Rewrite our sum as:

$$
\sum_{\Delta \in \mathcal{T}_{T} \backslash \mathcal{I}_{r-1}} \operatorname{card}(K(\Delta))=\sum_{q \in P \backslash P_{r}} k\left(P_{r}, q, p_{r}\right) .
$$

Point Location Step

Find the $\mathrm{E}\left[k\left(P_{\mathrm{r}}, q, p_{\mathrm{r}}\right)\right]$ then sum later...

- Fix P_{r}, so $k\left(P_{\mathrm{r}}, q, p_{\mathrm{r}}\right)$ depends only on p_{r}.
- Probability that p_{r} is incident to a triangle is $3 / r$
Thus:

$$
\mathrm{E}\left[k\left(P_{r}, q, p_{r}\right)\right] \leqslant \frac{3 k\left(P_{r}, q\right)}{r} .
$$

Point Location Step

Using:

$$
\mathrm{E}\left[k\left(P_{r}, q, p_{r}\right)\right] \leqslant \frac{3 k\left(P_{r}, q\right)}{r} .
$$

We can rewrite our sum as:

$$
\mathrm{E}\left[\sum_{\Delta \in \mathcal{T}_{r} \backslash \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\right] \leqslant \frac{3}{r} \sum_{q \in P \backslash P_{r}} k\left(P_{r}, q\right) .
$$

Point Location Step

Now find $\mathrm{E}\left[k\left(P_{\mathrm{r}}, p_{\mathrm{r}+1}\right)\right] \ldots$

- Any of the remaining n-r points is equally likely to appear as $p_{\mathrm{r}+1}$
So:

$$
\mathrm{E}\left[k\left(P_{r}, p_{r+1}\right)\right]=\frac{1}{n-r} \sum_{q \in P \backslash P_{r}} k\left(P_{r}, q\right)
$$

Point Location Step

Using:

$$
\mathrm{E}\left[k\left(P_{r}, p_{r+1}\right)\right]=\frac{1}{n-r} \sum_{q \in P \backslash P_{r}} k\left(P_{r}, q\right) .
$$

We can rewrite our sum as:

$$
\mathrm{E}\left[\sum_{\Delta \in \mathcal{T}_{r} \backslash \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\right] \leqslant 3\left(\frac{n-r}{r}\right) \mathrm{E}\left[k\left(P_{r}, p_{r+1}\right)\right] .
$$

Point Location Step

Find $k\left(P_{\mathrm{r}}, p_{\mathrm{r}+1}\right)$

- number of triangles of \mathcal{T}_{r} that contain $\mathrm{p}_{\mathrm{r}+1}$
- these are the triangles that will be destroyed when $\mathrm{p}_{\mathrm{r}+1}$ is inserted; $\mathcal{T}_{\mathrm{r}} \backslash \mathcal{T}_{\mathrm{r}+1}$
- Rewrite our sum as:

$$
\mathrm{E}\left[\sum_{\Delta \in \mathcal{T}_{r} \backslash \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\right] \leqslant 3\left(\frac{n-r}{r}\right) \mathrm{E}\left[\operatorname{card}\left(\mathcal{T}_{r} \backslash \mathcal{T}_{r+1}\right)\right] .
$$

Point Location Step

Remember, number of triangles in triangulation of n points with k points on convex hull is $2 \mathrm{n}-2-\mathrm{k}$

- \mathcal{T}_{m} has $2(m+3)-2-3=2 m+1$
- \mathcal{T}_{m+1} has two more triangles than $\mathrm{T} m$

Thus, $\operatorname{card}\left(\mathcal{T}_{\mathrm{r}} \backslash \mathcal{T}_{\mathrm{r}+1}\right)$
$=\operatorname{card}\left(\right.$ triangles destroyed by $\left.\mathrm{p}_{\mathrm{r}}\right)$
$=\operatorname{card}\left(\right.$ triangles created by $\left.p_{\mathrm{r}}\right)-2$
$=\operatorname{card}\left(\mathcal{T}_{\mathrm{r}+1} \backslash \mathcal{T}_{\mathrm{r}}\right)-2$
We can rewrite our sum as:

$$
\mathrm{E}\left[\sum_{\Delta \in \mathcal{T}_{r} \backslash \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\right] \leqslant 3\left(\frac{n-r}{r}\right)\left(\mathrm{E}\left[\operatorname{card}\left(\mathcal{I}_{r+1} \backslash \mathcal{I}_{r}\right)\right]-2\right) .
$$

Point Location Step

Remember we fixed P_{r} earlier...

- Consider all P_{r} by averaging over both sides of the inequality, but the inequality comes out identical.
E[number of triangles created by p_{r}]
$=\mathrm{E}\left[\right.$ number of edges incident to p_{r+1} in $\left.\mathcal{T}_{r+1}\right]$
$=6$
Therefore:

October 2

$$
\mathrm{E}\left[\sum_{\Delta \in \mathcal{T}_{r} \backslash \mathcal{I}_{r-1}} \operatorname{card}(K(\Delta))\right] \leqslant 12\left(\frac{n-r}{r}\right) .
$$

Analysis Complete

$$
\mathrm{E}\left[\sum_{\Delta \in \mathcal{T}_{r} \backslash \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\right] \leqslant 12\left(\frac{n-r}{r}\right) .
$$

If we sum this over all r, we have shown that:

$$
\sum_{\Delta} \operatorname{card}(K(\Delta))=O(n \log n)
$$

And thus, the algorithm runs in $\mathrm{O}(n \log n)$ time.

