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Linear Programming in 2D
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Linear Programming in 2D
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Non-unique solution
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An Infeasible Linear Program
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An Unbounded LP
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An Unbounded LP
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Types of LPs

• Unique optimum

• Optimal edge

• Unbounded

• Infeasible

Ø Find the optimum

Ø Find an optimum

Ø Find unbounded ray

Ø Declare as unfeasible
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Adding a New Constraint

If its not broken   don’ t fix it !



September 11, 2003 Lecture 3: Linear Programming in 
Low Dimensions

Adding a New Constraint



September 11, 2003 Lecture 3: Linear Programming in 
Low Dimensions

Adding a New Constraint



September 11, 2003 Lecture 3: Linear Programming in 
Low Dimensions

Adding a New Constraint



September 11, 2003 Lecture 3: Linear Programming in 
Low Dimensions

Adding a New Constraint



September 11, 2003 Lecture 3: Linear Programming in 
Low Dimensions

Adding a New Constraint



September 11, 2003 Lecture 3: Linear Programming in 
Low Dimensions

Adding a New Constraint



September 11, 2003 Lecture 3: Linear Programming in 
Low Dimensions



September 11, 2003 Lecture 3: Linear Programming in 
Low Dimensions

Adding a New Constraint



September 11, 2003 Lecture 3: Linear Programming in 
Low Dimensions

Adding a New Constraint



September 11, 2003 Lecture 3: Linear Programming in 
Low Dimensions
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Adding a New Constraint

Is a bad sign….
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Summary

• Check is optimum is feasible
• Optimum is feasible:

We’ re fine, don’ t do anything

• Optimum isn’ t feasible:
Find optimum on new constraint (line)
No feasible points on new constraint:

LP isn’ t feasible

O(1)

O(n)
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Incremental Algorithm

• Choose two constraints and 
initialize the solution

• Add new constraints one by one,
keeping track of current optimum
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Initialization

Find two constraints that together bound the LP
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Initialization

• Choose the constraint h defined by a 
vector that is the closest to “up”
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Initialization

• Choose the constraint h defined by 
a vector that is the closest to “up”

• For every other constraint,
check if it bounds the LP with h

• If no constraint is good---
LP is unbounded

or unfeasible because of parallel constraints
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Incremental Algorithm

• Find two constraints that bound LP
– If none exist, LP is unbounded

• Add all other constraints one by 
one, keeping track of current 
optimum

O(n)

O(n2)
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Adding a New Constraint

• Check is optimum is feasible
• Optimum is feasible:

We’ re fine, don’ t do anything

• Optimum isn’ t feasible:
Find optimum on new constraint (line)
No feasible points on new constraint:

LP isn’ t feasible

O(1)

O(n)

Maybe we only rarely have to update optimum ?
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O(n) updates…
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But…
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Use a random 
permutation !

Expected time spent updating.
Let Ti be the time spent at time i.

)()(
3

iOP
n

i
�

=
= Update at 

round i��
==

=�
�

�
�
�

� n

i

i

n

i

i TETE
33

][



September 11, 2003 Lecture 3: Linear Programming in 
Low Dimensions

Probability of update at round i

Update only if the ith
constraint is one of the 
two defining constraints

Fix first i constraints:
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Expected time spent updating:

Expected Run-Time Analysis
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• Incrementally add new constraints
• Probability of update: d/(i-d)

• On update: solve d-1 dimensional LP
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What about d>2 ?
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Further results

• O(d!n) is not optimal:
– O(d2n + d2 d!) [Clarkson]
– nO(√d) [Kalai, Matousek-Sharir-Welzl]
– O(d2n + dO(√d) ) [combined]

• Same time for finding minimum enclosing ball 
of n points

• First algorithms of this type were due to 
Meggido

• Weakly polynomial-time algorithms known 
[Khachiyan,Karmarkar]


