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Convex Hulls
in 3-space

(slides mostly by Jason C. Yang)
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Problem Statement

• Given P: set of n points in 3D

• Return:
– Convex hull of P: CH(P), i.e.

smallest polyhedron s.t. 
all elements of P on or in
the interior of CH(P).
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• Complexity of CH for n points in 3D is O(n)

• ..because the number of edges of a convex 
polytopewith n vertices is at most 3n-6 and 
the number of facets is at most 2n-4

• ..because the graph defined by vertices and 
edges of a convex polytope is planar

• Euler’s formula: n – ne + nf = 2

Complexity
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Complexity

• Each face has at least 3 arcs

• Each arc incident to two faces

2ne ≥ 3nf

• Using Euler

nf ≤ 2n-4 ne ≤ 3n-6
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Algorithm

• Randomized incremental algorithm

• Steps:
– Initialize the algorithm
– Loop over remaining points

Add pr to the convex hull of Pr-1 to transform 
CH(Pr-1) to CH(Pr)

[for integer r≥1, let Pr:={ p1,…,pr} ]
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Initialization

• Need a CH to start with
• Build a tetrahedron using 4 points in P

– Start with two distinct points in P, say, p1 and p2

– Walk through P to find p3 that does not lie on the line 
through p1 and p2

– Find p4 that does not lie on the plane through p1, p2, p3

– Special case: No such points exist? Planar case!

• Compute random permutation p5,…,pn of 
the remaining points
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Inserting Points into CH

• Add pr to the convex hull of Pr-1 to 
transform CH(Pr-1) to CH(Pr)

• Two Cases:
1) Pr is inside or on the boundary of CH(Pr-1)

– Simple: CH(Pr) = CH(Pr-1)

2) Pr is outside of CH(Pr-1) – the hard case
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Case 2: Pr outside CH(Pr-1)

• Determine horizon of pr on CH(Pr-1)
– Closed curve of edges enclosing the visible

region of pr on CH(Pr-1)
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Visibility

• Consider plane hf containing a facet f of 
CH(Pr-1)

• f is visible from a point p if that point lies in 
the open half-space on the other side of hf
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Rethinking the Horizon

– Boundary of polygon obtained from projecting 
CH(Pr-1) onto a plane with pr as the center of 
projection
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CH(Pr-1) à CH(Pr)

• Remove visible facets from CH(Pr-1)

• Found horizon: Closed curve of edges of CH(Pr-1)

• Form CH(Pr) by connecting each horizon 
edge to pr to create a new triangular facet
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Algorithm So Far…

• Initialization
– Form tetrahedron CH(P4) from 4 points in P

– Compute random permutation of remaining pts.

• For each remaining point in P
– pr is point to be inserted
– If pr is outside CH(Pr-1) then

• Determine visible region

• Find horizon and remove visible facets

• Add new facets by connecting each horizon edge to pr

How do we determine the visible region?
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How to Find Visible Region

• Naïve approach:
– Test every facet with respect to pr

– O(n2) work

• Trick is to work ahead:
Maintain information to aid in determining 

visible facets.
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Conflict Lists

• For each facet f maintain
Pconflict(f) ⊆{ pr+1, …, pn}
containing points to be inserted that can see f

• For each pt, where t > r, maintain Fconflict(pt)
containing facets of CH(Pr) visible from pt

• p and f are in conflict because they cannot 
coexist on the same convex hull
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Conflict Graph G
• Bipartite graph 

– pts not yet inserted
– facets on CH(Pr)

• Arc for every 
point-facet conflict

• Conflict sets for a 
point or facet can be 
returned in linear time

At any step of our algorithm, we know all conflicts 
between the remaining points and facets on the current CH
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Initializing G

• Initialize G with CH(P4) in linear time

• Walk through P5-n to determine which facet 
each point can see
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Updating G

• Discard visible facets from pr by removing 
neighbors of pr in G

• Remove pr from G
• Determine new conflicts
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Determining New Conflicts

• If pt can see new f, it can see edge e of f.
• e on horizon of pr, so e was already in and 

visible from pt in CH(Pr-1)

• If pt sees e, it saw either f1 or f2 in CH(Pr-1)

• Pt was in Pconflict(f1) or Pconflict(f2) in CH(Pr-1)

pt
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Determining New Conflicts

• Conflict list of f can be found by testing the 
points in the conflict lists of f1 and f2

incident to the horizon edge e in CH(Pr-1)

pt
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What About the Other Facets?

