Linear Programming in Low Dimensions

(most slides by Nati Srebro)

September 11, 2003

Linear Programming

Maximize: $c_1 x_1 + c_2 x_2 + \dots + c_d x_d$ Subject to: $a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,d} x_d \le b_1$ $a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,d} x_d \le b_2$ \vdots \ddots \vdots $a_{n,1} x_1 + a_{n,2} x_2 + \dots + a_{n,d} x_d \le b_n$

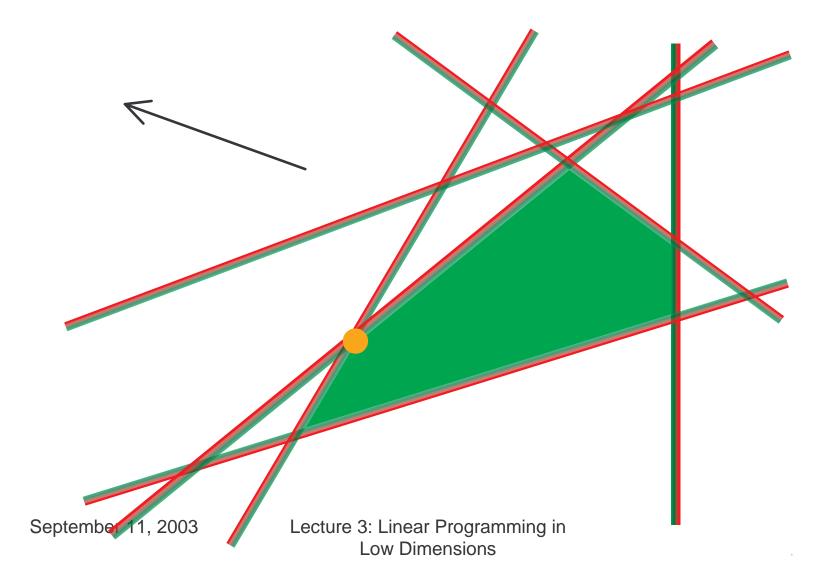
September 11, 2003

Linear Programming in 2D

Maximize: $c_x x + c_y y$ Subject to: $a_{1,x} x + a_{1,y} y \le b_1$ $a_{2,x} x + a_{2,y} y \le b_2$ \vdots \vdots \vdots $a_{n,x} x + a_{n,y} y \le b_n$

