Geometric Optimization

Piotr Indyk

Geometric Optimization

- Minimize/maximize something subject to some constraints
- Have seen:
- Linear Programming
- Minimum Enclosing Ball
- Diameter/NN (?)
- All had easy polynomial time algorithms for $d=2$

Today

- NP-hard problems in the plane
- Packing and piercing [Hochbaum-Maass'85]
- TSP, Steiner trees, and a whole lot more [Arora'96] (cf. [Mitchell'96])
- Best exact algorithms exponential in n
- We will see $(1+\varepsilon)$-approximation algorithms that run in poly time for any fixed $\varepsilon>0$ (so, e.g., $\mathrm{n}^{\circ(1 / \varepsilon)}$ is OK)
- Such an algorithm is called a PTAS
(attention: falafel fans)

Packing

- Given: a set C of unit disks $\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{n}}$
- Goal: find a subset C' of C such that:

- All disks in C' are pair-wise disjoint
$-\left|\mathrm{C}^{\prime}\right|$ is maximized
- How to get a solution of size $\geq(1-\varepsilon)$ times optimum ?

Algorithm

Lecture 25: Geometric
Optimization

Algorithm, ctd.

- Impose a grid of granularity k
- For each cell a
- Compute c(a) = the set of disks fully contained in a
- Solve the problem for c(a) obtaining c'(a)
- Report C' =union of c'(a) for all cells a

Computing c'(a)

- The grid cell a has side length $=k$
- Can pack at most k^{2} disks into a
- Solve via exhaustive enumeration \rightarrow running time $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}^{\wedge} 2}\right)$
- This also bounds the total running time

Analysis

- Approximation factor:
- Consider the optimal collection of disks C
- Shift the grid at random
- The probability that c not fully contained in some a is at most $O(1) / k$
- The expected number of removed disks is |C|/k
- Setting $\mathrm{k}=\mathrm{O}(1 / \varepsilon)$ suffices
- Altogether: running time $\mathrm{n}^{\mathrm{O}\left(1 / \varepsilon^{\wedge} 2\right)}$

Piercing

- Given: a set C of unit disks $\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{n}}$
- Goal: find a set P of points such that:
$-\mathrm{P} \cap \mathrm{c}_{\mathrm{i}} \neq \varnothing$ for $\mathrm{i}=1 \ldots \mathrm{n}$
$-|\mathrm{P}|$ is minimized
- How to get a solution of size $\geq(1+\varepsilon)$ times optimum ?

Algorithm

Lecture 25: Geometric
Optimization

Algorithm, ctd.

- Impose a grid G of granularity k
- For each cell a
- Compute c(a) = the set of disks intersecting a
- Solve the problem for $\mathrm{c}(\mathrm{a})$ obtaining $\mathrm{P}(\mathrm{a})$
- Report $\mathrm{P}=$ union of $\mathrm{P}(\mathrm{a})$ for all cells a

Computing $\mathrm{P}(\mathrm{a})$

- The grid cell a has side length = k
- Can pierce c(a) using at most k^{2} points
- Sufficient to consider $O\left(n^{2}\right)$ choices of piercing points (for all points in P)
- Compute arrangement of disks in c(a)
- Points in the same cell equivalent
- Solve via exhaustive enumeration \rightarrow running time $\mathrm{O}\left(\mathrm{n}^{2 k^{\wedge} 2}\right)$
- This also bounds the total running time

Analysis

- Problem: disks B within distance 1 from the grid boundary considered up to 4 times
- If we eliminated all the occurrences of the disks in B from all c(a)'s, one could pierce the remainder with cost at most
 OPT(C)
- Suffices to show that the cost of piercing B is small

Analysis ctd.

- Shift the grid at random
- Disks in B can be covered by $P^{\prime}=P \cap(G \oplus \operatorname{Ball}(0,2))$
- The probability that a fixed $p \in P$ belongs to P^{\prime} is $O(1) / k$
- The expected |P'| of is $\mathrm{O}(|\mathrm{P}|) / \mathrm{k}$
- Setting $\mathrm{k}=\mathrm{O}(1 / \varepsilon)$ suffices
- Altogether: running time $\mathrm{n}^{0\left(1 / \varepsilon^{\wedge} 2\right)}$

Dynamic programming for TSP

- Divide the points using randomly shifted line
- Enumerate "all" possible configurations C of crossing points
- For each C, solve the two recursive problems
- Choose the C that minimizes the cost

Analysis

- Structure lemma: for any tour T, there is another tour T' with cost not much larger than the cost of T, which has only constant number of crossing points.