• Pconflict(f) for any f unaffected by pr remains 
unchanged

pt

• Pconflict(f) for any f unaffected by pr remains 
unchanged

• Deleted facets not on horizon already 
accounted for
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Final Algorithm

• Initialize CH(P4) and G
• For each remaining point

– Determine visible facets for pr by checking G
– Remove Fconflict(pr) from CH
– Find horizon and add new facets to CH and G
– Update G for new facets by testing the points in 

existing conflict lists for facets in CH(Pr-1)
incident to e on the new facets

– Delete pr and Fconflict(pr) from G
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Fine Point

• Coplanar facets
– pr lies in the plane of a face of CH(Pr-1)

• f is not visible from pr so we merge created 
triangles coplanar to f

• New facet has same conflict list as existing facet
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Analysis
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Expected Number of Facets Created

• Will show that expected number of facets 
created by our algorithm is at most 6n-20

• Initialized with a tetrahedron = 4 facets
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Expected Number of New Facets

• Backward analysis:
– Remove pr from CH(Pr)

– Number of facets removed same as those 
created by pr

– Number of edges incident to pr in CH(Pr) is 
degree of pr:

deg(pr, CH(Pr))
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Expected Degree of pr

• Convex polytopeof r vertices has at most 3r-6 edges
• Sum of degrees of vertices of CH(Pr) is 6r-12

• Expected degree of pr bounded by (6r-12)/r
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Expected Number of Created Facets

• 4 from initial tetrahedron

• Expected total number of facets created by 
adding p5,…,pn
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Running Time

• Initialization � O(nlogn)

• Creating and deleting facets � O(n)
– Expected number of facets created is O(n)

• Deleting pr and facets in Fconflict(pr) from G
along with incident arcs � O(n)

• Finding new conflicts � O(?)



October 7, 2003 Lecture 10: Convex Hulls in 3D 29 / 41

Total Time to Find New Conflicts

• For each edge e on horizon we spend

O(|P(e|) time

where P(e) =Pconfict(f1)∪Pconflict(f2)
• Total time is O(Σe∈L |P(e)|)

• Lemma 11.6 The expected value of Σe|P(e)|, where the 
summation is over all horizon edges that appear at some 
stage of the algorithm is O(nlogn)
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Randomized Insertion Order
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Running Time

• Initialization � O(nlogn)

• Creating and deleting facets � O(n)
• Updating G � O(n)

• Finding new conflicts � O(nlogn)

• Total Running Time is O(nlogn)
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Convex Hulls in Dual Space

• Upper convex hull of a set of points is 
essentially the lower envelope of a set of 
lines (similar with lower convex hull and 
upper envelope)
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Half-Plane Intersection

• Convex hulls and intersections of half 
planes are dual concepts

• An algorithm to compute the intersection of 
half-planes can be given by dualizing a 
convex hull algorithm.  Is this true?
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Half-Plane Intersection

• Duality transform cannot handle vertical lines

• If we do not leave the Euclidean plane, there cannot be any 
general duality that turns the intersection of a set of half-
planes into a convex hull.  Why?

Intersection of half-planes can be empty!
And Convex hull is well defined.

Conditions for duality:

Intersection is not empty

Point in the interior is known.

• Duality transform cannot handle vertical lines

• If we do not leave the Euclidean plane, there cannot be any 
general duality that turns the intersection of a set of half-
planes into a convex hull.  Why?

Intersection of half-planes can be empty!
And Convex hull is well defined.

• Conditions for duality:

– Intersection is not empty

– Point in the interior is known.
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Voronoi Diagrams Revisited

• U:=(z=x2+y2)
a paraboloid

• p is point on plane z=0

• h(p) is non-vert plane
z=2pxx+2pyy-(p2

x+p2
y)

• q is any point on z=0

• vdist(q',q(p)) = dist(p,q)2

• h(p) and paraboloid
encodes any distance p to 
any point on z=0
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Voronoi Diagrams

• H:={ h(p) | p ∈ P}
• UE(H) upper envelope of the planes in H

• Projection of UE(H) on plane z=0 is 
Voronoi diagram of P
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Simplified Case
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Demo

• http://www.cse.unsw.edu.au/~lambert/java/
3d/delaunay.html
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Delaunay Triangulations from CH
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Higher Dimensional Convex Hulls

• Upper Bound Theorem:
The worst-case combinatorial complexity 

of the convex hull of n points in d-dimensional 
space is Θ(n � d/2� ).

• Our algorithm generalizes to higher 
dimensions with expected running time of 
Θ(n� d/2� )
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Higher Dimensional Convex Hulls

• Best known output-sensitive algorithm for 
computing convex hulls in Rd is:

O(nlogk +(nk)1-1/(� d/2� +1)logO(n))
where k is complexity