September 11, 2003

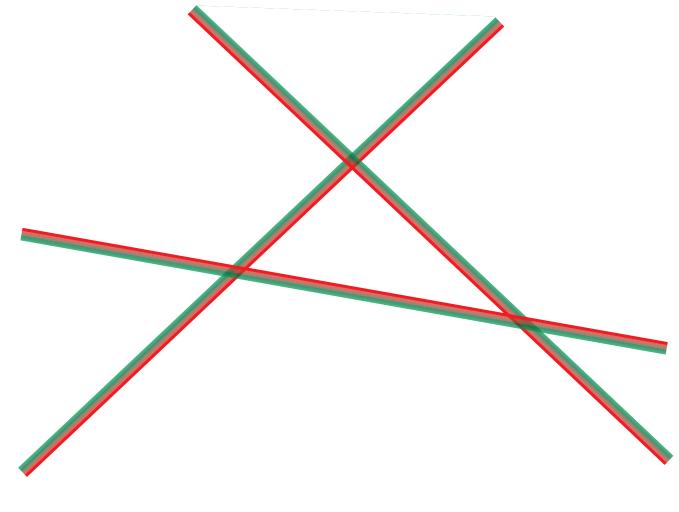
Linear Programming in 2D



Non-unique solution

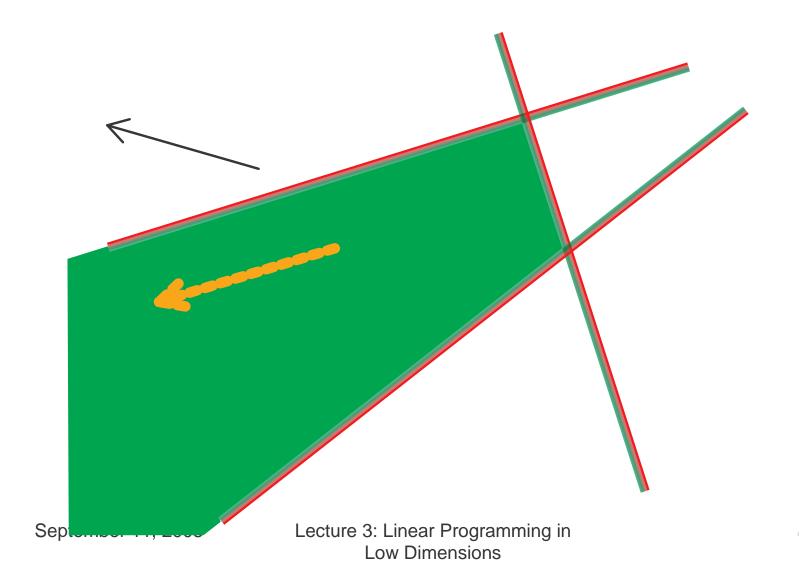


An Infeasible Linear Program

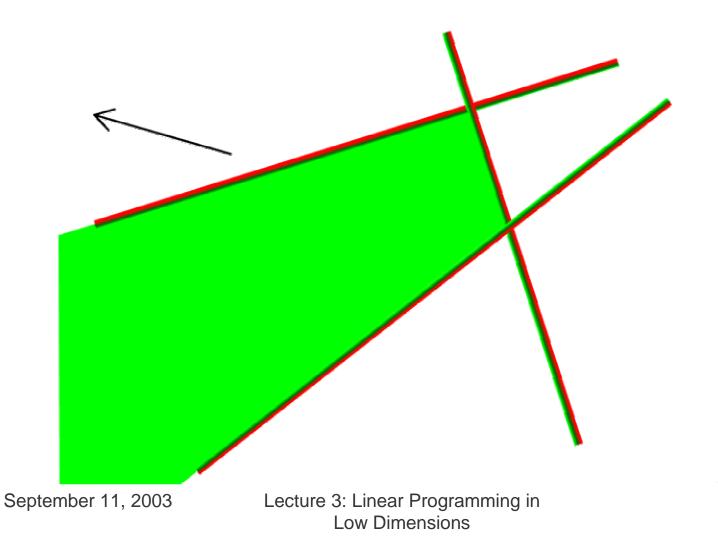


September 11, 2003

An Unbounded LP



An Esbounded LP



