Motion Planning

Piotr Indyk

October 9, 2003

Lecture 11: Motion Planning

Piano Mover's Problem

- Given:
 - A set of obstacles
 - The initial position of a robot
 - The final position of a robot
- Goal: find a path that
 - Moves the robot from the initial to final position
 - Avoids the obstacles (at all times)

Basic notions

- Work space the space with obstacles
- Configuration space:
 - The robot (position) is a point
 - Forbidden space = positions in which robot collides with an obstacle
 - Free space: the rest
- Collision-free path in the work space = path in the configuration space

Demo

 http://www.diku.dk/hjemmesider/studerend e/palu/start.html

Point case

- Assume that the robot is a point
- Then the work space=configuration space
- Free space = the bounding box – the obstacles

•	

Finding a path

- Compute the trapezoidal map to represent the free space
- Place a node at the center of each trapezoid and edge
- Put the "visibility" edges
- Path finding=BFS in the graph

Convex robots

- C-obstacle = the set of robot positions which overlap an obstacle
- Free space: the bounding box minus all C-obstacles
- How to calculate Cobstacles ?

Minkowski Sum

- Minkowski Sum of two sets
 P and Q is defined as
 P⊕Q={p+q: p∈ P, q∈ Q}
- How to compute Cobstacles using Minkowski Sums ?

C-obstacles

- The C-obstacle of P w.r.t. robot R is equal to P⊕(-R)
- Proof:
 - Assume robot R collides with P at position c
 - I.e., consider $q \in (R+c) \cap P$
 - We have $q-c \in R \rightarrow c-q \in -R \rightarrow c \in q+(-R)$
 - Since $q \in P$, we have $c \in P \oplus (-R)$
- Reverse direction is similar

Complexity of $P \oplus Q$

- Assume P,Q convex, with n (resp. m) edges
- Theorem: P⊕Q has n+m edges
- Proof: sliding argument
- Algorithm follows similar argument

More complex obstacles

 Pseudo-disc pairs: O₁ and O₂ are in pd position, if O₁-O₂ and O₂-O₁ are connected

 At most two proper intersections of boundaries

Minkowski sums are pseudo-discs

- Consider convex P,Q,R, such that P and Q are disjoint. Then C₁=P⊕R and C₂=Q⊕R are in pd position.
- Proof:
 - Consider C₁-C₂, assume it has 2 connected components
 - There are two different directions in which C_1 is more extreme than C_2
 - By properties of ⊕, direction d is more extreme for C₁ than C₂ iff it is more extreme for P than Q
 - Configuration impossible for convex P,Q

Union of pseudo-discs

- Let P₁,...,P_k be polygons in pd position. Then their union has complexity |P₁| +...+ |P_k|
- Proof:
 - Suffices to bound the number of vertices
 - Each vertex either original or induced by intersection
 - Charge each intersection vertex to the next original vertex in the interior
 - Each vertex charged at most twice

Convex R⊕ Non-convex P

- Triangulate P into T_1, \ldots, T_n
- Compute $R \oplus T_1, \dots, P \oplus T_n$
- Compute their union
- Complexity: |R| n
- Similar algorithmic complexity