# Convex Hulls in 3-space 

## (slides mostly by Jason C. Yang)

## Problem Statement

- Given $P$ : set of $n$ points in 3D
- Return:
- Convex hull of P: $\mathcal{C H}(P)$, i.e. smallest polyhedron s.t. all elements of $P$ on or in the interior of $\mathcal{C H}(P)$.



## Complexity

- Complexity of $C H$ for $n$ points in 3D is $O(n)$
- ..because the number of edges of a convex polytope with $n$ vertices is at most $3 n-6$ and the number of facets is at most $2 n-4$
- ..because the graph defined by vertices and edges of a convex polytope is planar
- Euler's formula: $n-n_{e}+n_{f}=2$


## Complexity

- Each face has at least 3 arcs
- Each arc incident to two faces

$$
2 n_{e} \geq 3 n_{f}
$$

- Using Euler

$$
n_{f} \leq 2 n-4 \quad n_{e} \leq 3 n-6
$$



## Algorithm

- Randomized incremental algorithm
- Steps:
- Initialize the algorithm
- Loop over remaining points

Add $p_{r}$ to the convex hull of $P_{r-1}$ to transform CH $\left(P_{r-1}\right)$ to $\mathcal{C H}\left(P_{r}\right)$
[for integer $r \geq 1$, let $P_{r}:=\left\{p_{1}, \ldots, p_{r}\right\}$ ]

## Initialization

- Need a $\mathcal{C H}$ to start with
- Build a tetrahedron using 4 points in $P$
- Start with two distinct points in $P$, say, $p_{1}$ and $p_{2}$
- Walk through $P$ to find $p_{3}$ that does not lie on the line through $p_{1}$ and $p_{2}$
- Find $p_{4}$ that does not lie on the plane through $p_{1}, p_{2}, p_{3}$
- Special case: No such points exist? Planar case!
- Compute random permutation $p_{5}, \ldots, p_{n}$ of the remaining points


## Inserting Points into $\mathcal{C H}$

- Add $p_{r}$ to the convex hull of $P_{r-1}$ to transform $\mathcal{C H}\left(P_{r-1}\right)$ to $\mathcal{C H}\left(P_{r}\right)$
- Two Cases:

1) $P_{r}$ is inside or on the boundary of $\mathcal{C H}\left(P_{r-1}\right)$

- Simple: $\mathcal{C H}\left(P_{r}\right)=\mathcal{C H}\left(P_{r-1}\right)$

2) $P_{r}$ is outside of $\mathcal{C H}\left(P_{r-1}\right)$ - the hard case

## Case 2: $P_{r}$ outside $\mathcal{C H}\left(P_{r-1}\right)$

- Determine horizon of $p_{r}$ on $\mathcal{C H}\left(P_{r-1}\right)$
- Closed curve of edges enclosing the visible region of $p_{r}$ on $\mathcal{C H}\left(P_{r-1}\right)$

$\mathcal{C H}\left(P_{r-1}\right)$


## Visibility

- Consider plane $h_{f}$ containing a facet $f$ of $\mathcal{C H}\left(P_{r-1}\right)$
- $f$ is visible from a point $p$ if that point lies in the open half-space on the other side of $h_{f}$

$f$ is visible from $p$,


## Rethinking the Horizon

- Boundary of polygon obtained from projecting $\mathcal{C H}\left(P_{r-1}\right)$ onto a plane with $p_{r}$ as the center of projection



## $\mathcal{C H}\left(P_{r-1}\right)$ $\mathcal{C H}\left(P_{r}\right)$

- Remove visible facets from $\mathcal{C H}\left(P_{r-1}\right)$
- Found horizon: Closed curve of edges of $\mathcal{H}\left(P_{r-1}\right)$
- Form $\mathcal{C H}\left(P_{r}\right)$ by connecting each horizon edge to $p_{r}$ to create a new triangular facet

$\mathcal{C H}\left(P_{r}\right)$


## Algorithm So Far...

- Initialization
- Form tetrahedron $\mathcal{C H}\left(P_{4}\right)$ from 4 points in $P$
- Compute random permutation of remaining pts.
- For each remaining point in $P$
$-p_{r}$ is point to be inserted
- If $p_{r}$ is outside $\mathcal{C H}\left(P_{r-1}\right)$ then
- Determine visible region
- Find horizon and remove visible facets
- Add new facets by connecting each horizon edge to $p_{r}$

How do we determine the visible region?
October 7, 2003

## How to Find Visible Region

- Naïve approach:
- Test every facet with respect to $p_{r}$
- $O\left(n^{2}\right)$ work
- Trick is to work ahead:

Maintain information to aid in determining visible facets.

