Algorithms for Streaming Data

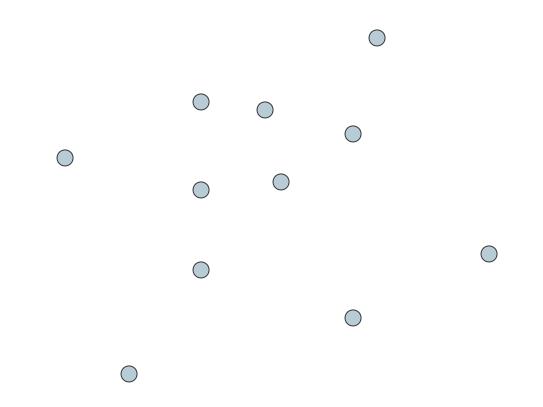
Piotr Indyk

Streaming Data

- Problems defined over points P={p₁,...,p_n}
- The algorithm sees p_1 , then p_2 , then p_3 ,...
- Key fact: it has limited storage
 - Can store only s<<n points</p>
 - Can store only s<<n bits (need to assume finite precision)

 $p_1 \dots p_2 \dots p_3 \dots p_4 \dots p_5 \dots p_6 \dots p_7 \dots$

Example - diameter



Problems

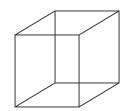
- Diameter
- Minimum enclosing ball
- I₂ norm of a vector

Diameter in Id'...

- Assume we measure distances according to the I_{∞} norm
- What can we do ?

Diameter in I_{∞} , ctd.

- From previous lecture we know that $Diam_{\infty}(P)=max_{i=1...d'}[max_{p\in P}p_i - min_{p\in P}p_i]$
- Can maintain max/min in constant space
- Total space = O(d')
- What about I_1 ?



Diameter in I₁

- Let $f:I_1^d \to I_{\infty}^{2^{\wedge d}}$ be an isometric embedding
- We will maintain Diam_∞(f(P))
 - For each point p, we compute f(p) and feed it to the previous algorithm
 - Return the pair p,q that maximizes $||f(p)-f(q)||_{\infty}$
- This gives $O(2^d)$ space for I_1^d
- What about I_2 ?

Diameter in I₂

- Let $f:I_2^d \rightarrow I_\infty^{d'}$, $d'=O(1/\epsilon)^{(d-1)/2}$, be a $(1+\epsilon)$ -distortion embedding
- Apply the same algorithm as before
- Parameters:
 - Space: $O(1/\epsilon)^{(d-1)/2}$
 - Time: ?

Minimum Enclosing Ball

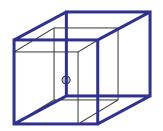
 Problem: given P={p₁...p_n}, find center o and radius r>0 such that

 $- P \subseteq B(o,r)$

- r is as small as possible
- Solve the problem in $I_{\scriptscriptstyle \infty}$
- Generalize to I_1 and I_2 via embeddings

MEB in I_{∞}

 Let C be the hyper-rectangle defined by max/min in every dimension



- Easy to see that min radius ball B(o,r) is a min size hypercube that contains C
- Min radius = min side length/2
- How to solve it in I_2 ?

MEB in I_2

- Firstly, assume (1+ε)≈1
- Let f:l₂^d →l_∞^{d'} be an "almost" isometric embedding
- Algorithm:
 - For each point p, compute f(p)
 - Maintain $MEB_{\infty} B'(o',r)$ of $f(p_1)...f(p_n)$
 - Compute o such that f(o)=o'
 - Report B(o,r)

Problem

- There might be NO o such that f(o)=o'
- If it was the case, then we would always have MEB radius=Diameter/2, which is not true:

• The problem is that **f** is into, not onto

The Correct Version

- Algorithm:
 - Maintain the min/max points $f(p_1)\ldots f(p_{2d'})$, two points per dimension
 - Compute MEB B(o,r) of $p_1...p_{2d'}$
 - Report B(o,r)

Correctness

MEB radius for P

- = Min r s.t. $\exists o P \subseteq B(o,r)$
- ≈ Min r s.t. $\exists o f(P) \subseteq B(f(o),r)$
- $= Min \ r \ s.t. \ \exists o \ \{f(p_1)...f(p_{2d'})\} \subseteq B(f(o),r) \ [\text{see next slide}]$
- ≈ Min r s.t. $\exists o \{p_1...p_{2d'}\} \subseteq B(o,r)$
- = MEB radius for $\{p_1...p_{2d'}\}$
- Total error at most $(1+\epsilon)^2$
- In reality, at most $(1+\epsilon)$

Digression: Core Sets

- In the previous slide we use the fact that in I_∞, for any set P of points, there is a subset P' of P, |P|=2d', such that MEB(P')=MEB(P)
- P' is called a "core-set" for the MEB of P in $I_{\scriptscriptstyle \infty}$
- For more on core-sets, see the web page by Sariel Har-Peled

Maintaining I₂ norm of a vector

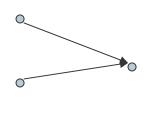
- Implicit vector $\mathbf{x}=(\mathbf{x}_1,\ldots,\mathbf{x}_n)$
- Start with x=0
- Stream: sequence of pairs (i,b), meaning

 $x_i = x_i + b$

• Goal: maintain (approximately) ||x||₂

Motivation

- Consider a set of web pages, stored in some order
- Two pages are "similar" if they link to the same page
- Note that each page is similar to itself
- Want to know the number of pairs of similar web pages



 \bigcirc

Connection to I₂ norm

- Let
 - In(i) be the # in-links to page i
 - Out(i) be the # out-links of page i
- Out(i) is easy to compute, In(i) is not
- We want to compute $\frac{1}{2} \sum_{i} \ln(i) (\ln(i)+1) = \frac{1}{2} [\sum_{i} \ln(i)^{2} + \sum_{i} \ln(i)]$
- Every time we see link to i: ln(i):=ln(i)+1

Approximate Algorithm

 We will use roughly O(log(1/P)/ε²) numbers, where 1-P is the probability of successful estimation

Algorithm

- From JL lemma, it suffices to maintain Ax for "random" A, since ||Ax|| ≈ ||x||
- Assume
 - we have Ax
 - Need to compute Ay, where y=x except for $y_i=x_i+b$
- Use linearity:

 $Ay = A(y-x)+Ax = A(be_i)+Ax = b a^i + Ax$

Pseudo-randomness

- In practice: use A[i,j]=Normal(RND(i,j))
- In theory: one can use bounded space random generators to generate A using only O(log n * log(1/P)/ε²) random numbers