The Visibility Problem and Binary Space Partition

(slides by Nati Srebro)

The Visibility Problem

Z-buffering

- Draw objects in arbitrary order
- For each pixel, maintain depth ("z")
- Only draw pixel if new "z" is closer

Instead: draw objects in order, from back to front ("painter's algorithm")

Lecture 12: BSP

Binary Planar Partitions

Painter's Algorithm

Binary Planar Partitions

Auto-partitions

Auto-partitions

Auto-partitions

Lecture 12: BSP

Binary Planar Partitions

Goal:

Find binary planer partition, with small number of fragmentations

Lecture 12: BSP

Random Auto-Partitions

Choose random permutation of segments $(s_1, s_2, s_3, ..., s_n)$

While there is a region containing more than one segment, separate it using first s_i in the region

u can cut v_4 only if *u* appears before v_1, v_2, v_3, v_4 in random permutation

$P(u \text{ cuts } v_4) \leq 1/5$

Lecture 12: BSP

E[total number of fragments] = n + E[total number of cuts] $E_{ech} = 12 \sum_{g} E_{ech} num cuts u makes]_{r} = 0(n \log n) = 0(n \log n)$

Random Auto-Partitions

Choose random permutation of segments $(s_1, s_2, s_3, ..., s_n)$

While there is a region containing more than one segment, separate it using first s_i in the region

O(n log n) fragments in expectation

Lecture 12: BSP

Use internal fragments immediately as "free" cuts

Lecture 12: BSP

Binary Space Partitions

- Without free cuts: O(n³)
- With free cuts: O(n²)