Low-Distortion Embeddings II

Piotr Indyk

In the previous episode

- Definition of embedding $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ with distortion c
- Isometric embedding of $\mathrm{I}_{1}^{\mathrm{d}}$ into $\mathrm{I}_{\infty}{ }^{2 \wedge d}$
$-I_{\infty}{ }^{\text {d }}$ diameter in $\mathrm{O}\left(\mathrm{nd}^{\prime}\right)$ time
$-I_{1}{ }^{\text {d }}$ diameter in $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$ time
- Mentioned ($1+\varepsilon$)-distortion embedding of $\mathrm{I}_{2}{ }^{\mathrm{d}}$ into $I_{1} d^{\prime}$, where $d^{\prime}=O\left(d / \varepsilon^{2} \log (1 / \varepsilon)\right)$
$-f(u)=A u$, where A is a "random" matrix
- Embedding of $M=(X, D)$ into $I_{\infty}{ }^{\text {d }}$
- Isometry for d=|X|
- Distortion O(c) for $d=|X|^{1 / c}$

Today

- $(1+\varepsilon)$-distortion embedding of I_{2} into I_{∞}
- Approximate diameter in I_{2}
- $(1+\varepsilon)$-distortion embedding of $\left(X, I_{2}\right), X$ in R^{d}, into $I_{2}^{d^{\prime}}$, where $d^{\prime}=O\left(\log |X| / \varepsilon^{2}\right)$
- ($1+\varepsilon$)-approximate Near Neighbor in $I_{2}{ }^{\text {d }}$
- Query time: O(d log n / $\left.\varepsilon^{\wedge} 2\right)$
- Space: $n^{O\left(\log (1 / \varepsilon) / \varepsilon^{\wedge} 2\right)}$

$(1+\varepsilon)$-embedding of I_{2} into I_{∞}

- We know:
$-(1+\varepsilon)$-embedding of $I_{2}{ }^{d}$ into $I_{1} O\left(d / \varepsilon^{\wedge} 2 \log (1 / \varepsilon)\right)$
- Isometry of $I_{1}{ }^{d}$ into $I_{\infty}{ }^{2 n d}$
- Therefore: $(1+\varepsilon)$-embedding of $I_{2}{ }^{d}$ into $I_{\infty}{ }^{d^{\prime}}$, where $d^{\prime}=2^{0\left(d / \varepsilon^{\wedge} 2 \log (1 / \varepsilon)\right)}$
- We will improve d' to $O(1 / \varepsilon)^{(d-1) / 2}$

Consider d=2

- For embedding into l_{1} we used $f(x, y)=[x+y, x-y,-x+y,-x-y]$
- Since f linear, we have $\|f(p)-f(q)\|=\|f(p-q)\|$
$-\|(x, y)\|_{1}=|x|+|y|=\max [x+y, x-y,-x+y,-x-y]$

Embedding of I_{2}

- Again, use projections
- Onto unit (l_{2}) vectors $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{k}}$
- Requirement: vectors are "densely" spaced
- l.e., for any u there is v_{i} such
 that $u^{*} v_{i} \geq\|u\|_{2} /(1+\varepsilon)$
- Can assume $\|u\|_{2}=1$
- How big is k ?

Lemma

- Consider two unit vectors u and v, such that the angle $(u, v)=\alpha$. Then $u^{*} v \geq 1-O\left(\alpha^{2}\right)$
- Proof: $u^{*} v=\cos (\alpha)$

$$
\begin{aligned}
& \approx 1+\alpha \cos ^{\prime}(\alpha)+\alpha^{2} \cos ^{\prime \prime}(\alpha) / 2 \\
& \approx 1-\alpha^{2} / 2
\end{aligned}
$$

- Therefore, suffices to use $2 \pi / \varepsilon^{1 / 2}$ vectors to get distortion $1+O(\varepsilon)$