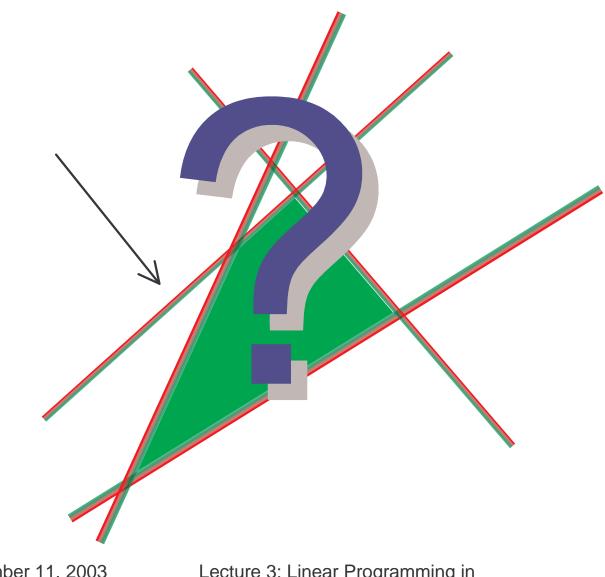
Types of LPs

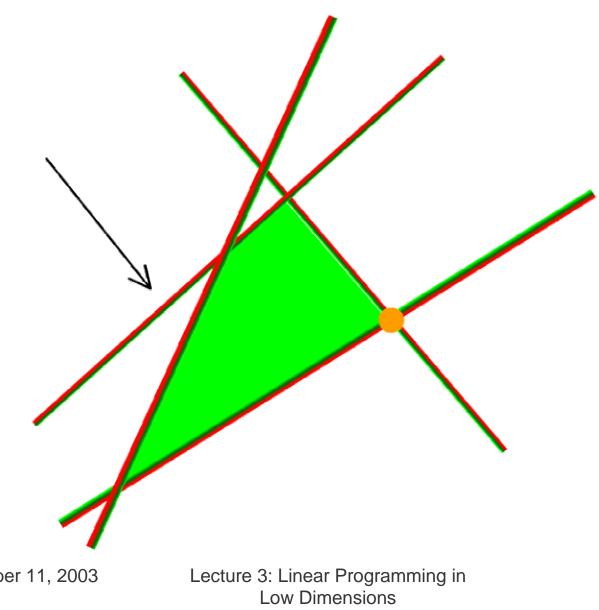
• Unique optimum

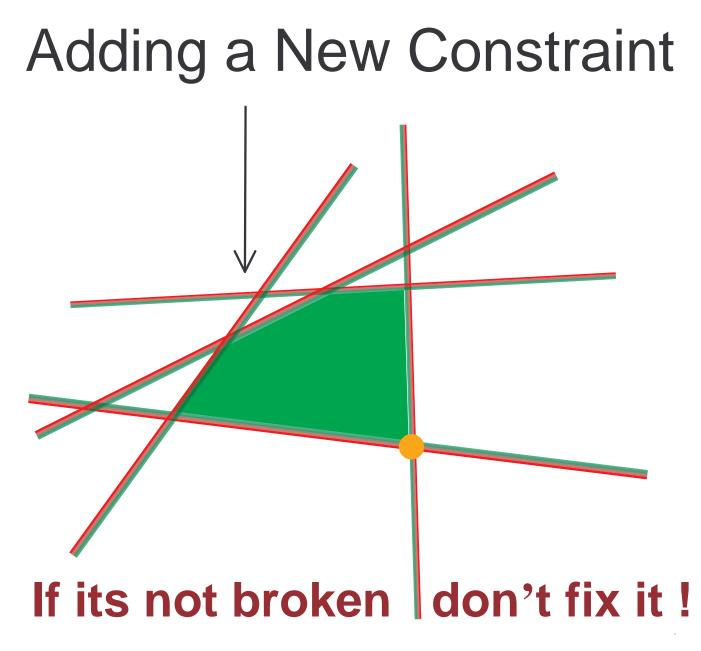
ØFind the optimum

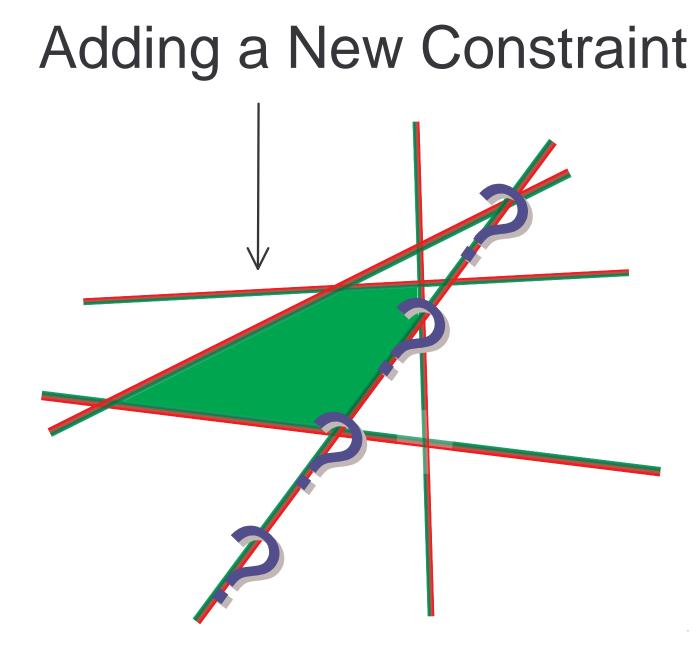
- Optimal edge
- Unbounded
- Inferinging unbounded ray

