Motion Planning

Piotr Indyk

Piano Mover's Problem

- Given:
- A set of obstacles
- The initial position of a robot
- The final position of a robot
- Goal: find a path that
- Moves the robot from the initial to final position
- Avoids the obstacles (at all times)

Basic notions

- Work space - the space with obstacles
- Configuration space:
- The robot (position) is a point
- Forbidden space = positions in which robot collides with an obstacle
- Free space: the rest
- Collision-free path in the work space = path in the configuration space

Demo

- http://www.diku.dk/hjemmesider/studerend e/palu/start.html

Point case

- Assume that the robot is a point
- Then the work space=configuration space
- Free space = the bounding box - the obstacles

Finding a path

- Compute the trapezoidal map to represent the free space
- Place a node at the center of each trapezoid and edge
- Put the "visibility" edges
- Path finding=BFS in the graph

Convex robots

- C-obstacle = the set of robot positions which overlap an obstacle
- Free space: the bounding box minus all C-obstacles
- How to calculate Cobstacles?

A

Minkowski Sum

- Minkowski Sum of two sets P and Q is defined as $P \oplus Q=\{p+q: p \in P, q \in Q\}$
- How to compute Cobstacles using Minkowski Sums ?

C-obstacles

- The C-obstacle of P w.r.t. robot R is equal to $\mathrm{P} \oplus(-R)$
- Proof:
- Assume robot R collides with P at position c
- l.e., consider $q \in(R+c) \cap P$
- We have $q-c \in R \rightarrow c-q \in-R \rightarrow c \in q+(-R)$
- Since $q \in P$, we have $c \in P \oplus(-R)$
- Reverse direction is similar

Complexity of $\mathrm{P} \oplus \mathrm{Q}$

- Assume P,Q convex, with n (resp. m) edges
- Theorem: $\mathrm{P} \oplus \mathrm{Q}$ has $\mathrm{n}+\mathrm{m}$ edges
- Proof: sliding argument
- Algorithm follows similar argument

More complex obstacles

- Pseudo-disc pairs: O_{1} and O_{2} are in pd position, if $\mathrm{O}_{1}-\mathrm{O}_{2}$ and O_{2} O_{1} are connected

- At most two proper intersections of boundaries

Minkowski sums are pseudo-discs

- Consider convex P,Q,R, such that P and Q are disjoint. Then $C_{1}=P \oplus R$ and $\mathrm{C}_{2}=\mathrm{Q} \oplus \mathrm{R}$ are in pd position.
- Proof:
- Consider $\mathrm{C}_{1}-\mathrm{C}_{2}$, assume it has 2 connected components
- There are two different directions in which C_{1} is more extreme than C_{2}
- By properties of \oplus, direction d is more extreme for C_{1} than C_{2} iff it is more extreme for P than Q

- Configuration impossible for convex P,Q

Union of pseudo-discs

- Let P_{1}, \ldots, P_{k} be polygons in pd position. Then their union has complexity $\left|P_{1}\right|+\ldots+\left|P_{k}\right|$
- Proof:
- Suffices to bound the number of vertices
- Each vertex either original or induced by intersection
- Charge each intersection vertex to the next original vertex in the interior
- Each vertex charged at most twice

Convex $\mathrm{R} \oplus$ Non-convex P

- Triangulate P into T_{1}, \ldots, T_{n}
- Compute $\mathrm{R} \oplus \mathrm{T}_{1}, \ldots, \mathrm{P} \oplus \mathrm{T}_{\mathrm{n}}$
- Compute their union
- Complexity: $|\mathrm{R}| \mathrm{n}$
- Similar algorithmic complexity