## Conflict Lists

- For each facet $f$ maintain
$P_{\text {conflict }}(f) \subseteq\left\{p_{r+1}, \ldots, p_{n}\right\}$ containing points to be inserted that can see $f$
- For each $p_{t}$, where $t>r$, maintain $F_{\text {conflict }}\left(p_{t}\right)$ containing facets of $\mathcal{C H}\left(P_{r}\right)$ visible from $p_{t}$
- $p$ and $f$ are in conflict because they cannot coexist on the same convex hull


## Conflict Graph $\mathcal{G}$



- Bipartite graph
- pts not yet inserted
- facets on $\mathcal{C H}\left(P_{r}\right)$
- Arc for every point-facet conflict
- Conflict sets for a point or facet can be returned in linear time
$P_{\text {conflict }}(f)$ At any step of our algorithm, we know all conflicts between the remaining points and facets on the current $\mathcal{C H}$


## Initializing $\mathcal{G}$

- Initialize $\mathcal{G}$ with $\mathcal{C H}\left(P_{4}\right)$ in linear time
- Walk through $P_{5-n}$ to determine which facet each point can see



## Updating $\mathcal{G}$

- Discard visible facets from $p_{r}$ by removing neighbors of $p_{r}$ in $\mathcal{G}$
- Remove $p_{r}$ from $\mathcal{G}$
- Determine new conflicts



## Determining New Conflicts

- If $p_{t}$ can see new $f$, it can see edge $e$ of $f$.
- $e$ on horizon of $p_{r}$, so $e$ was already in and visible from $p_{t}$ in $C \mathcal{H}\left(P_{r-1}\right)$
- If $p_{t}$ sees $e$, it saw either $f_{1}$ or $f_{2}$ in $\mathcal{C H}\left(P_{\mathrm{r}-1}\right)$
- $P_{t}$ was in $P_{\text {conflict }}\left(f_{1}\right)$ or $P_{\text {conflict }}\left(f_{2}\right)$ in $\mathcal{C H}\left(P_{\mathrm{r}-1}\right)$


## Determining New Conflicts

- Conflict list of $f$ can be found by testing the points in the conflict lists of $f_{1}$ and $f_{2}$ incident to the horizon edge $e$ in $\mathcal{C H}\left(P_{r-1}\right)$



## What About the Other Facets?

- $P_{\text {conflict }}(f)$ for any $f$ unaffected by $p_{r}$ remains unchanged
- Deleted facets not on horizon already accounted for

- $p_{t}$


## Final Algorithm

- Initialize $\mathcal{C H}\left(P_{4}\right)$ and $\mathcal{G}$
- For each remaining point
- Determine visible facets for $p_{r}$ by checking $\mathcal{G}$
- Remove $F_{\text {conflict }}\left(p_{r}\right)$ from $\mathcal{C H}$
- Find horizon and add new facets to $\mathcal{C H}$ and $\mathcal{G}$
- Update $\mathcal{G}$ for new facets by testing the points in existing conflict lists for facets in $\mathcal{C H}\left(P_{\mathrm{r}-1}\right)$ incident to $e$ on the new facets
- Delete $p_{r}$ and $F_{\text {conflict }}\left(p_{r}\right)$ from $\mathcal{G}$


## Fine Point

- Coplanar facets
- $p_{r}$ lies in the plane of a face of $\mathcal{C H}\left(P_{r-1}\right)$

- $f$ is not visible from $p_{r}$ so we merge created triangles coplanar to $f$
- New facet has same conflict list as existing facet


## Analysis

## Expected Number of Facets Created

- Will show that expected number of facets created by our algorithm is at most $6 n-20$
- Initialized with a tetrahedron $=4$ facets


## Expected Number of New Facets

- Backward analysis:
- Remove $p_{r}$ from $\mathcal{C H}\left(P_{r}\right)$
- Number of facets removed same as those created by $p_{r}$
- Number of edges incident to $p_{r}$ in $\mathcal{C H}\left(P_{r}\right)$ is degree of $p_{r}$ :

$$
\operatorname{deg}\left(p_{r}, C \mathcal{H}\left(P_{r}\right)\right)
$$

## Expected Degree of $p_{r}$

- Convex polytope of $r$ vertices has at most $3 r-6$ edges
- Sum of degrees of vertices of $\mathcal{C H}\left(P_{r}\right)$ is $6 r-12$
- Expected degree of $p_{r}$ bounded by $(6 r-12) / r$

$$
\begin{aligned}
\mathrm{E}\left[\operatorname{deg}\left(p_{r}, C \mathcal{H}\left(P_{r}\right)\right)\right] & =\frac{1}{r-4} \sum_{i=5}^{r} \operatorname{deg}\left(p_{i}, \mathcal{H} \mathcal{H}\left(P_{r}\right)\right) \\
& \leqslant \frac{1}{r-4}\left(\left\{\sum_{i=1}^{r} \operatorname{deg}\left(p_{i}, C \mathcal{H}\left(P_{r}\right)\right)\right\}-12\right) \\
& \leqslant \frac{6 r-12-12}{r-4}=6 .
\end{aligned}
$$

## Expected Number of Created Facets

- 4 from initial tetrahedron
- Expected total number of facets created by adding $p_{5}, \ldots, p_{n}$ $4+\sum_{r=5}^{n} \mathrm{E}\left[\operatorname{deg}\left(p_{r}, C \mathcal{H}\left(P_{r}\right)\right)\right] \leqslant 4+6(n-4)=6 n-20$.


