Combinatorial Geometry

Piotr Indyk

December 2, 2003

Lecture 24: Combinatorial Geometry

Previous Lecture

- Algorithm for matching A in B:
 - Take any pair $a,a' \in A$, let r = ||a-a'||
 - Find all pairs b,b'∈ B such that ||b-b'||=r
 - For all such pairs
 - Compute t that transforms (a,a') into (b,b')
 - Check if $t(A) \subseteq B$

Combinatorial Question

- Given a set A of n points in the plane, what is the maximum number of p,p'∈ A such that ||p-p'||=1 ?
 - Erdos'46: O(n^{3/2})
 - Jozsa, Szemeredi'73: o(n^{3/2})
 - Beck, Spencer'84: O(n^{1.44...})
 - Spencer, Szemeredi, Trotter'84: O(n4/3)
 - Szekely'96: O(n^{4/3}), proof in 4 slides

Crossing Number

- Crossing number of a graph G: smallest k such that G can be drawn on the plane with at most k edges crossing
- Interested in bounds of the form $k \ge f(n,e)$

Simple Bound

- We know that $k \ge e 3n$
- Proof:
 - Assume G with k<e-3n</p>
 - Then there is a graph with k-1 crossings and e-1 edges
 -
 - There is a graph with 0 crossings and e-k edges
 - But $e-k \le 3n a$ contradiction

Bounds

- The earlier lower bound is pretty weak.
 E.g., it lower bounds k by at most e
- Complete graph has crossing number Ω(n⁴)
- Need to "amplify" the bound

Probabilistic Amplification

- Given G, construct G' by random sampling
- Each node is included in G' with probability p=4 n/e (assume e ≥ 4n)
- The expected parameters n',e',k' of G' are:
 - E[n']=pn
 - E[e']=p²e
 - $E[k'] \le p^4 k$

Proof

- We know that $k'+3n'-e' \ge 0$
- Thus E[k'+3n'-e']=E[k']+3E[n']-E[e'] ≥ 0
- We get:

 $p^{4}k + 3pn - p^{2}e \ge 0$ $p^{3}k \ge pe - 3n = 4n-3n = n$ $k \ge e^{3}/(4^{3}n^{2}) = \Omega(e^{3}/n^{2})$ $e=O((kn^{2})^{1/3}) \text{ [Leighton'83]}$ [Ajtai,Chvatal,Newborn,Szemeredi'82]

Number of Unit Distances

- Nodes = points = n
- Multi-edges defined by arcs \geq #unit distances
- Keep one out of \leq 4 edges, so we get a graph
- # crossings $\leq 2 n^2$

QED

Other Bounds

- Number of incidences between n lines and n points = $O(n^{4/3})$
- Given n points, the number of distinct distances between them is at least $\Omega(n^{4/5})$

Improved Algorithm

- Take the pair a,a'∈ A with the lowest multiplicity in B; let r=||a-a'||
- Find all pairs b,b'∈ B such that ||b-b'||=r
- For all such pairs
 - Compute t that transforms (a,a') into (b,b')
 - Check if $t(A) \subseteq B$

Analysis

- For a distance t, let m_A(t) be the multiplicity of t in A
- $\sum_{t} m_{B}(t) \le n^{2}$
- There are at least n^{4/5} different t's such that m_A(t)≥1
- So, if there is a match, there must exist t such that m_A(t)≥1 and m_B(t) ≤n^{6/5}
- Algorithm has running time O(n^{11/5})

Higher Dimensions

- What is the number of unit distances between n points in R⁴?
- At least n²/4:
 - Let $A = \{(x,y,z,u): x^2+y^2=1, z=u=0\}$
 - Let $B = \{(x,y,z,u): z^2+u^2=1, x=y=0\}$
 - For any $a \in A$, $b \in B$, we have $||a-b||^2=1$
 - Take n/2 points from A and n/2 points from B