Point Location

(most slides by Sergi Elizalde and David Pritchard)

Point Location

Definition

- Given: a planar subdivision S
- Goal: build a data structure that, given a query point, determines which face of the planar subdivision that point lies in
- Details: planar subdivision given by:
- Vertices, directed edges and faces
- Perimeters of polygons stored in doubly linked lists
- Can switch between faces, edges and vertices in constant time

First attempt

- Want to divide the plane into easily manageable sections.
- Idea: Divide the graph into slabs, by drawing a vertical line through every vertex of the graph
- Given the query point, do binary search in the proper slab

Analysis

- Query time: O(log n)
- Space: O(n²)
- As a few people in the audience observed, the space can be reduced to $\mathrm{O}(\mathrm{n})$ by using "persistent" data structures. See 6.854, Lecture 5 for details.

Second attempt

- Too much splitting!
- Idea: stop the splitting lines at the first segment of the subdivision
- We get a trapezoidal decomposition $\mathrm{T}(\mathrm{S})$ of S
- The number of edges still $\mathrm{O}(\mathrm{n})$

Assumptions/Simplifications

- Add a bounding box that contains S
- Assume that the x-coordinates of coordinates and query are distinct

1. Randomly rotate the plane, or
2. Use lexicographic order

Answering the query

- Build a decision tree:
- Leaves: individual trapezoids
- Internal nodes: YES/NO queries:
- point query: does q lie to the left or the right of a given point?
- segment query: does q lie above or below a given line segment?

Decision tree: Example

DT Construction: Overview

1. Initialization: create a T with the bounding box R as the only trapezoid, and corresponding DT D
2. Compute a random permutation of segments $\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{n}}$
3. For each segment s_{i} :
A. Find the set of trapezoids in T properly intersected by s_{i}
B. Remove them from T and replace them by the new trapezoids that appear because of the insertion of s_{i}
C. Remove the leaves of D for the old trapezoids and create leaves for the new ones + update links

Some notation

Segments top(Δ) and bottom(Δ) :

bottom (Δ)

Some notation, ctd.

Points leftp(Δ) and rightp(Δ):

(a)

(b)

(c)

(d)

Each Δ is defined by top (Δ), bottom $(\Delta), \operatorname{leftp}(\Delta)$, rightp(Δ)

September 23, 2003

Some notation, ctd.

- Two trapezoids are adjacent if they share a vertical boundary
- How many trapezoids can be adjacent to Δ ?

Adding new segment s_{i}

- Let $\Delta_{0} \ldots \Delta_{k}$ be the trapezoids intersected by s_{i} (left to right)
- To find them:
- Δ_{0} is the trapezoid containing the left endpoint
 p of s_{i} - find it by querying the data structure built so far
$-\Delta_{j+1}$ must be a right
neighbor of Δ_{j}

Updating T

- Draw vertical extensions through the endpoints of s_{i} that were not present, partitioning $\Delta_{0} \ldots \Delta_{k}$
- Shorten the vertical
 extensions that now end at s_{i}, merging the appropriate trapezoids

Updating D

- Remove the leaves for $\Delta_{0} \ldots \Delta_{\mathrm{k}}$
- Create leaves for the new trapezoids
- If Δ_{0} has the left endpoint p of s_{i} in its interior, replace the leaf for Δ_{0} with a point node for p and a segment node for s_{i} (similarly with Δ_{k})
- Replace the leaves of the other

- Make the outgoing edges of
 the inner nodes point to the correct leaves

Analysis

- Theorem: In the expectation we have
- Running time: O(n log n)
- Storage: O(n)
- Query time O(log n) for a fixed q

Expected Query Time

- Fix a query point q, and consider the path in D traversed by the query.
- Define
$-S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
$-X_{i}=$ number of nodes added to the search path for q during iteration i
$-P_{i}=$ probability that some node on the search path of q is created in iteration i
$-\Delta_{q}\left(S_{i}\right)=$ trapezoid containing q in $T\left(S_{i}\right)$
- From our construction, $\mathrm{X}_{i} \leq 3$; thus $\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right] \leq 3 \mathrm{P}_{\mathrm{i}}$
- Note that $\mathrm{P}_{\mathrm{i}}=\operatorname{Pr}\left[\Delta_{\mathrm{q}}\left(\mathrm{S}_{\mathrm{i}}\right)<>\Delta_{\mathrm{q}}\left(\mathrm{S}_{\mathrm{i}-1}\right)\right]$

Expected Query Time ctd.

- What is $\mathrm{P}_{\mathrm{i}}=\operatorname{Pr}\left[\Delta_{\mathrm{q}}\left(\mathrm{S}_{\mathrm{i}}\right)<>\Delta_{\mathrm{q}}\left(\mathrm{S}_{\mathrm{i}-1}\right)\right]$?
- Backward analysis: How many segments in S_{i} affect $\Delta_{q}\left(S_{i}\right)$ when they are removed?
- At most 4
- Since they have been chosen in random order, each one has probability $1 / i$ of being s_{i}
- Thus $P_{i} \leq 4 / i$
- $\mathrm{E}\left[\sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right]=\sum_{\mathrm{i}} \mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right] \leq \sum_{\mathrm{i}} 3 P_{\mathrm{i}} \leq \sum_{\mathrm{i}} 12 / \mathrm{i}=\mathrm{O}(\log \mathrm{n})$

Expected Storage

- Number of nodes bounded by $\mathrm{O}(\mathrm{n})+\sum_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}$, where $\mathrm{k}_{\mathrm{i}}=$ number of new trapezoids created in iteration i
- Define $\mathrm{d}(\Delta, \mathrm{s})$ to be 1 iff Δ disappears from $T\left(S_{i}\right)$ when s removed from S_{i}
- We have $\sum_{\mathrm{s} \in \mathrm{Si}} \sum_{\Delta \in \mathrm{T}(\mathrm{Si})} \mathrm{d}(\Delta, \mathrm{s}) \leq 4\left|\mathrm{~T}\left(\mathrm{~S}_{\mathrm{i}}\right)\right|=\mathrm{O}(\mathrm{i})$
- $\mathrm{E}\left[\mathrm{k}_{\mathrm{i}}\right]=\left[\sum_{\mathrm{s} \in \mathrm{Si}} \sum_{\Delta \in \mathrm{T}(\mathrm{Si})} \mathrm{d}(\Delta, \mathrm{s})\right] / \mathrm{i}=\mathrm{O}(1)$

Expected Time

- The time needed to insert s_{i} is $\mathrm{O}\left(\mathrm{k}_{\mathrm{i}}\right)$ plus the time needed to locate the left endpoint of s_{i} in $T\left(S_{i}\right)$
- Expected running time $=O(n \log n)$

Extensions

- Can obtain worst-case O(log n) query time
- Show $O(\log n)$ for a fixed query holds with probability 1-1/(Cn²) for large C
- There are $\mathrm{O}\left(\mathrm{n}^{2}\right)$ truly different queries

