Segment Intersection

Piotr Indyk

Segment Intersection

- Segment intersection problem:
- Given: a set of n distinct segments $s_{1} \ldots s_{n}$, represented by coordinates of endpoints
- Goal (I): detect if there is any pair $\mathrm{s}_{\mathrm{i}} \neq \mathrm{s}_{\mathrm{j}}$ that intersects
- Goal (II): report all pairs of intersecting segments

Segment intersection

- Easy to solve in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
- ...which is optimal for the reporting problem:
- However:
- We will see we can do better for the detection problem
- Moreover, the number of intersections P is usually small. Then, we would like an output
 sensitive algorithm, whose running time is low if P is small.

Result

- We will show:
- O(n log n) time for detection
$-\mathrm{O}(\mathrm{n}+\mathrm{P}) \log \mathrm{n})$ time for reporting
- We will use Binary Search Trees
- Specifically: Line sweep approach

Orthogonal segments

- All segments are either horizontal or vertical
- Assumption: all coordinates are distinct
- Therefore, only verticalhorizontal intersections exist

Orthogonal segments

- Sweep line:
- A vertical line sweeps the plane from left to right
- It "stops" at all "important" xcoordinates, i.e., when it hits a \checkmark-segment or endpoints of an H-segment
- Invariant: all intersections on the left side of the sweep line have been already reported

Orthogonal segments ctd.

- We maintain sorted ycoordinates of H -segments currently intersected by the sweep line (using a balanced BST T)
- When we hit the left point of an H -segment, we add its y coordinate to T
- When we hit the right point of an H-segment, we delete its y-coordinate from T

Orthogonal segments ctd.

- Whenever we hit a Vsegment (with coordinates $y_{\text {top }}, y_{\text {bottom }}$), we report all H -segments in T with y coordinates in $\left[y_{\text {top }}, y_{\text {bottom }}\right]$

Algorithm

- Sort all V-segments and endpoints of Hsegments by their x-coordinates - this gives the "trajectory" of the sweep line
- Scan the elements in the sorted list:
- Left endpoint: add segment to T
- Right endpoint: remove segment from T
- V-segment: report intersections with the Hsegments stored in T

Analysis

- Sorting: O(n log n)
- Add to/delete from T:
$-\mathrm{O}(\log \mathrm{n})$ per operation
$-\mathrm{O}(\mathrm{n} \log \mathrm{n})$ total
- Processing V-segments:
$-O(\log n)$ per intersection
$-O(P$ log $n)$ total
- Can be improved to $O(P+n \log n)$
- Overall: $O(P+n$ log $n)$ time

The "general" case

- Assumption: all coordinates of endpoints and intersections distinct
- In particular:
- No vertical segments
- No three segments intersect at one point
- More general case in the book

Sweep line

- Invariant (as before): all intersections on the left of the sweep line have been already reported
- Stops at all "important" xcoordinates, i.e., when it hits endpoints or intersections
- Do not know the intersections in advance!
- The list of important xcoordinates is constructed and maintained dynamically

Sweep line

- Also need to maintain the information about the segments intersecting the sweep line
- Cannot keep the values of y-coordinates of the segments!

- Instead, we will maintain their order.I.e., at any point, we maintain all segments intersecting the sweep line, sorted by the y-coordinates of the infersections.

Algorithm

- Initialize the "vertical" BST V (to "empty")
- Initialize the "horizontal" priority queue H (to contain the segments' endpoints sorted by x coordinates)
- Repeat
- Take the next "event" p from H:
// Update V
- If p is the left endpoint of a segment, add the segment to V
- If p is the right endpoint of a segment, remove the segment from V
- If p is the intersection point of s and s^{\prime}, swap the order of s and s^{\prime} in V, report p

Algorithm ctd.

// Update H

- For each new pair of neighbors s and s' in V :
- Check if s and s' intersect on the right side of the sweep line
- If so, add their intersection point to H
- Remove the possible duplicates in H
- Until H is empty

Analysis

- Initializing H: O(n log n)
- Updating V:
- O(log n) per operation
- O((P+n) log n) total
- Updating H:
- O(log n) per intersection
- O(P log n) total
- Overall: $O((P+n) \log n)$ time

Correctness

- All reported intersections are correct
- Assume there is an intersection not reported. Let $\mathrm{p}=(\mathrm{x}, \mathrm{y})$ be the first such unreported intersection (of s and s^{\prime})
- Let x^{\prime} be the last event before p. Observe that:
- At time x' segments s and s' are neighbors on the sweep line
- Since no intersections were missed till then, V maintained the right order of intersecting segments
- Thus, s and s' were neighbors in V at time x'. Thus, their intersection should have been detected

Demo

- Segment intersection
http://www.lupinho.de/gishur/html/Sweeps.html\#segment

Other Sweep-line Algorithms

- Polygon triangulation
- Voronoi diagrams
- Kinetic algorithms