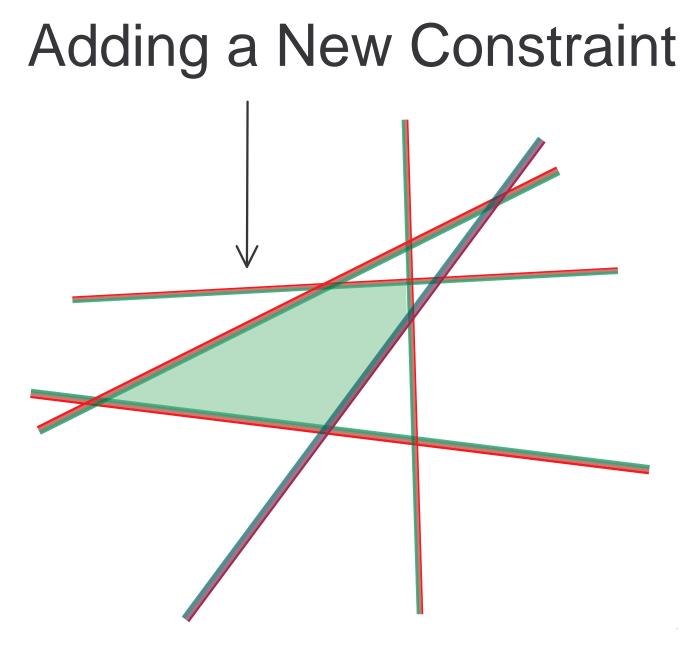
September 11, 2003

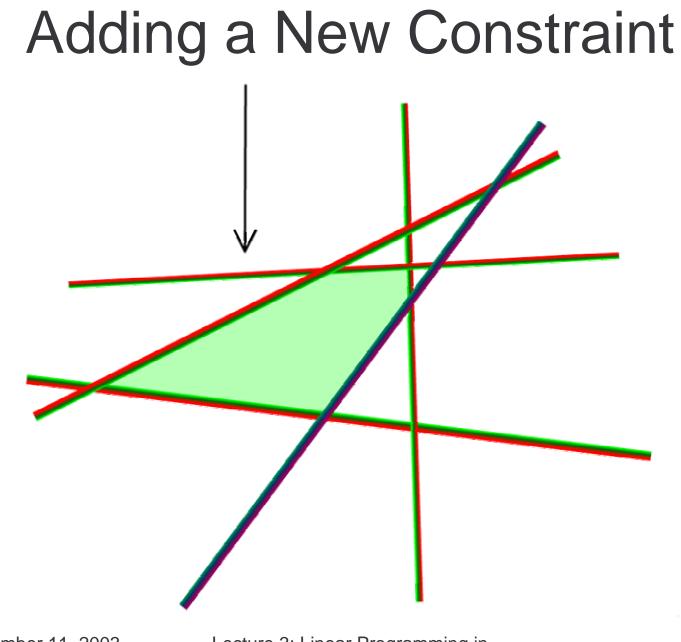








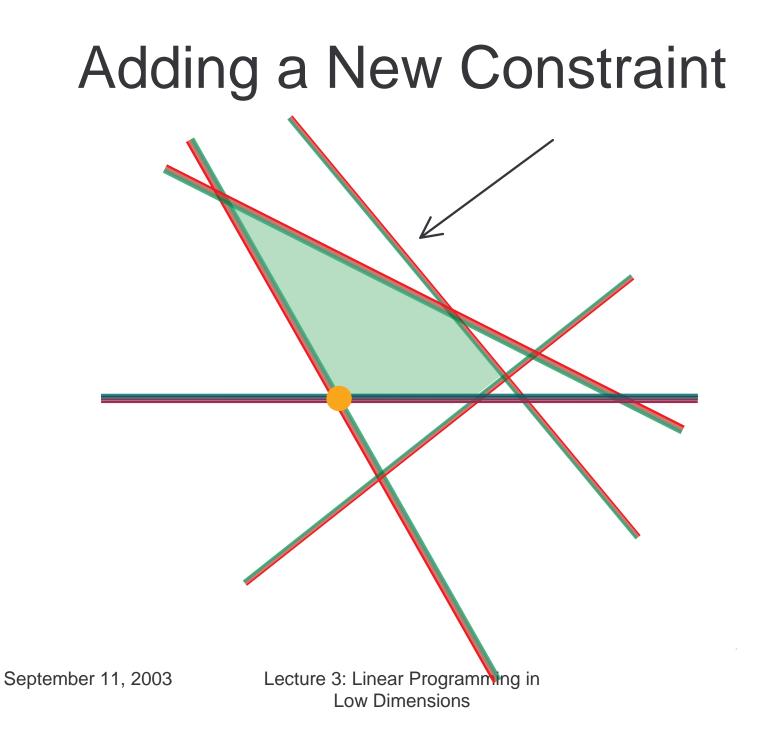


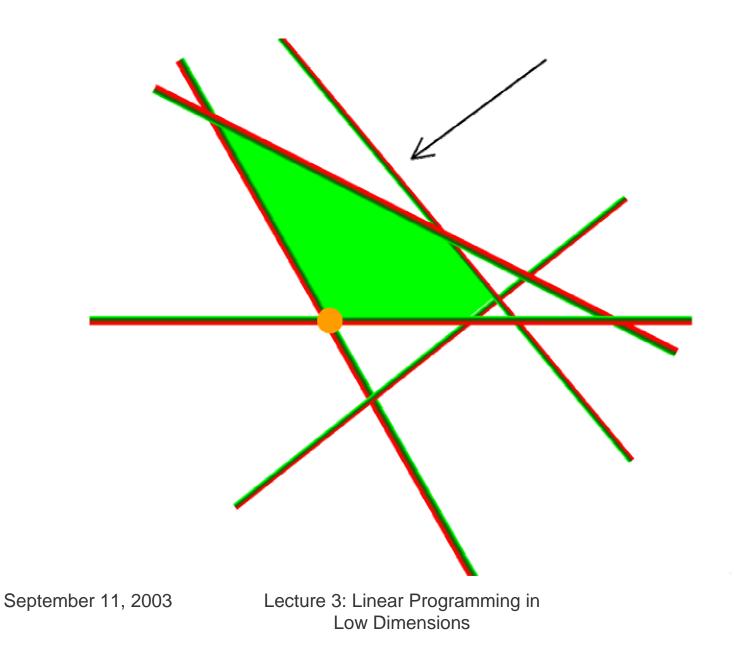


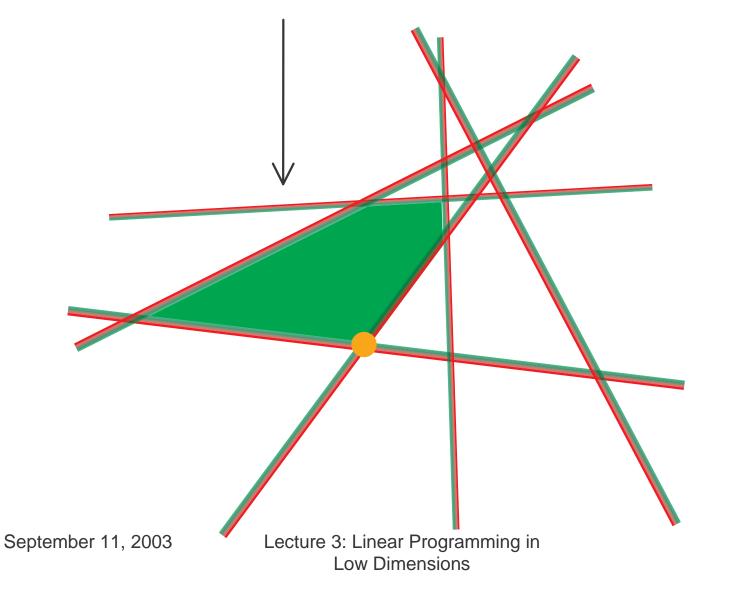
September 11, 2003

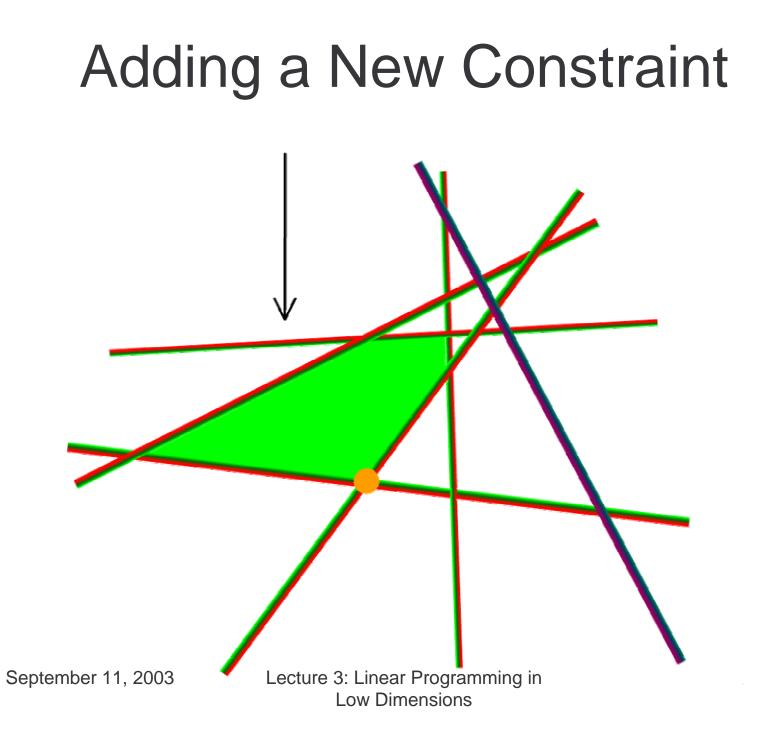


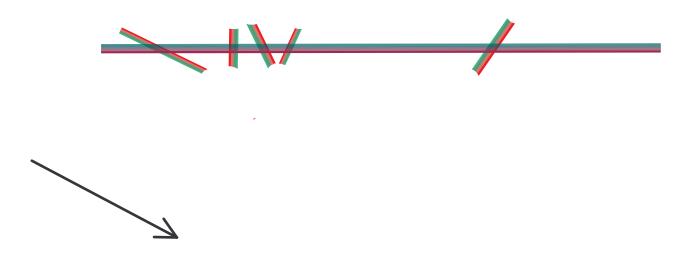
September 11, 2003











September 11, 2003

\leftarrow \rightarrow Is a bad sign....

September 11, 2003

Summary

- Check is optimum is feasible
- Optimum is feasible: We're fine, don't do anything