## Running Time

- Initialization $\Rightarrow O(n \log n)$
- Creating and deleting facets $\Rightarrow O(n)$
- Expected number of facets created is $O(n)$
- Deleting $p_{r}$ and facets in $F_{\text {conflict }}\left(p_{r}\right)$ from $\mathcal{G}$ along with incident arcs $\Rightarrow O(n)$
- Finding new conflicts $\Rightarrow O$ (?)


## Total Time to Find New Conflicts

- For each edge $e$ on horizon we spend $O(\mid P(e \mid)$ time
where $P(e)=P_{\text {confict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$

- Total time is $O\left(\Sigma_{\mathrm{e} \in L}|P(e)|\right)$
- Lemma 11.6 The expected value of $\Sigma_{e}|P(e)|$, where the summation is over all horizon edges that appear at some stage of the algorithm is O(nlogn)


## Randomized Insertion Order



Lecture 10: Convex Hulls in 3D

## Running Time

- Initialization $\Rightarrow O(n \log n)$
- Creating and deleting facets $\Rightarrow O(n)$
- Updating $\mathcal{G} \Rightarrow O(n)$
- Finding new conflicts $\Rightarrow O$ ( $n \log n$ )
- Total Running Time is $\mathrm{O}(n \log n)$


## Convex Hulls in Dual Space

- Upper convex hull of a set of points is essentially the lower envelope of a set of lines (similar with lower convex hull and upper envelope)



## Half-Plane Intersection

- Convex hulls and intersections of half planes are dual concepts
- An algorithm to compute the intersection of half-planes can be given by dualizing a convex hull algorithm. Is this true?


## Half-Plane Intersection

- Duality transform cannot handle vertical lines
- If we do not leave the Euclidean plane, there cannot be any general duality that turns the intersection of a set of halfplanes into a convex hull. Why?

Intersection of half-planes can be empty!
And Convex hull is well defined.

- Conditions for duality:
- Intersection is not empty
- Point in the interior is known.


## Voronoi Diagrams Revisited

- $\mathrm{U}:=\left(\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}\right)$
a paraboloid
- $p$ is point on plane $\mathrm{z}=0$
- $h(p)$ is non-vert plane $\mathrm{z}=2 \mathrm{p}_{\mathrm{x}} \mathrm{x}+2 \mathrm{p}_{\mathrm{y}} \mathrm{y}-\left(\mathrm{p}_{\mathrm{x}+} \mathrm{p}_{\mathrm{y}}^{2}\right)$
- $q$ is any point on $\mathrm{z}=0$
- $\operatorname{vdist}\left(q^{\prime}, \mathrm{q}(\mathrm{p})\right)=\operatorname{dist}(\mathrm{p}, \mathrm{q})^{2}$
- $h(p)$ and paraboloid encodes any distance $p$ to any point on $\mathrm{z}=0$



## Voronoi Diagrams

- $H:=\{h(p) \mid p \in P\}$
- UlE $(H)$ upper envelope of the planes in $H$
- Projection of $\mathfrak{C l E}(H)$ on plane $\mathrm{z}=0$ is Voronoi diagram of $P$



## Demo

- http://www.cse.unsw.edu.au/~lambert/java/ 3d/delaunay.html


## Delaunay Triangulations from $\mathcal{C H}$



## Higher Dimensional Convex Hulls

- Upper Bound Theorem:

The worst-case combinatorial complexity of the convex hull of $n$ points in d-dimensional space is $\Theta\left(n^{\lfloor d / 2\rfloor}\right)$.

- Our algorithm generalizes to higher dimensions with expected running time of $\Theta\left(n^{\lfloor\mathrm{d} / 2\rfloor}\right)$


## Higher Dimensional Convex Hulls

- Best known output-sensitive algorithm for computing convex hulls in $\mathrm{R}^{\mathrm{d}}$ is:

$$
O\left(n \log k+(n k)^{1-1 /(\lfloor 1 / 2\rfloor+1)} \log ^{O(\mathrm{n})}\right)
$$

where $k$ is complexity

