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Linear Programming

Maximize: ¢ X +C,X, +:--+C X,
Subject to: A X A% T A X Sbl

a2,1X1+a2,2X2 +”°+a2,dxd S bz
an,l)(1+an,2x2 +"'+an,dxd S bn

September 11, 2003 Lecture 3: Linear Programming in
Low Dimensions



Linear Programming in 2D

Maximize: c.x+cCy
Subjectto: a, ,x+a y<b
8 X+ 8,y b,

én,xx+ én,yy < b,
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Linear Programming in 2D
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Non-unique solution
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An Infeasible Linear Program
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An Unbounded LP
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An @&bounded LP
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Types of LPs

e Unigque optimum
Find the optimum
e Optimal edge

Ind an Imum
e Un ou(rjlc?ed optimu

. Inf&d8@gnbounded ray

Declare as unfeasible?>
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Adding a New Constraint

If Its not broken {don’t fix i1t !
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Adding a New Constraint
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Adding a New Constraint
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Adding a New Constraint
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Adding a New Constraint

.
—
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Adding a New Constraint

AN = & = EE = E—
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Adding a New Constraint

e

A\

A

\~
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Adding a New Constraint
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Adding a New Constraint
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Adding a New Constraint

e
S
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Adding a New Constraint

< S0 <

6 —~> Is abad sign....
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Summary

 Check is optimum is feasible O(1)
e Optimum Is feasible:
We're fine, don’t do anything

 Optimum isn’t feasible:
Find optimum on new constraint (line) O(n)

No feasible points on new constraint:;
LP isn’t feasible
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Incremental Algorithm

e Choose two constraints and
Initialize the solution

 Add new constraints one by one,
keeping track of current optimum
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Initialization

Find two constraints that together bound the LP
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Initialization

 Choose the constraint h defined by a
vector that is the closest to “up”
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Initialization

 Choose the constraint h defined by
a vector that Is the closest to “up”

e For every other constraint,
check If it bounds the LP with h

* If no constraint is good---
LP Is unbounded

or unfeasible because of parallel constraints
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Incremental Algorithm

 Find two constraints that bound LP

—If none exist, LP I1s un

 Add all other constrai
one, keeping track of
optimum O(n?)

pounded O(n)

Nts one by
current
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Adding a New Constraint

* Check is optimum is feasible  O(1)
e Optimum is feasible:
We’'re fine, don’t do anything

e Optimum isn’t feasible:
Find optimum on new constraint (line)  O(n)

No feasible points on new constraint:
LP isn’t feasible

Maybe we only rarely have to update optimum ?
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| O(n) updates...
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But...
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—

Use a random
permutation !

N—

Expected time spent updating.
Let T, be the time spent at time 1.

EZ;‘ Ti_ = Z; E[Ti] = Z;: p( Update at)0y )
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Probabllity of update at round |

Fix first 1 constraints:

Update only if the ith
constraint is one of the
two defining constraints P<
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Expected Run-Time Analysis

Expectation is over algorithm
randomness, not over input

Expected time spent updating:

E ZTi = .Z:;f E[Ti] = .Z:;‘, p( Update aty0y(j)
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What about d>2 ?

* Incrementally add new constraints

* Probabillity of update: d/(i-d)

 On update: solve d-1 dimensional LP

T(d,n) <0O(dn) + Z _ ddT(d -1, —-1)
i=g+11 —

T(d,n) = O(d!n)
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Further results

* O(d!n) is not optimal:
— O(d?n + d2 d!) [Clarkson]
— nPd) [Kalai, Matousek-Sharir-Welzl]
— O(d?n + dOd) ) [combined]
e Same time for finding minimum enclosing ball
of n points

 First algorithms of this type were due to
Meggido

 Weakly polynomial-time algorithms known
[Khachiyan,Karmarkar]
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