

Convex Hulls in 3-space

(slides mostly by Jason C. Yang)

October 7, 2003

Lecture 10: Convex Hulls in 3D

- Given *P*: set of *n* points in 3D
- Return:

- Convex hull of P: CH(P), i.e. smallest polyhedron s.t. all elements of P on or in the interior of CH(P).

- Complexity of CH for *n* points in 3D is O(n)
- ..because the number of edges of a convex polytope with *n* vertices is at most *3n-6* and the number of facets is at most *2n-4*
- ...because the graph defined by vertices and edges of a convex polytope is planar
- Euler's formula: $n n_e + n_f = 2$

- Each face has at least 3 arcs
- Each arc incident to two faces

 $2n_e \ge 3n_f$

• Using Euler

 $n_f \le 2n-4$ $n_e \le 3n-6$

October 7, 2003

- Randomized incremental algorithm
- Steps:
 - Initialize the algorithm
 - Loop over remaining points Add p_r to the convex hull of P_{r-1} to transform $CH(P_{r-1})$ to $CH(P_r)$ [for integer $r \ge 1$, let $P_r := \{p_1, ..., p_r\}$]

- Need a CH to start with
- Build a tetrahedron using 4 points in *P*
 - Start with two distinct points in P, say, p_1 and p_2
 - Walk through *P* to find p_3 that does not lie on the line through p_1 and p_2
 - Find p_4 that does not lie on the plane through p_1, p_2, p_3
 - Special case: No such points exist? Planar case!
- Compute random permutation p_5, \dots, p_n of the remaining points

Inserting Points into CH

- Add p_r to the convex hull of P_{r-1} to transform $C\mathcal{H}(P_{r-1})$ to $C\mathcal{H}(P_r)$
- Two Cases:
 - 1) P_r is inside or on the boundary of $CH(P_{r-1})$

- Simple: $CH(P_r) = CH(P_{r-1})$

2) P_r is outside of $CH(P_{r-1})$ – the hard case

Case 2: P_r outside $CH(P_{r-1})$

- Determine *horizon* of p_r on $CH(P_{r-1})$
 - Closed curve of edges enclosing the *visible* region of p_r on $CH(P_{r-1})$

October 7, 2003

Lecture 10: Convex muns in 5D

Visibility

- Consider plane h_f containing a facet f of $CH(P_{r-1})$
- *f* is *visible* from a point *p* if that point lies in the open half-space on the other side of *h*_f

October 7, 2003

f is visible from p, but not from q

Rethinking the Horizon

– Boundary of polygon obtained from projecting $C\mathcal{H}(P_{r-1})$ onto a plane with p_r as the center of projection

Lecture 10: Convex Hulls in 3D

- Remove visible facets from $CH(P_{r-1})$
- Found *horizon*: Closed curve of edges of $CH(P_{r-1})$
- Form $C\mathcal{H}(P_r)$ by connecting each horizon edge to p_r to create a new triangular facet

October 7, 2003

Lecture 10: Convex Hulls in 3D

Algorithm So Far...

- Initialization
 - Form tetrahedron $C\mathcal{H}(P_4)$ from 4 points in P
 - Compute random permutation of remaining pts.
- For each remaining point in *P*
 - $-p_r$ is point to be inserted
 - If p_r is outside $CH(P_{r-1})$ then
 - Determine visible region
 - Find horizon and remove visible facets
 - Add new facets by connecting each horizon edge to p_r

How do we determine the visible region?

October 7, 2003

Lecture 10: Convex Hulls in 3D

How to Find Visible Region

- Naïve approach:
 - Test every facet with respect to p_r
 - $-O(n^2)$ work
- Trick is to work ahead: Maintain information to aid in determining visible facets.

• For each facet *f* maintain

 $P_{\text{conflict}}(f) \subseteq \{p_{r+1}, \dots, p_n\}$ containing points to be inserted that can see *f*

- For each p_r , where t > r, maintain $F_{\text{conflict}}(p_t)$ containing facets of $C\mathcal{H}(P_r)$ visible from p_t
- *p* and *f* are in *conflict* because they cannot coexist on the same convex hull

Conflict Graph G conflicts points facets $F_{\text{conflict}}(p_t)$

- Bipartite graph
 - pts not yet inserted
 - facets on $CH(P_r)$
- Arc for every point-facet conflict
- Conflict sets for a point or facet can be returned in linear time

 $P_{conflict}(f)$ At any step of our algorithm, we know all conflictsbetween the remaining points and facets on the current CHOctober 7, 2003Lecture 10: Convex Hulls in 3D15/41

- Initialize G with $CH(P_4)$ in linear time
- Walk through P_{5-n} to determine which facet each point can see

- Discard visible facets from p_r by removing neighbors of p_r in G
- Remove p_r from \mathcal{G}
- Determine new conflicts

17 / 41

G

Determining New Conflicts

- If p_t can see <u>new</u> f_t it can see edge e of f_t .
- *e* on horizon of p_r , so *e* was already in and visible from p_t in $CH(P_{r-1})$
- If p_t sees e, it saw either f_1 or f_2 in $CH(P_{r-1})$
- P_t was in $P_{\text{conflict}}(f_1)$ or $P_{\text{conflict}}(f_2)$ in $CH(P_{r-1})$

Determining New Conflicts

• Conflict list of f can be found by testing the points in the conflict lists of f_1 and f_2 incident to the horizon edge e in $CH(P_{r-1})$

What About the Other Facets?