Higher Dimensions

- For $d=2$ we get $d^{\prime}=O\left(1 / \varepsilon^{1 / 2}\right)$
- For any d we get $d^{\prime}=O(1 / \varepsilon)^{(d-1) / 2}$
- Can "cover" a unit sphere in R^{d} with $\mathrm{O}(1 / \alpha)^{d-1}$ vectors so that any v has angle $<\alpha$ with at least one of the vectors
- The remainder is the same
- Yields an $O(1 / \varepsilon)^{(d-1) / 2 n}$ - time algorithm for approximate diameter in I_{2}

Dimensionality Reduction

[Johnson-Lindenstrauss'85]: For any X in R ${ }^{\text {d }}$, $|\mathrm{X}|=\mathrm{n}$, there is a $(1+\varepsilon)$-distortion embedding of $\left(X, I_{2}\right)$, into $I_{2}{ }^{d^{\prime}}$, where $d^{\prime}=O\left(\log n / \varepsilon^{2}\right)$

Proof

- Need to show that for any vector p,q in X, we have $\|f(p)-f(q)\| \approx S\|p-q\|$
- Our mapping: $f(u)=A u, A$ "random"
- Sufficient to show that for a fixed $u=p-q$, where p,q in X, we have $\|A u\| \approx S\|u\|$ with probability at least $1-1 / n^{2}$
- In fact, by linearity of A we can assume $\|u\|=1$, so we just need to show $\|A u\| \approx S$

Normal Distribution

- Normal distribution:
- Range: $(-\infty, \infty)$
- Density: $f(x)=e^{-x^{\wedge} 2 / 2} /(2 \pi)^{1 / 2}$
- Mean=0, Variance=1
- If X and Y independent r.v. with normal distribution, then $X+Y$ has normal distribution
- Basic facts:
$-\operatorname{Var}(\mathrm{CX})=\mathrm{c}^{2} \operatorname{Var}(\mathrm{X})$
- If X, Y independent, then $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Back to embedding

- We map $f(u)=A u=\left[a^{1 *} u, \ldots, a^{d^{*}} u\right]$, where each entry of A has normal distribution
- Consider $Z=a^{i *} u=a^{*} u=\sum_{i} a_{i} u_{i}$
- Each term $\mathrm{a}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
- Has normal distribution
- With variance $u_{i}{ }^{2}$
- Thus, Z has normal distribution with variance $\sum_{i} \mathrm{u}_{\mathrm{i}}{ }^{2}=1$
- This holds for each a^{j}

What is $\|\mathrm{Au}\|_{2}$

- $\|A u\|^{2}=\left(a^{1}{ }^{*} u\right)^{2}+\ldots+\left(a^{d^{*}} u\right)^{2}=Z_{1}{ }^{2}+\ldots+Z_{d^{\prime}}{ }^{2}$ where:
- All Z_{i} 's are independent
- Each has normal distribution with variance=1
- Therefore, $E\left[\|A u \mid\|^{2}\right]=d^{\prime *} E\left[Z_{1}{ }^{2}\right]=d^{\prime}$
- By Chernoff-like bound

$$
\operatorname{Pr}\left[\left|\|A u\|^{2}-d^{\prime}\right|>\varepsilon d^{\prime}\right]<e^{-B} d^{\prime} \varepsilon^{\wedge} 2<1 / n^{2}
$$

for some constant B

- So, $\|A u\|_{2} \approx\left(d^{\prime}\right)^{1 / 2}$ with probability $1-1 / n^{2}$

Application to Near Neighbor

- Suppose we have an algorithm with:
- O(d) query time
$-O(1 / \varepsilon)^{d} n$ space
- Then we get:
$-O\left(d \log n / \varepsilon^{2}\right)$ query time
$-\mathrm{n}^{\mathrm{O}\left(\log (1 / \varepsilon) / \varepsilon^{\wedge} 2\right)}$ space

$\mathrm{O}(1 / \varepsilon)^{\mathrm{d}} \mathrm{n}$ space NN

- Assume r=1

Grid

- Impose a grid with side length= $\varepsilon / \mathrm{d}^{1 / 2}$
- Parameters:
- Cell diameter: ε
- \#cells/ball: O(1/ع) ${ }^{\text {d }}$
- Store all cells touching a ball

