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Definition

• Given: a planar subdivision S

• Goal: build a data structure that, given a query 
point, determines which face of the planar 
subdivision that point lies in 

• Details: planar subdivision given by:
– Vertices, directed edges and faces
– Perimeters of polygons stored in doubly linked lists
– Can switch between faces, edges and vertices in 

constant time
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First attempt

• Want to divide the plane into easily manageable 
sections.

• Idea: Divide the graph into slabs, by drawing a vertical 
line through every vertex of the graph

• Given the query point, do binary search in the proper 
slab
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Analysis

• Query time: O(log n)

• Space: O(n2)
• As a few people in the audience 

observed, the space can be reduced to 
O(n) by using “persistent” data 
structures. See  6.854, Lecture 5 for 
details.
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Second attempt

• Too much splitting!

• Idea: stop the splitting 
lines at the first segment 
of the subdivision

• We get a trapezoidal 
decomposition T(S) of S

• The number of edges still 
O(n)
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Assumptions/Simplifications

• Add a bounding box that contains S
• Assume that the x-coordinates of 

coordinates and query are distinct
1. Randomly rotate the plane, or
2. Use lexicographic order 
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Answering the query

• Build a decision tree:
– Leaves: individual trapezoids

– Internal nodes: YES/NO queries:
• point query: does q lie to the left or the right of a 

given point?
• segment query: does q lie above or below a given 

line segment?
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Decision tree: Example
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DT Construction: Overview

1. Initialization: create a T with the bounding box 
R as the only trapezoid, and corresponding DT 
D

2. Compute a random permutation of segments 
s1…sn

3. For each segment si:
A. Find the set of trapezoids in T properly intersected 

by si
B. Remove them from T and replace them by the new 

trapezoids that appear because of the insertion of si
C. Remove the leaves of D for the old trapezoids and 

create leaves for the new ones + update links
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Some notation
Segments top(∆) and bottom(∆) : 



September 23, 2003 Lecture 6: Point Location

Some notation, ctd.
Points leftp(∆) and rightp(∆): 

Each ∆ is defined by top(∆), bottom(∆), leftp(∆), 
rightp(∆)
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Some notation, ctd.

• Two trapezoids are adjacent if they 
share a vertical boundary

• How many trapezoids can be adjacent 
to ∆ ?
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Adding new segment si

• Let ∆0 … ∆k be the trapezoids 
intersected by si (left to right)

• To find them:

– ∆0 is the trapezoid 
containing the left endpoint 
p of si – find it by querying 
the data structure built so 
far 

– ∆j+1 must be a right 
neighbor of ∆j
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Updating T
• Draw vertical extensions 

through the endpoints of si
that were not present, 
partitioning ∆0 … ∆k

• Shorten the vertical 
extensions that now end at si,
merging the appropriate 
trapezoids
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Updating D

• Remove the leaves for ∆0…∆k

• Create leaves for the new 
trapezoids

• If ∆0 has the left endpoint p of 
si in its interior, replace the leaf 
for ∆0 with a point node for p
and a segment node for si
(similarly with ∆k)

• Replace the leaves of the other 
trapezoids with single segment 
nodes for si

• Make the outgoing edges of 
the inner nodes point to the 
correct leaves 
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Analysis

• Theorem: In the expectation we have
– Running time: O(n log n)

– Storage: O(n)
– Query time O(log n) for a fixed q
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Expected Query Time

• Fix a query point q, and consider the path in D
traversed by the query.

• Define
– Si = {s1, s2, ..., si}
– Xi = number of nodes added to the search path for q

during iteration i
– Pi = probability that some node on the search path of 

q is created in iteration i
– ∆q(Si) = trapezoid containing q in T(Si)

• From our construction, Xi 3; thus E[Xi] 3Pi
• Note that Pi = Pr[∆q(Si) <> ∆q(Si-1) ]
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Expected Query Time ctd.

• What is Pi = Pr[∆q(Si) <> ∆q(Si-1) ] ? 
• Backward analysis: How many segments in Si

affect ∆q(Si) when they are removed? 
• At most 4
• Since they have been chosen in random order, 

each one has probability 1/i of being si

• Thus Pi  4/i
• E[ i Xi ] = i E [ Xi ] i 3Pi i 12/i = O(log n)
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Expected Storage

• Number of nodes bounded by O(n) + i ki , 
where ki= number of new trapezoids 
created in iteration i

• Define d(∆,s) to be 1 iff ∆ disappears from 
T(Si) when s removed from Si

• We have s∈Si ∆ ∈T(Si) d(∆,s) 4|T(Si)|=O(i)
• E[ki]= [ s∈Si ∆ ∈T(Si) d(∆,s) ]/i =O(1)
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Expected Time

• The time needed to insert si is O(ki) plus 
the time needed to locate the left endpoint 
of si in T(Si)

• Expected running time = O(n log n)
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Extensions

• Can obtain worst-case O(log n) query time
– Show O(log n) for a fixed query holds with 

probability 1-1/(Cn2) for large C
– There are O(n2) truly different queries