- Optimum isn't feasible:
 Find optimum on new constraint (line) O(n)
 No feasible points on new constraint:
 LP isn't feasible

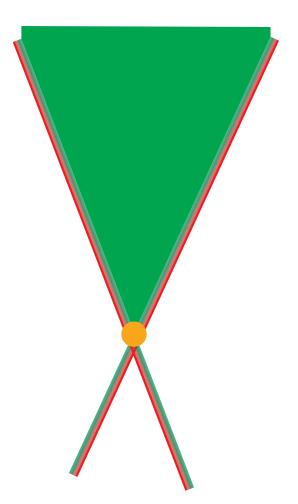
(1)

September 11, 2003

Incremental Algorithm

- Choose two constraints and initialize the solution
- Add new constraints one by one, keeping track of current optimum

Initialization

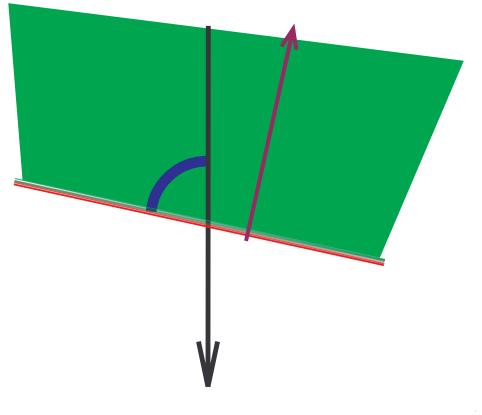


Find two constraints that together bound the LP

September 11, 2003

Initialization

Choose the constraint *h* defined by a vector that is the closest to "up"