- $P_{\text{conflict}}(f)$ for any f unaffected by p_r remains unchanged
- Deleted facets not on horizon already accounted for

- Initialize $CH(P_4)$ and G
- For each remaining point
 - Determine visible facets for p_r by checking G
 - Remove $F_{\text{conflict}}(p_r)$ from $C\mathcal{H}$
 - Find horizon and add new facets to \mathcal{CH} and \mathcal{G}
 - Update *G* for new facets by testing the points in existing conflict lists for facets in $CH(P_{r-1})$ incident to *e* on the new facets
 - Delete p_r and $F_{\text{conflict}}(p_r)$ from \mathcal{G}

- Coplanar facets
 - $-p_r$ lies in the plane of a face of $CH(P_{r-1})$

- *f* is not visible from *p_r* so we merge created triangles coplanar to *f*
- New facet has same conflict list as existing facet

Analysis

October 7, 2003

Lecture 10: Convex Hulls in 3D

Expected Number of Facets Created

• Will show that expected number of facets created by our algorithm is at most 6*n*-20

• Initialized with a tetrahedron = 4 facets

Expected Number of New Facets

- Backward analysis:
 - Remove p_r from $C\mathcal{H}(P_r)$
 - Number of facets removed same as those created by p_r
 - Number of edges incident to p_r in $CH(P_r)$ is degree of p_r :

 $\mathcal{CH}(P_r)$

 $\deg(p_r, C\mathcal{H}(P_r))$

Lecture 10: Convex Hulls in 3D

Expected Degree of p_r

- Convex polytope of r vertices has at most 3r-6 edges
- Sum of degrees of vertices of $CH(P_r)$ is 6r-12
- Expected degree of p_r bounded by (6r-12)/r

$$E[\deg(p_r, \mathcal{CH}(P_r))] = \frac{1}{r-4} \sum_{i=5}^r \deg(p_i, \mathcal{CH}(P_r))$$

$$\leq \frac{1}{r-4} \left(\left\{ \sum_{i=1}^r \deg(p_i, \mathcal{CH}(P_r)) \right\} - 12 \right)$$

$$\leq \frac{6r-12-12}{r-4} = 6.$$

October 7, 2003

Lecture 10: Convex Hulls in 3D

Expected Number of Created Facets

- 4 from initial tetrahedron
- Expected total number of facets created by adding p_5, \ldots, p_n

$$4 + \sum_{r=5}^{n} \mathbb{E}[\deg(p_r, C\mathcal{H}(P_r))] \leq 4 + 6(n-4) = 6n - 20.$$

- Initialization $\Rightarrow O(n \log n)$
- Creating and deleting facets ⇒ O(n)
 Expected number of facets created is O(n)
- Deleting p_r and facets in $F_{\text{conflict}}(p_r)$ from \mathcal{G} along with incident arcs $\Rightarrow O(n)$
- Finding new conflicts $\Rightarrow O(?)$

Total Time to Find New Conflicts

For each edge *e* on horizon we spend
 O(|P(e/) time

where $P(e) = P_{\text{confict}}(f_1) \cup P_{\text{conflict}}(f_2)$

• Total time is $O(\sum_{e \in \mathcal{L}} |P(e)|)$

• Lemma 11.6 The expected value of $\Sigma_e/P(e)/$, where the summation is over all horizon edges that appear at some stage of the algorithm is O(nlogn)

October 7, 2003

Lecture 10: Convex Hulls in 3D

Randomized Insertion Order

- Initialization $\Rightarrow O(n \log n)$
- Creating and deleting facets $\Rightarrow O(n)$
- Updating $G \Rightarrow O(n)$
- Finding new conflicts $\Rightarrow O(n \log n)$
- Total Running Time is O(nlogn)

Convex Hulls in Dual Space

• Upper convex hull of a set of points is essentially the lower envelope of a set of lines (similar with lower convex hull and upper envelope)

Half-Plane Intersection

- Convex hulls and intersections of half planes are dual concepts
- An algorithm to compute the intersection of half-planes can be given by dualizing a convex hull algorithm. *Is this true?*

Half-Plane Intersection

- Duality transform cannot handle vertical lines
- If we do not leave the Euclidean plane, there cannot be any general duality that turns the intersection of a set of half-planes into a convex hull. Why? Intersection of half-planes can be empty!

And Convex hull is well defined.

- Conditions for duality:
 - Intersection is not empty
 - Point in the interior is known.

Voronoi Diagrams Revisited

- U:=(z=x²+y²) a paraboloid
- *p* is point on plane z=0
- h(p) is non-vert plane z=2p_xx+2p_yy-(p²_{x+}p²_y)
- *q* is any point on z=0
- $vdist(q',q(p)) = dist(p,q)^2$
- *h(p)* and paraboloid encodes any distance *p* to any point on z=0

Lecture 10: Convex Hulls in 3D

Voronoi Diagrams

- $H:=\{h(p) \mid p \in P\}$
- UE(H) upper envelope of the planes in H
- Projection of *UE(H)* on plane z=0 is
 Voronoi diagram of *P*

 http://www.cse.unsw.edu.au/~lambert/java/ 3d/delaunay.html

Delaunay Triangulations from $\mathcal{C\!H}$

Higher Dimensional Convex Hulls

• Upper Bound Theorem:

The worst-case combinatorial complexity of the convex hull of n points in d-dimensional space is $\Theta(n^{\lfloor d/2 \rfloor})$.

• Our algorithm generalizes to higher dimensions with expected running time of $\Theta(n^{\lfloor d/2 \rfloor})$

Higher Dimensional Convex Hulls

• Best known output-sensitive algorithm for computing convex hulls in R^d is:

$$O(n\log k + (nk)^{1-1/(\lfloor d/2 \rfloor + 1)}\log^{O(n)})$$

where k is complexity