
September 23, 2003 Lecture 6: Point Location

Point Location

(most slides by Sergi Elizalde and
David Pritchard)

September 23, 2003 Lecture 6: Point Location

Point Location

September 23, 2003 Lecture 6: Point Location

Definition

• Given: a planar subdivision S

• Goal: build a data structure that, given a query
point, determines which face of the planar
subdivision that point lies in

• Details: planar subdivision given by:
– Vertices, directed edges and faces
– Perimeters of polygons stored in doubly linked lists
– Can switch between faces, edges and vertices in

constant time

September 23, 2003 Lecture 6: Point Location

First attempt

• Want to divide the plane into easily manageable
sections.

• Idea: Divide the graph into slabs, by drawing a vertical
line through every vertex of the graph

• Given the query point, do binary search in the proper
slab

September 23, 2003 Lecture 6: Point Location

Analysis

• Query time: O(log n)

• Space: O(n2)
• As a few people in the audience

observed, the space can be reduced to
O(n) by using “persistent” data
structures. See 6.854, Lecture 5 for
details.

September 23, 2003 Lecture 6: Point Location

Second attempt

• Too much splitting!

• Idea: stop the splitting
lines at the first segment
of the subdivision

• We get a trapezoidal
decomposition T(S) of S

• The number of edges still
O(n)

September 23, 2003 Lecture 6: Point Location

Assumptions/Simplifications

• Add a bounding box that contains S
• Assume that the x-coordinates of

coordinates and query are distinct
1. Randomly rotate the plane, or
2. Use lexicographic order

September 23, 2003 Lecture 6: Point Location

Answering the query

• Build a decision tree:
– Leaves: individual trapezoids

– Internal nodes: YES/NO queries:
• point query: does q lie to the left or the right of a

given point?
• segment query: does q lie above or below a given

line segment?

September 23, 2003 Lecture 6: Point Location

Decision tree: Example

September 23, 2003 Lecture 6: Point Location

DT Construction: Overview

1. Initialization: create a T with the bounding box
R as the only trapezoid, and corresponding DT
D

2. Compute a random permutation of segments
s1…sn

3. For each segment si:
A. Find the set of trapezoids in T properly intersected

by si
B. Remove them from T and replace them by the new

trapezoids that appear because of the insertion of si
C. Remove the leaves of D for the old trapezoids and

create leaves for the new ones + update links

September 23, 2003 Lecture 6: Point Location

Some notation
Segments top(∆) and bottom(∆) :

September 23, 2003 Lecture 6: Point Location

Some notation, ctd.
Points leftp(∆) and rightp(∆):

Each ∆ is defined by top(∆), bottom(∆), leftp(∆),
rightp(∆)

September 23, 2003 Lecture 6: Point Location

Some notation, ctd.

• Two trapezoids are adjacent if they
share a vertical boundary

• How many trapezoids can be adjacent
to ∆ ?

September 23, 2003 Lecture 6: Point Location

Adding new segment si

• Let ∆0 … ∆k be the trapezoids
intersected by si (left to right)

• To find them:

– ∆0 is the trapezoid
containing the left endpoint
p of si – find it by querying
the data structure built so
far

– ∆j+1 must be a right
neighbor of ∆j

September 23, 2003 Lecture 6: Point Location

Updating T
• Draw vertical extensions

through the endpoints of si
that were not present,
partitioning ∆0 … ∆k

• Shorten the vertical
extensions that now end at si,
merging the appropriate
trapezoids

September 23, 2003 Lecture 6: Point Location

Updating D

• Remove the leaves for ∆0…∆k

• Create leaves for the new
trapezoids

• If ∆0 has the left endpoint p of
si in its interior, replace the leaf
for ∆0 with a point node for p
and a segment node for si
(similarly with ∆k)

• Replace the leaves of the other
trapezoids with single segment
nodes for si

• Make the outgoing edges of
the inner nodes point to the
correct leaves

September 23, 2003 Lecture 6: Point Location

Analysis

• Theorem: In the expectation we have
– Running time: O(n log n)

– Storage: O(n)
– Query time O(log n) for a fixed q

September 23, 2003 Lecture 6: Point Location

Expected Query Time

• Fix a query point q, and consider the path in D
traversed by the query.

• Define
– Si = {s1, s2, ..., si}
– Xi = number of nodes added to the search path for q

during iteration i
– Pi = probability that some node on the search path of

q is created in iteration i
– ∆q(Si) = trapezoid containing q in T(Si)

• From our construction, Xi 3; thus E[Xi] 3Pi
• Note that Pi = Pr[∆q(Si) <> ∆q(Si-1)]

September 23, 2003 Lecture 6: Point Location

Expected Query Time ctd.

• What is Pi = Pr[∆q(Si) <> ∆q(Si-1)] ?
• Backward analysis: How many segments in Si

affect ∆q(Si) when they are removed?
• At most 4
• Since they have been chosen in random order,

each one has probability 1/i of being si

• Thus Pi 4/i
• E[i Xi] = i E [Xi] i 3Pi i 12/i = O(log n)

September 23, 2003 Lecture 6: Point Location

Expected Storage

• Number of nodes bounded by O(n) + i ki ,
where ki= number of new trapezoids
created in iteration i

• Define d(∆,s) to be 1 iff ∆ disappears from
T(Si) when s removed from Si

• We have s∈Si ∆ ∈T(Si) d(∆,s) 4|T(Si)|=O(i)
• E[ki]= [s∈Si ∆ ∈T(Si) d(∆,s)]/i =O(1)

September 23, 2003 Lecture 6: Point Location

Expected Time

• The time needed to insert si is O(ki) plus
the time needed to locate the left endpoint
of si in T(Si)

• Expected running time = O(n log n)

September 23, 2003 Lecture 6: Point Location

Extensions

• Can obtain worst-case O(log n) query time
– Show O(log n) for a fixed query holds with

probability 1-1/(Cn2) for large C
– There are O(n2) truly different queries