September 11, 2003

Initialization

- Choose the constraint *h* defined by a vector that is the closest to "up"
- For every other constraint, check if it bounds the LP with *h*
- If no constraint is good-- LP is unbounded

or unfeasible because of parallel constraints

September 11, 2003

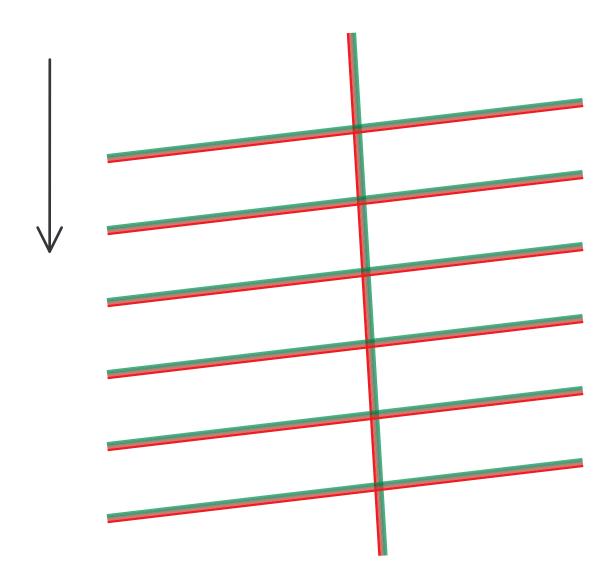
Incremental Algorithm

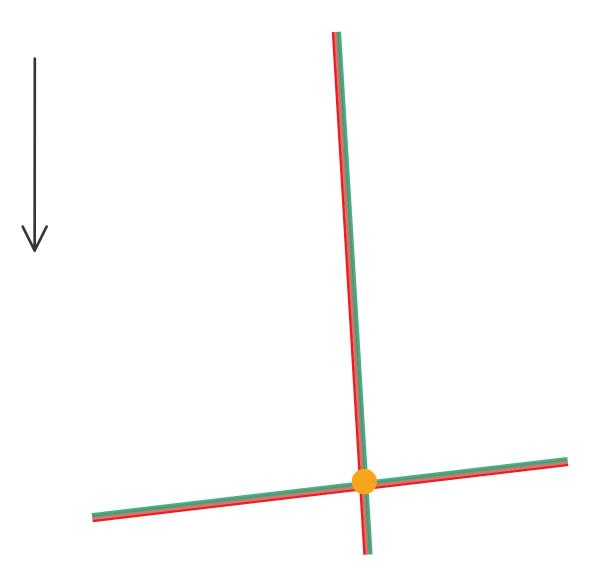
- Find two constraints that bound LP
 If none exist, LP is unbounded O(n)
- Add all other constraints one by one, keeping track of current optimum O(n²)

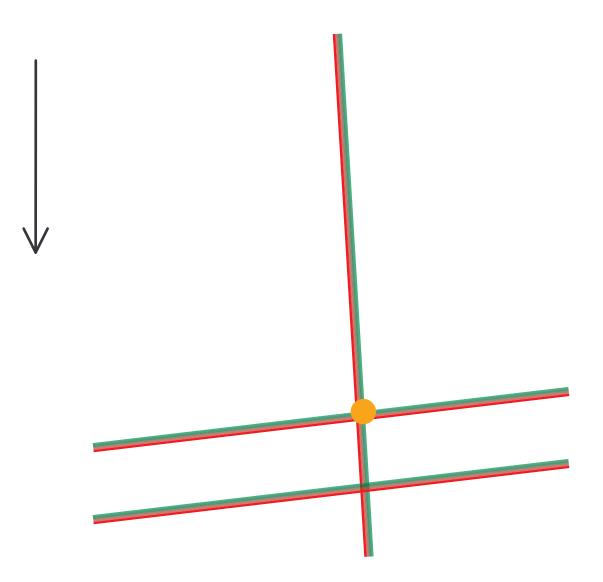
- Check is optimum is feasible **O(1)**
- Optimum is feasible: We're fine, don't do anything
- Optimum isn't feasible:
 Find optimum on new constraint (line) O(n)
 No feasible points on new constraint:
 LP isn't feasible

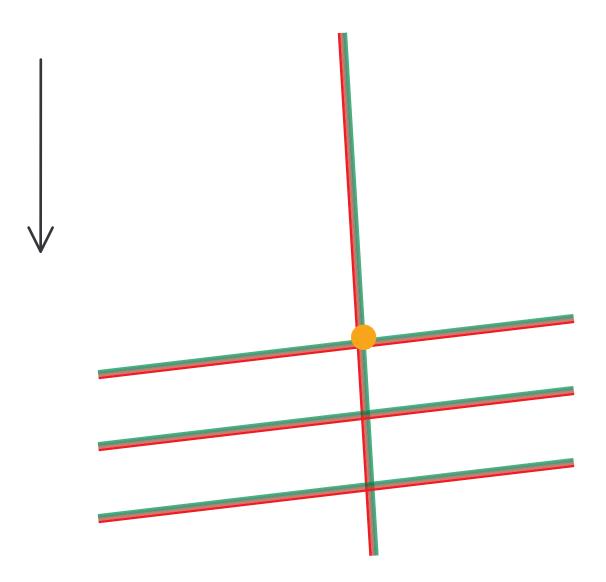
Maybe we only rarely have to update optimum ?

