Linear Programming in Higher Dimensions

Piotr Indyk

Linear Programming

October 28, 2003

Linear Programming in 2D

An Inteasible Linear Program

October 28, 2003

An Unbounded LP

Incremental Algorithm

- Choose two constraints and initialize the solution
- Add new constraints one by one, keeping track of current optimum

Probability of update at round *i*

Fix first *i* constraints:

Update only if the *i*th constraint is one of the two *defining* constraints

October 28, 2003

Lecture 16: Linear Programming in Higher Dimensions $P \leq \frac{2}{i-2}$

Expected Run-Time Analysis

Expected time spent updating:

$$E\left[\sum_{i=3}^{n} T_i\right] = \sum_{i=3}^{n} E[T_i] = \sum_{i=3}^{n} P(\text{Update at round } i)O(i)$$

$$\leq \sum_{i=3}^{n} \frac{2}{i-2} O(i) = O(n)$$

October 28, 2003

What about d>2?

- Incrementally add new constraints
- Probability of update: d/(i-d)
- On update: solve d-1 dimensional $T(a,n) \le O(dn) + \sum_{i=d+1}^{n} \frac{d}{i-d} T(d-1,i-1)$

$$T(d,n) = O(d!n)$$

October 28, 2003

This Lecture

- O(d!n) is not optimal:
 - $O(d^2n + d^{O(1)} d!)$ [Clarkson]
 - A reduction from (n,d) -LP to a small number of (O(d²),d) -LP's
- Extensions:
 - n^{O(√d)} [Kalai, Matousek–Sharir–Welzl]
 - $O(d^2n + d^{O(\sqrt{d})})$ [combined]

Notation

- H: set of n constraints
- v(H): optimum subject to H
- A basis B for H: minimal set of constraints such that v(B)=v(H)
- We have |B|=d

Random Sampling I

- SolveLP1(H):
 - $-G=\emptyset$
 - Repeat:
 - R=random subset of H, |R|=r
 - v=SolveLP(G+R)
 - V=set of constraints in H violated by v
 - If $|V| \le t$, then G=G+V
 - Until V=∅
- Correctness?
- Running time analysis?

Analysis

- Each time we augment G, we add to G a new constraint from the basis B of H
 - If v did not violate any constraint in B, it would be optimal
 - So V must contain an element from B, which was not in G earlier
- We can augment G at most d times
- The number of constraints in the recursive call is $|R|+|G| \le r+dt$
- What is the probability of augmentation?

Sampling Lemma

Lemma: The expected number of constraints V that violate v(G+R) is at most nd/r.

Proof:

- Define a 0/1 random variable d(R,h), which is
 =1 iff h violates v(G+R)
- Need to bound

$$\begin{split} \mathsf{E}_{\mathsf{R}} \left[\Sigma_{\mathsf{h}} \mathsf{d}(\mathsf{R}, \mathsf{h}) \right] &= \Sigma_{|\mathsf{R}| = \mathsf{r}} \, \Sigma_{\mathsf{h}} \mathsf{d}(\mathsf{R}, \mathsf{h}) \; / \; \# \mathsf{R} \\ &= \Sigma_{|\mathsf{Q}| = \mathsf{r} + 1} \, \Sigma_{\mathsf{h} \in \mathsf{Q}} \, \mathsf{d}(\mathsf{Q} - \{\mathsf{h}\}, \mathsf{h}) \; / \; \# \mathsf{R} \\ &= \left[\# \mathsf{Q} \; * \; (\mathsf{r} + 1) \; / \; \# \mathsf{R} \; \right] \; * \; \mathsf{Pr}_{\mathsf{Q}, \mathsf{h} \in \mathsf{Q}} \left[\mathsf{d}(\mathsf{Q} - \{\mathsf{h}\}, \mathsf{h}) \right] \\ &\leq \mathsf{n} \; * \; \mathsf{d} / (\mathsf{r} + 1) \\ &\leq \mathsf{n} \; * \; \mathsf{d} / (\mathsf{r} + 1) \end{split}$$
 Cottober 28, 2003 Lecture 16: Linear Programming in Higher

Dimensions

Analysis

- t=2nd/r → expected # iterations per augmentation is constant
- Number of constraints in the recursive call is $r+O(d^2n/r)=O(r)$ for $r=d n^{1/2}$
- Total expected time

$$T_{LP1}(n) \le 2d T_{LP}(d n^{1/2}) + O(d^2 n)$$

Analysis ctd.

- Can use Seidel's algorithm for LP
- This gives us $O(d^2n+d^*d n^{1/2} d!)$
- We get better time if LP=LP2
- Idea: reduce the sample size

Random Sampling II

- SolveLP2(H):
 - $-G=\emptyset$
 - Repeat:
 - R=random subset of H, |R|=r
 - v=SolveLP(R)
 - V=multiset of constraints in H violated by v
 - If $|V| \le t$, then H=H+V
 - Until V=∅
- As before, set t=2*|H|d/r
 - → augmentation performed with prob.

October 28, 2003

Need to bound #augmentations

- Fix a basis B for H
- On the one hand:
 - In one iteration, the multiplicity of at least one constraint in B is doubled
 - In kd iterations, $|B| \ge 2^k$
- On the other hand:
 - In one iteration, |H| increases by $\leq 2 |H|d/r$
 - After kd iterations:

```
|B| \le |H| \le n (1+2d/r)^{kd} \le n \exp(2kd^2/r) = n \exp(2d^2/r)^k
```

• Therefore, the total number of iterations is O(dk), if k such that $2^k > n \exp(2d^2/r)^k$

Analysis, ctd.

$$2^k > n \exp(2d^2/r)^k$$

- Set $r=4d^2 \rightarrow 2^k > n (e^{1/2})^k$
- We get $k = O(\log n)$
- The total #iterations is O(d log n)

Total Time

- The expected time
 - $-T_{LP2}(n) = d \log n [T_{LP}(4d^2) + dn]$
- Plug in Seidel into LP2
 - $-T_{LP2}(n) = O(d log n (d^2 d! + dn))$
- Plug in LP2 into LP1
 - $-T_{LP1}(n)=O(2d [d log n (d^2 d! + d^2n^{1/2})] + d^2 n)$
- After some cleaning

$$-T_{LP1}(n) = O(d^4 d! log n + d^2 n) = O(d^5 d! + October 252203)$$
Lecture 16: Linear Programming in Higher Dimensions