Algorithms for Streaming Data

Piotr Indyk

Streaming Data

- Problems defined over points $P=\left\{p_{1}, \ldots, p_{n}\right\}$
- The algorithm sees p_{1}, then p_{2}, then p_{3}, \ldots
- Key fact: it has limited storage
- Can store only s<<n points
- Can store only s<<n bits (need to assume finite precision)

$$
p_{1} \ldots p_{2} \ldots p_{3} \ldots p_{4} \ldots p_{5} \ldots p_{6} \ldots p_{7} \ldots
$$

Example - diameter

Problems

- Diameter
- Minimum enclosing ball
- I_{2} norm of a vector

Diameter in Id^{m}

- Assume we measure distances according to the I_{∞} norm
- What can we do ?

Diameter in I_{∞}, ctd.

- From previous lecture we know that
$\operatorname{Diam}_{\infty}(P)=\max _{i=1 \ldots d^{\prime}}\left[\max _{p \in P} \mathrm{P}_{\mathrm{i}}-\min _{p \in P} \mathrm{P}_{\mathrm{i}}\right]$
- Can maintain max/min in constant space
- Total space $=\mathrm{O}\left(\mathrm{d}^{\prime}\right)$
- What about I_{1} ?

Diameter in I_{1}

- Let $f:\left.I_{1}{ }^{d} \rightarrow\right|_{\infty}{ }^{2 \wedge d}$ be an isometric embedding
- We will maintain $\operatorname{Diam}_{\infty}(f(P))$
- For each point p, we compute $f(p)$ and feed it to the previous algorithm
- Return the pair p, q that maximizes $\|f(p)-f(q)\|_{\infty}$
- This gives $\mathrm{O}\left(2^{\mathrm{d}}\right)$ space for $\mathrm{I}_{1}{ }^{\text {d }}$
- What about I_{2} ?

Diameter in I_{2}

- Let $f: I_{2}{ }^{d} \rightarrow I_{\infty} d^{\prime}, d^{\prime}=O(1 / \varepsilon)^{(d-1) / 2}$, be a $(1+\varepsilon)-$ distortion embedding
- Apply the same algorithm as before
- Parameters:
- Space: O(1/ع)(d-1)/2
- Time: ?

Minimum Enclosing Ball

- Problem: given $P=\left\{p_{1} \ldots p_{n}\right\}$, find center o and radius $r>0$ such that
$-P \subseteq B(o, r)$
$-r$ is as small as possible
- Solve the problem in I_{∞}
- Generalize to I_{1} and I_{2} via embeddings

MEB in I_{∞}

- Let C be the hyper-rectangle defined by max/min in every dimension

- Easy to see that min radius ball $B(0, r)$ is a min size hypercube that contains C
- Min radius = min side length/2
- How to solve it in I_{2} ?

MEB in I_{2}

- Firstly, assume $(1+\varepsilon) \approx 1$
- Let $f: I_{2}{ }^{d} \rightarrow I_{\infty}{ }^{d}$ be an "almost" isometric embedding
- Algorithm:
- For each point p, compute $f(p)$
- Maintain MEB ${ }_{\infty} \mathrm{B}^{\prime}\left(\mathrm{o}^{\prime}, r\right)$ of $f\left(p_{1}\right) \ldots f\left(p_{n}\right)$
- Compute o such that $\mathrm{f}(\mathrm{o})=0$ '
- Report B(o,r)

Problem

- There might be NO o such that $f(0)=0$ '
- If it was the case, then we would always have MEB radius=Diameter/2, which is not true:

- The problem is that f is into, not onto

The Correct Version

- Algorithm:
- Maintain the min/max points $f\left(p_{1}\right) \ldots f\left(p_{2 d^{\prime}}\right)$, two points per dimension
- Compute MEB B($0, r$) of $p_{1} \ldots p_{2 d^{\prime}}$
- Report B(or)

Correctness

MEB radius for P
$=$ Min r s.t. $\exists \mathrm{ol} \mathrm{P} \subseteq \mathrm{B}(\mathrm{o}, \mathrm{r})$
$\approx \operatorname{Min} r$ s.t. $\exists \mathrm{of}(\mathrm{P}) \subseteq \mathrm{B}(\mathrm{f}(\mathrm{o}), \mathrm{r})$
$=\operatorname{Min} r$ s.t. $\exists \mathrm{o}\left\{\mathrm{f}\left(\mathrm{p}_{1}\right) \ldots \mathrm{f}\left(\mathrm{p}_{2 \mathrm{~d}^{\prime}}\right)\right\} \subseteq \mathrm{B}(\mathrm{f}(\mathrm{o}), \mathrm{r})$ [see next slide]
$\approx \operatorname{Min} r$ s.t. $\exists \mathrm{o}\left\{\mathrm{p}_{1} \ldots \mathrm{p}_{2 \mathrm{~d}}\right\} \subseteq \mathrm{B}(\mathrm{o}, \mathrm{r})$
$=\mathrm{MEB}$ radius for $\left\{p_{1} \ldots \mathrm{p}_{2 \mathrm{~d}}\right\}$

- Total error at most $(1+\varepsilon)^{2}$
- In reality, at most ($1+\varepsilon$)

Digression: Core Sets

- In the previous slide we use the fact that in I_{∞}, for any set P of points, there is a subset P^{\prime} of $P,|P|=2 d^{\prime}$, such that MEB($\left.P^{\prime}\right)=M E B(P)$
- P ' is called a "core-set" for the MEB of P in I_{∞}
- For more on core-sets, see the web page by Sariel Har-Peled

Maintaining I_{2} norm of a vector

- Implicit vector $x=\left(x_{1}, \ldots, x_{n}\right)$
- Start with $\mathrm{x}=0$
- Stream: sequence of pairs (i, b), meaning

$$
x_{i}=x_{i}+b
$$

- Goal: maintain (approximately) $\|x\|_{2}$

Motivation

- Consider a set of web pages, stored in some order

- Two pages are "similar" if they link to the same page
- Note that each page is similar to itself
- Want to know the number of pairs of similar web pages

Connection to I_{2} norm

- Let
- In(i) be the \# in-links to page i
- Out(i) be the \# out-links of page i
- Out(i) is easy to compute, $\ln (\mathrm{i})$ is not
- We want to compute

$$
1 / 2^{*} \sum_{i} \ln (\mathrm{i})(\ln (\mathrm{i})+1)=1 / 2\left[\sum_{i} \ln (\mathrm{i})^{2}+\sum_{i} \ln (\mathrm{i})\right]
$$

- Every time we see link to $i: \ln (i):=\ln (i)+1$

Approximate Algorithm

- We will use roughly $O\left(\log (1 / P) / \varepsilon^{2}\right)$ numbers, where 1-P is the probability of successful estimation

Algorithm

- From JL lemma, it suffices to maintain $A x$ for "random" A, since $\|A x\| \approx\|x\|$
- Assume
- we have Ax
- Need to compute Ay, where $y=x$ except for $y_{i}=x_{i}+b$
- Use linearity:

$$
A y=A(y-x)+A x=A\left(b e_{i}\right)+A x=b a^{i}+A x
$$

Pseudo-randomness

- In practice: use $A[i, j]=$ Normal(RND(i,j))
- In theory: one can use bounded space random generators to generate A using only $O\left(\log n * \log (1 / P) / \varepsilon^{2}\right)$ random numbers

