
External Memory Algorithms
for Geometric Problems

Piotr Indyk
(slides partially by Lars Arge and

Jeff Vitter)

November 20, 2003 Lecture 22: External Memory
Algorithms

2

Compared to Previous Lectures

• Another way to tackle large data sets
• Exact solutions (no more embeddings)

November 20, 2003 Lecture 22: External Memory
Algorithms

3

External Memory Model
• Parameters:

– N : Elements in structure

– B : Elements per block
– M : Elements in main

memory

D

P

M

Block I/O

November 20, 2003 Lecture 22: External Memory
Algorithms

4

Today

• Sorting: O(N/B logMN) time
• 1D data structure for searching in external

memory: O(logBN) time
• 2D problem: finding all intersections

among a set of horizontal and vertical
segments: O(N/B logM/BN) time

November 20, 2003 Lecture 22: External Memory
Algorithms

5

Sorting

• M/B-way merge sort:
– Split N elements into K=M/B sequences

– Sort recursively
– Merge in O(N/B) time:

• Recurrence: T(N)= K T(N/K)+O(N/B)
• T(N)=O(N/B logM/B N)

M

1,2,5,…..

November 20, 2003 Lecture 22: External Memory
Algorithms

6

Searching in External Memory

• Dictionary (or successor) data structure
for 1D data:
– Maintains elements (e.g., numbers) under

insertions and deletions

– Given a key K, reports the successor of K;
i.e., the smallest element which is greater or
equal to K

November 20, 2003 Lecture 22: External Memory
Algorithms

7

Search Trees

)(log2 NΟ

• Binary search tree:
– Standard method for search among N

elements
– We assume elements in leaves

– Search traces at least one root-leaf path

November 20, 2003 Lecture 22: External Memory
Algorithms

8

(a,b)-tree (or B-tree)

• T is an (a,b)-tree (a 2 and
b 2a-1)
– All leaves on the same level

contain between a and b elements)
– Except for the root, all nodes have

degree between a and b
– Root has degree between 2 and b

• Choose a,b= (B) to have
– Depth: O(logBN)
– Space: O(N/B) blocks

(2,4)−tree

November 20, 2003 Lecture 22: External Memory
Algorithms

9

(a,b)-Tree Insert

• Insert:
– Search and insert element in

leaf v
– WHILE v has b+1 elements

Split v:
• make nodes v’ and v’’ with

(b+1)/2 elements each
• insert element in parent (make

new root if necessary)
• v=parent(v)

• Insert touches O(logBN)
nodes

• Delete is analogous

v

v’ v’ ’

� �2
1+b � �2

1+b

1+b

November 20, 2003 Lecture 22: External Memory
Algorithms

10

(a,b)-Tree Delete

v

v

1−a

12 −≥ a

November 20, 2003 Lecture 22: External Memory
Algorithms

11

B-trees

• Used everywhere in databases
• Typical depth is 3 or 4
• Top two levels kept in main memory – only

1-2 I/O’s per element

November 20, 2003 Lecture 22: External Memory
Algorithms

12

Horizontal/Vertical Line
Intersection

• Given: a set of N horizontal and vertical
line segments

• Goal: find all H/V intersections
• Assumption: all x and y coordinates of

endpoints different

November 20, 2003 Lecture 22: External Memory
Algorithms

13

Main Memory Algorithm
• Presort the points in y-order
• Sweep the plane top down with

a horizontal line
• When reaching a V-segment,

store its x value in a tree.
When leaving it, delete the x
value from the tree

• Invariant: the balanced tree
stores the V-segments hit by
the sweep line

• When reaching an H-segment,
search (in the tree) for its
endpoints, and report all
values/segments in between

• Total time is O(N log N + P)

November 20, 2003 Lecture 22: External Memory
Algorithms

14

External Memory Issues

• Can use B-tree as a search tree:
O(N log B N) operations

• Still much worse than the
O(N/B * log M/B N) sorting bound

November 20, 2003 Lecture 22: External Memory
Algorithms

15

1D Version of the Intersection
Problem

• Given: a set of N 1D horizontal and
vertical line segments (i.e., intervals and
points on a line)

• Goal: find all point/segment intersections
• Assumption: all x coordinates of

endpoints different

November 20, 2003 Lecture 22: External Memory
Algorithms

16

Interlude: External Stack

• Stack:
– Push
– Pop

• Can implement a stack
in external memory
using O(P/B) I/O’s per P
operations
– Always keep about B top

elements in main
memory

– Perform disk access only
when it is “earned”

November 20, 2003 Lecture 22: External Memory
Algorithms

17

Back to 1D Intersection Problem
• Will use fast stack and sorting implementations

• Sort all points and intervals in x-order (of the left
endpoint)

• Iterate over consecutive (end)points p
– If p is a left endpoint of I, add I to the stack S
– If p is a point, pop all intervals I from stack S and push

them on stack S’ , while:
• Eliminating all “dead” intervals
• Reporting all “alive” intervals

– Push the intervals back from S’ to S

November 20, 2003 Lecture 22: External Memory
Algorithms

18

Analysis

• Sorting: O(N/B * log M/B N) I/O’s
• Each interval is pushed/popped when:

– An intersection is reported, or
– Is eliminated as “dead”

• Total stack operations: O(N+P)
• Total stack I/O’s: O((N+P)/B)

November 20, 2003 Lecture 22: External Memory
Algorithms

19

Back to the 2D Case

• Ideas ?

November 20, 2003 Lecture 22: External Memory
Algorithms

20

Algorithm

• Divide the x-range into M/B slabs, so that
each slab contains the same number of V-
segments

• Each slab has a stack storing V-segments
• Sort all segments in the y-order
• For each segment I:

– If I is a V-segment, add I to the stack in the
proper slab

– If I is an H-segment, then for all slabs S
which intersect I:

• If I spans S, proceed as in the 1D case
• Otherwise, store the intersection of S and

I for later

• For each slab, recurse on the segments
stored in that slab

November 20, 2003 Lecture 22: External Memory
Algorithms

21

The recursion
• For each slab separately

we apply the same
algorithm

• On the bottom level we
have only one V-segment,
which is easy to handle

• Recursion depth: log M/B N

November 20, 2003 Lecture 22: External Memory
Algorithms

22

Analysis

• Initial presorting: O(N/B * log M/B N) I/O’s
• First level of recursion:

– At most O(N+P) pop/push operations
– At most 2N of H-segments stored
– Total: O((N+P)/B) I/O’s

• Further recursion levels:
– The total number of H-segment pieces (over all slabs)

is at most twice the number of the input H-segments;
it does not double at each level

– By the above argument we pay O(N/B) I/O’s per level
• Total: O(P/B+N/B * log M/B N) I/O’s

November 20, 2003 Lecture 22: External Memory
Algorithms

23

Off-line Range Queries

• Given: N points in 2D and N’ rectangles
• Goal: Find all pairs p, R such that p is in R

November 20, 2003 Lecture 22: External Memory
Algorithms

24

Summary

• On-line queries: O(log B N) I/O’s
• Off-line queries: O(1/B*log M/B N) I/O’s

amortized
• Powerful techniques:

– Sorting
– Stack

– Distribution sweep

November 20, 2003 Lecture 22: External Memory
Algorithms

25

References

• See http://www.brics.dk/MassiveData02,
especially:
– First lecture by Lars Arge (for B-trees etc)

– Second lecture by Jeff Vitter (for distribution
sweep)

