Geometric Optimization

Piotr Indyk

December 4, 2003

Geometric Optimization

- Minimize/maximize something subject to some constraints
- Have seen:
 - Linear Programming
 - Minimum Enclosing Ball
 - Diameter/NN (?)
- All had easy polynomial time algorithms for d=2

Today

- NP-hard problems in the plane
 - Packing and piercing [Hochbaum-Maass'85]
 - TSP, Steiner trees, and a whole lot more [Arora'96] (cf. [Mitchell'96])
- Best exact algorithms exponential in n
- We will see (1+ε)-approximation algorithms that run in poly time for any fixed ε>0 (so, e.g., n^{O(1/ε)} is OK)
- Such an algorithm is called a PTAS

(attention: falafel fans)

Packing

- Given: a set C of unit disks
 C₁...C_n
- Goal: find a subset C' of C such that:
 - All disks in C' are pair-wise disjoint
 - |C'| is maximized
- How to get a solution of size $\geq (1-\epsilon)$ times optimum ?

Algorithm

Algorithm, ctd.

- Impose a grid of granularity k
- For each cell a
 - Compute c(a) = the set of disks fully contained in a
 - Solve the problem for c(a) obtaining c'(a)
- Report C' = union of c'(a) for all cells a

Computing c'(a)

- The grid cell a has side length = \mathbf{k}
- Can pack at most k² disks into a
- Solve via exhaustive enumeration → running time O(n^{k^2})
- This also bounds the total running time

Analysis

- Approximation factor:
 - Consider the optimal collection of disks C
 - Shift the grid at random
 - The probability that c not fully contained in some a is at most O(1)/k
 - The expected number of removed disks is |C|/k
 - Setting $k=O(1/\epsilon)$ suffices
- Altogether: running time $n^{O(1/\epsilon^2)}$

Piercing

- Given: a set C of unit disks
 C₁...C_n
- Goal: find a set P of points such that:
 - $-P\cap c_i \neq \emptyset$ for i=1...n
 - |P| is minimized
- How to get a solution of size ≥ (1+ε) times optimum ?

Algorithm

Algorithm, ctd.

- Impose a grid G of granularity k
- For each cell a
 - Compute c(a) = the set of disks intersecting a
 - Solve the problem for c(a) obtaining P(a)
- Report P=union of P(a) for all cells a

Computing P(a)

- The grid cell a has side length = \mathbf{k}
- Can pierce c(a) using at most k² points
- Sufficient to consider O(n²) choices of piercing points (for all points in P)
 - Compute arrangement of disks in c(a)
 - Points in the same cell equivalent
- Solve via exhaustive enumeration → running time O(n^{2k^2})
- This also bounds the total running time

Analysis

- Problem: disks B within distance
 1 from the grid boundary
 considered up to 4 times
- If we eliminated all the occurrences of the disks in B from all c(a)'s, one could pierce the remainder with cost at most OPT(C)
- Suffices to show that the cost of piercing B is small

December 4, 2003

Analysis ctd.

- Shift the grid at random
- Disks in B can be covered by P'=P ∩ (G ⊕ Ball(0,2))
- The probability that a fixed p∈ P belongs to P' is O(1)/k
- The expected |P'| of is O(|P|)/k
 Setting k=O(1/ε) suffices
- Altogether: running time $n^{O(1/\epsilon^2)}$

Dynamic programming for TSP

- Divide the points using randomly shifted line
- Enumerate "all" possible configurations C of crossing points
- For each C, solve the two recursive problems
- Choose the C that minimizes the cost

Analysis

 Structure lemma: for any tour T, there is another tour T' with cost not much larger than the cost of T, which has only constant number of crossing points.