Linear Programming In
Higher Dimensions

Piotr Indyk

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Linear Programming

Maximize: ¢ X +C,X, +:--+C X,
Subject to: A X A% T A X Sbl

a2,1X1+a2,2X2 +”°+a2,dxd S bz

an,lxl +an,2X2 +"'+an,dxd S bn

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Linear Programming in 2D

An Intfeasible Linear
Program

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

An Unbounded LP

Oct Lecture 16: Linear
Programming in Higher
Dimensions

Incremental Algorithm

e Choose two constraints and
initialize the solution

 Add new constraints one by
one,
keeping track of current
optimum

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Probability of update at
round i
Fix first i constraints:

Update only if the ith
constraint is one of

the two defining P< — ‘
constraints | —2 .

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Expected time spent updating:

E

Expected Run-1lime
Analysis

Zn:Ti
L i=3 _

< ii_iO(i) = O(n)

October 28, 2003

— i E[TI

ZP(

Lecture 16: Linear
Programming in Higher

Update
atround

)O(I)

What about d>2 ?

e Incrementally add new
constraints

* Probability of update: d/(i-d)

- On update: solve d-%ldimensional

T(8,n) < O(cn) + Y, —-T(d~Li -1

T(d,n) = O(d'n)

October 28, 2003 L t 16. L |||||

This Lecture

e O(d!n) is not optimal:
—0(d?n + d°M d!) [Clarkson]
— A reduction from (n,d) -LP to a small
number of (O(d?) ,d) —-LP’s
 Extensions:
— notd) [Kalai, Matousek-Sharir-Welzl]
— 0(d2n + dO0d)) [combined]

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Notation

e H: set of n constraints
e V(H) : optimum subject to H

o A basis B for H: minimal set of
constraints such that v(B)=v(H)

e We have |B|=d

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Random Sampling |

e SolvelLP1(H):
— G=[
— Repeat:
e R=random subset of H, |R|=r
e v=SolveLP(G+R)

» V=set of constraints in H violated by v
e If |V| <t, then G=G+V

— Until V=0O
e Correctness ?
 Running time analysis ?
October 28, 2003 Lecture 16: Linear

Programming in Higher
Dimensions

Analysis

 Each time we augment G, we add to G a
new constraint from the basis B of H

— If v did not violate any constraint in B, it
would be optimal

— So V must contain an element from B, which
was not in G earlier

« We can augment G at most d times

e The number of constraints in the
recursive call is |[R|+|G| < r + dt

« What is the probability of augmentation ?

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Sampling Lemma

Lemma: The expected number of
constraints V that violate v(G+R) is at
most nd/r.

Proof:

— Define a 0/1 random variable d(R,h), which is
=1 iff h violates v(G+R)

— Need to bound

Er [Z,d(R,h)] = X i_, 2pd(R,h) / #R
= 2 ql=r+1 2hoq d(Q-{h},h) / #R
= [#Q * (r+1) / #R] * Prqpnq [d(Q-{h},h)]
<n*d/(r+1)
October 28, 2003 Lecture 16: Linear

Programming in Higher
Dimensions

Analysis

e t=2nd/r — expected # iterations per
augmentation is constant

e Number of constraints in the
recursive call is r+0O(d4n/r) = O(r)
for r=d n'!/?

 Total expected time
T, p(n) < 2d T p(d n'/2)+0(d? n)

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Analysis ctd.

e Can use Seidel’'s algorithm for LP
e This gives us O(d?n+d*d n'/2d!)
« We get better time if LP=LP2

e |dea: reduce the sample size

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Random Sampling Il

e SolvelLP2(H):
- G=0
— Repeat:
« R=random subset of H, |R|=r
e v=SolveLP(R)

 V=multiset of constraints in H violated by v
e If |V| <t, then H=H+V

— Until V=0O
e As before, set t=2*|H|d/r

— augmentation performed with prob.
>1/2

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Need to bound
#augmentations

e Fix a basis B for H

e On the one hand:

— In one iteration, the multiplicity of at least
onhe constraint in B is doubled

— In kd iterations, |B|>2k

e On the other hand:
— In one iteration, |H| increases by < 2 |H|d/r
— After kd iterations:
B < [H| <= n(1+2d/nNkd <n exp (2kd?/r) = n
exp(2d2/r)k
 Therefore, the total number of iterations
is O(dk) , if k such that 2k > n exp(2d2/r)k

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Analysis, ctd.
2k > n exp(2d?/r)k

e Set r=4d?2 — 2k> n (el/2)k
e We get k =0O(log n)
e The total #iterations is O(d log n)

October 28, 2003 Lecture 16: Linear
Programming in Higher
Dimensions

Total Time

 The expected time
—T,po(n) =dlogn [T (4d?) + dn]
e Plug in Seidel into LP2
—T,p(n) =0(d logn (d?d! + dn))
e Plug in LP2 into LP1
—T,p;(N)=0(2d [d log n (d?d! + d?n'/?2)]
+d2 n)
« After some cleaning
—T,p;(N)=0(d* d! log n +d? n)=0(d> d! +
October a22ﬁ93 Lecture 16: Linear

Programming in Higher
Dimensions

