Segment Intersection

Piotr Indyk

September 9, 2003

Lecture 2: Segment Intersection

Segment Intersection

- Segment intersection problem:
 - Given: a set of n distinct segments $s_1...s_n$, represented by coordinates of endpoints
 - Goal (I): detect if there is any pair s_i ≠ s_j that intersects
 - Goal (II): report all pairs of intersecting segments

Segment intersection

- Easy to solve in O(n²) time
- ...which is optimal for the reporting problem:
- However:
 - We will see we can do better for the detection problem
 - Moreover, the number of intersections P is usually small.

Then, we would like an *output sensitive* algorithm, whose running time is low if P is small.

Result

- We will show:
 - $-O(n \log n)$ time for detection
 - $-O((n + P) \log n)$ time for reporting
- We will use Binary Search Trees
- Specifically: Line sweep approach

Orthogonal segments

- All segments are either horizontal or vertical
- Assumption: all coordinates are distinct
- Therefore, only verticalhorizontal intersections exist

Orthogonal segments

- Sweep line:
 - A vertical line sweeps the plane from left to right
 - It "stops" at all "important" xcoordinates, i.e., when it hits a V-segment or endpoints of an H-segment
 - Invariant: all intersections on the left side of the sweep line have been already reported

Orthogonal segments ctd.

- We maintain sorted ycoordinates of H-segments currently intersected by the sweep line (using a balanced BST T)
- When we hit the left point of an H-segment, we add its ycoordinate to T
- When we hit the right point of an H-segment, we delete its y-coordinate from T

Orthogonal segments ctd.

 Whenever we hit a Vsegment (with coordinates y_{top}, y_{bottom}), we report all H-segments in T with ycoordinates in [y_{top}, y_{bottom}]

Algorithm

- Sort all V-segments and endpoints of Hsegments by their x-coordinates – this gives the "trajectory" of the sweep line
- Scan the elements in the sorted list:
 - Left endpoint: add segment to T
 - Right endpoint: remove segment from T
 - V-segment: report intersections with the Hsegments stored in T

Analysis

- Sorting: O(n log n)
- Add to/delete from T:
 - $-O(\log n)$ per operation $-O(n \log n)$ total
- Processing V-segments:
 - $-O(\log n)$ per intersection
 - -O(P log n) total
 - -Can be improved to O(P +n log n)
- Overall: O(P+ n log n) time

The "general" case

- Assumption: all coordinates of endpoints and intersections distinct
- In particular:
 - No vertical segments
 - No three segments intersect at one point
- More general case in the book

Sweep line

- Invariant (as before): all intersections on the left of the sweep line have been already reported
- Stops at all "important" xcoordinates, i.e., when it hits endpoints or intersections
- Do not know the intersections in advance !
- The list of important xcoordinates is constructed and maintained *dynamically*

Sweep line

- Also need to maintain the information about the segments intersecting the sweep line
- Cannot keep the values of y-coordinates of the segments !
- Instead, we will maintain their order .I.e., at any point, we maintain all segments intersecting the sweep line, sorted by the y-coordinates of the intersections.

Algorithm

- Initialize the "vertical" BST V (to "empty")
- Initialize the "horizontal" priority queue H (to contain the segments' endpoints sorted by xcoordinates)
- Repeat
 - Take the next "event" p from H:
 - // Update V
 - If p is the left endpoint of a segment, add the segment to V
 - If p is the right endpoint of a segment, remove the segment from V
 - If p is the intersection point of s and s', swap the order of s and s' in V, report p

Algorithm ctd.

// Update H

– For each new pair of neighbors s and s' in V:

- Check if s and s' intersect on the right side of the sweep line
- If so, add their intersection point to H
- Remove the possible duplicates in H
- Until H is empty

Analysis

- Initializing H: O(n log n)
- Updating V:
 - O(log n) per operation
 - O((P+n) log n) total
- Updating H:
 - O(log n) per intersection
 - O(P log n) total
- Overall: O((P+ n) log n) time

Correctness

- All reported intersections are correct
- Assume there is an intersection not reported. Let p=(x,y) be the first such unreported intersection (of s and s')
- Let x' be the last event before p. Observe that:
 - At time x' segments s and s' are neighbors on the sweep line
 - Since no intersections were missed till then, V maintained the right order of intersecting segments
 - Thus, s and s' were neighbors in V at time x'. Thus, their intersection should have been detected

Demo

Segment intersection

http://www.lupinho.de/gishur/html/Sweeps.html#segment

September 9, 2003

Lecture 2: Segment Intersection

Other Sweep-line Algorithms

- Polygon triangulation
- Voronoi diagrams
- Kinetic algorithms