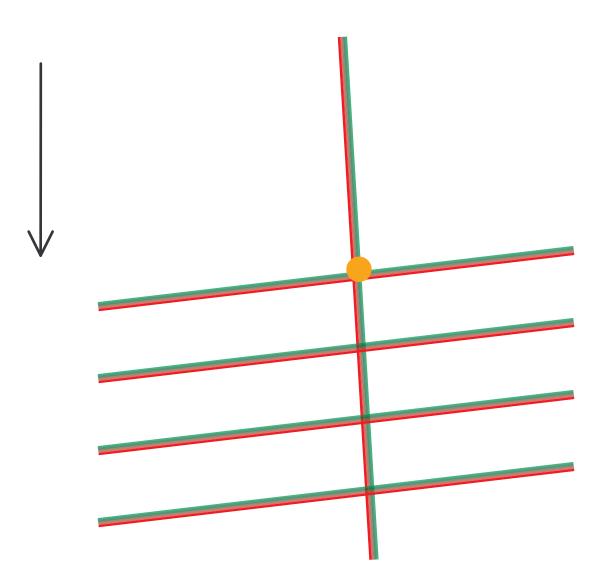
September 11, 2003

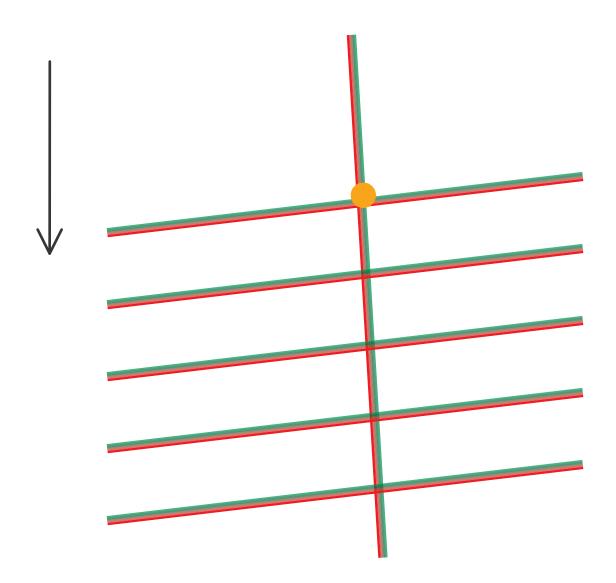


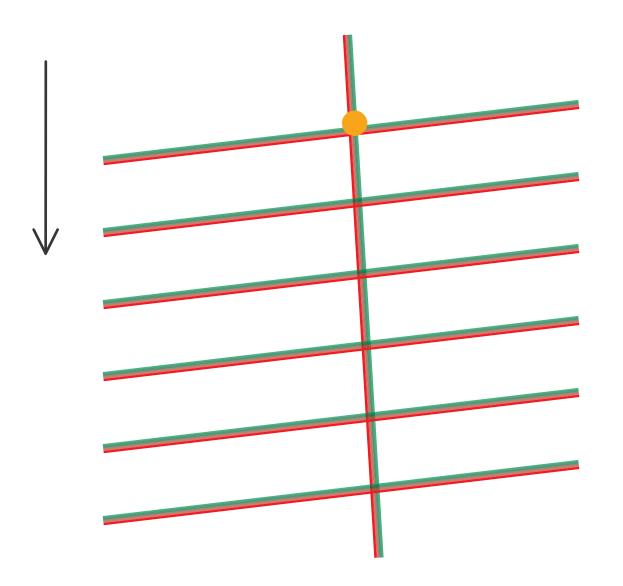




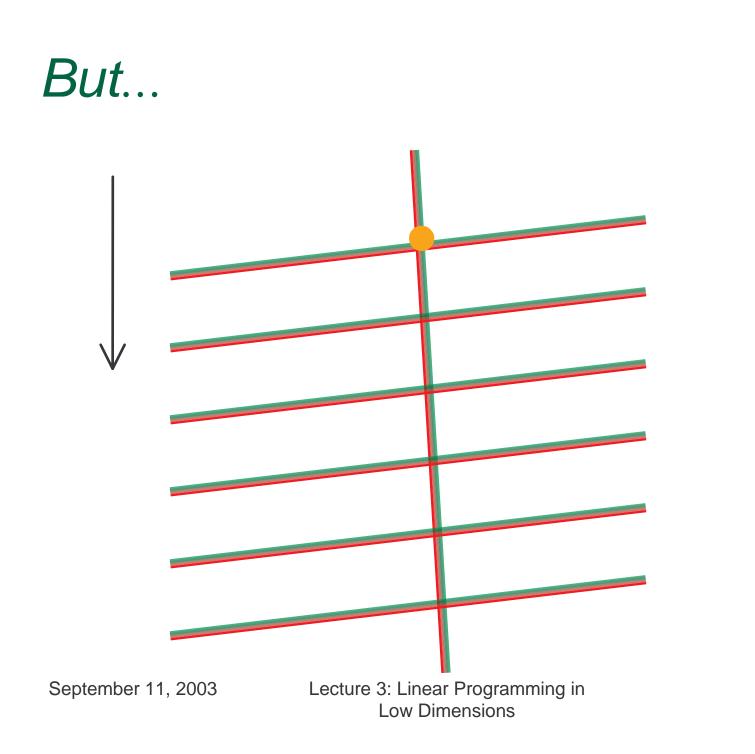








O(n) updates... Lecture 3: Linear Programming in Low Dimensions

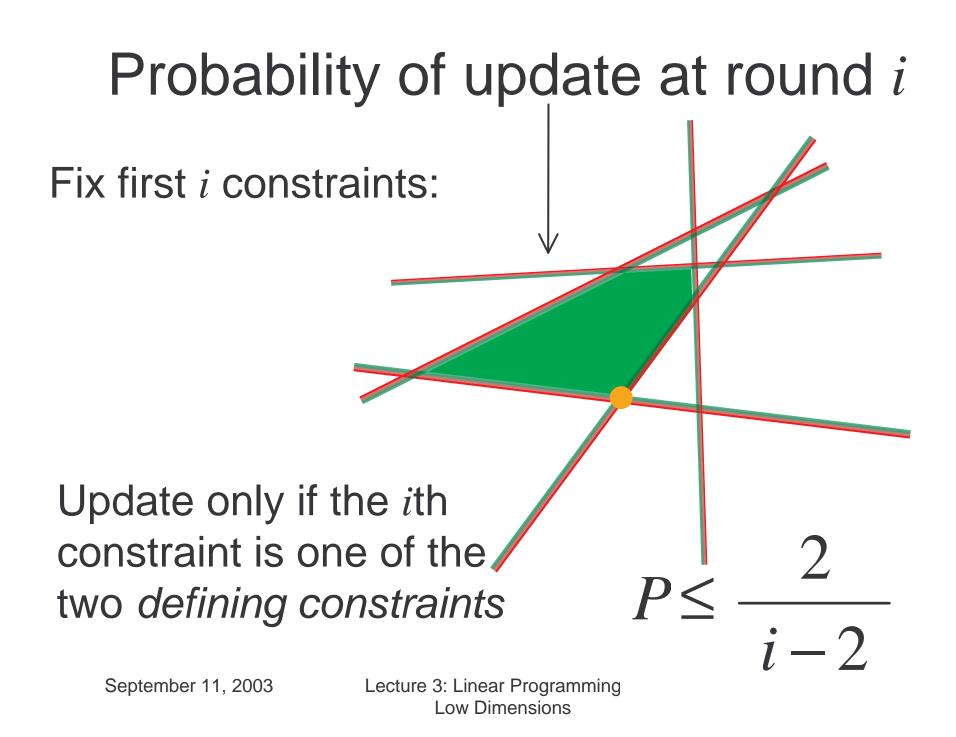


Use a random permutation !

Expected time spent updating. Let T_i be the time spent at time i.

$$E\left[\sum_{i=3}^{n} T_{i}\right] = \sum_{i=3}^{n} E[T_{i}] = \sum_{i=3}^{n} P(\begin{array}{c} \text{Update at} \\ \text{round } i \end{array}) O(i)$$

September 11, 2003



Expected Run-Time Analysis Expectation is over algorithm randomness, not over input

Expected time spent updating:

$$E\left[\sum_{i=3}^{n} T_{i}\right] = \sum_{i=3}^{n} E[T_{i}] = \sum_{i=3}^{n} P(\underset{\text{round } i}{\text{Update at}})O(i)$$
$$\leq \sum_{i=3}^{n} \frac{2}{i-2}O(i) = O(n)$$

September 11, 2003

What about d>2?

- Incrementally add new constraints
- Probability of update: *d*/(*i*-*d*)
- On update: solve *d*-1 dimensional LP

$$T(d,n) \le O(dn) + \sum_{i=d+1}^{n} \frac{d}{i-d} T(d-1,i-1)$$

T(d,n) = O(d!n)

September 11, 2003

Further results

- O(d!n) is not optimal:
 - O(d²n + d² d!) [Clarkson]
 - $n^{O(\sqrt{d})}$ [Kalai, Matousek-Sharir-Welzl]
 - O(d²n + d^{O(\sqrt{d})) [combined]}
- Same time for finding minimum enclosing ball of n points
- First algorithms of this type were due to Meggido
- Weakly polynomial-time algorithms known [Khachiyan,Karmarkar]