Combinatorial Geometry

Piotr Indyk

Previous Lecture

- Algorithm for matching A in B :
- Take any pair $a, a^{\prime} \in A$, let $r=\left\|a-a^{\prime}\right\|$
- Find all pairs $b, b^{\prime} \in B$ such that ||b-b'||=r
- For all such pairs
- Compute t that transforms ($\mathrm{a}, \mathrm{a}^{\prime}$) into (b,b’)
- Check if $t(A) \subseteq B$

Combinatorial Question

- Given a set A of n points in the plane, what is the maximum number of $p, p^{\prime} \in A$ such that $\left\|p-p^{\prime}\right\|=1$?
- Erdos'46: O(n ${ }^{3 / 2}$)
- Jozsa, Szemeredi'73: o(n³/2)
- Beck, Spencer'84: O(nㅁ.44...)
- Spencer, Szemeredi, Trotter'84: O(n/3)
- Szekely'96: O(n/3), proof in 4 slides

Crossing Number

- Crossing number of a graph G: smallest k such that G can be drawn on the plane with at most k edges crossing
- Interested in bounds of the form $k \geq f(n, e)$

Simple Bound

- We know that $k \geq e-3 n$
- Proof:
- Assume G with k<e-3n
- Then there is a graph with $\mathrm{k}-1$ crossings and e-1 edges
- There is a graph with 0 crossings and e-k edges
- But e-k $\leq 3 n$ - a contradiction

Bounds

- The earlier lower bound is pretty weak. E.g., it lower bounds k by at most e
- Complete graph has crossing number $\Omega\left(\mathrm{n}^{4}\right)$
- Need to "amplify" the bound

Probabilistic Amplification

- Given G, construct G' by random sampling
- Each node is included in G' with probability $p=4 n / e$ (assume $e \geq 4 n$)
- The expected parameters n',e',k' of G' are:
- E[n']=pn
$-E\left[e^{\prime}\right]=p^{2} e$
$-E\left[k^{\prime}\right] \leq p^{4} k$

Proof

- We know that $\mathrm{k}^{\prime}+3 n^{\prime}-e^{\prime} \geq 0$
- Thus $E\left[k^{\prime}+3 n^{\prime}-e^{\prime}\right]=E\left[k^{\prime}\right]+3 E\left[n^{\prime}\right]-E\left[e^{\prime}\right] \geq 0$
- We get:

$$
\begin{gathered}
p^{4} k+3 p n-p^{2} e \geq 0 \\
p^{3} k \geq p e-3 n=4 n-3 n=n \\
k \geq e^{3} /\left(4^{3} n^{2}\right)=\Omega\left(e^{3} / n^{2}\right) \\
e=O\left(\left(k n^{2}\right)^{1 / 3}\right)[\text { Leighton'83] }
\end{gathered}
$$

[Ajtai,Chvatal,Newborn,Szemeredi'82]

Number of Unit Distances

- Nodes = points = n
- Multi-edges defined by arcs \geq \#unit distances
- Keep one out of ≤ 4 edges, so we get a graph
- \# crossings $\leq 2 n^{2}$

QED

Other Bounds

- Number of incidences between n lines and n points $=O\left(n^{4 / 3}\right)$
- Given n points, the number of distinct distances between them is at least $\Omega\left(\mathrm{n}^{4 / 5}\right)$

Improved Algorithm

- Take the pair $a, a^{\prime} \in A$ with the lowest multiplicity in B; let $r=\left\|a-a^{\prime}\right\|$
- Find all pairs $b, b^{\prime} \in B$ such that $\| b-b^{\prime}| |=r$
- For all such pairs
- Compute that transforms (a,a') into (b,b’)
- Check if $t(A) \subseteq B$

Analysis

- For a distance t, let $m_{A}(t)$ be the multiplicity of t in A
- $\sum_{t} m_{B}(t) \leq n^{2}$
- There are at least $n^{4 / 5}$ different t's such that $m_{A}(t) \geq 1$
- So, if there is a match, there must exist t such that $m_{A}(t) \geq 1$ and $m_{B}(t) \leq n^{6 / 5}$
- Algorithm has running time $\mathrm{O}\left(\mathrm{n}^{11 / 5}\right)$

Higher Dimensions

- What is the number of unit distances between n points in R^{4} ?
- At least $\mathrm{n}^{2} / 4$:
- Let $A=\left\{(x, y, z, u): x^{2}+y^{2}=1, z=u=0\right\}$
- Let $B=\left\{(x, y, z, u): z^{2}+u^{2}=1, x=y=0\right\}$
- For any $a \in A, b \in B$, we have $\|a-b\|^{2}=1$
- Take $n / 2$ points from A and $n / 2$ points from B

